gem5/ext/mcpat/cacti/router.cc
Yasuko Eckert 0deef376d9 ext: McPAT interface changes and fixes
This patch includes software engineering changes and some generic bug fixes
Joel Hestness and Yasuko Eckert made to McPAT 0.8. There are still known
issues/concernts we did not have a chance to address in this patch.

High-level changes in this patch include:
 1) Making XML parsing modular and hierarchical:
   - Shift parsing responsibility into the components
   - Read XML in a (mostly) context-free recursive manner so that McPAT input
     files can contain arbitrary component hierarchies
 2) Making power, energy, and area calculations a hierarchical and recursive
    process
   - Components track their subcomponents and recursively call compute
     functions in stages
   - Make C++ object hierarchy reflect inheritance of classes of components
     with similar structures
   - Simplify computeArea() and computeEnergy() functions to eliminate
     successive calls to calculate separate TDP vs. runtime energy
   - Remove Processor component (now unnecessary) and introduce a more abstract
     System component
 3) Standardizing McPAT output across all components
   - Use a single, common data structure for storing and printing McPAT output
   - Recursively call print functions through component hierarchy
 4) For caches, allow splitting data array and tag array reads and writes for
    better accuracy
 5) Improving the usability of CACTI by printing more helpful warning and error
    messages
 6) Minor: Impose more rigorous code style for clarity (more work still to be
    done)
Overall, these changes greatly reduce the amount of replicated code, and they
improve McPAT runtime and decrease memory footprint.
2014-06-03 13:32:59 -07:00

315 lines
11 KiB
C++

/*****************************************************************************
* McPAT/CACTI
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***************************************************************************/
#include "router.h"
Router::Router(
double flit_size_,
double vc_buf, /* vc size = vc_buffer_size * flit_size */
double vc_c,
TechnologyParameter::DeviceType *dt,
double I_,
double O_,
double M_
): flit_size(flit_size_),
deviceType(dt),
I(I_),
O(O_),
M(M_) {
vc_buffer_size = vc_buf;
vc_count = vc_c;
min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio * g_tp.min_w_nmos_;
double technology = g_ip->F_sz_um;
Vdd = dt->Vdd;
/*Crossbar parameters. Transmisson gate is employed for connector*/
NTtr = 10 * technology * 1e-6 / 2; /*Transmission gate's nmos tr. length*/
PTtr = 20 * technology * 1e-6 / 2; /* pmos tr. length*/
wt = 15 * technology * 1e-6 / 2; /*track width*/
ht = 15 * technology * 1e-6 / 2; /*track height*/
// I = 5; /*Number of crossbar input ports*/
// O = 5; /*Number of crossbar output ports*/
NTi = 12.5 * technology * 1e-6 / 2;
PTi = 25 * technology * 1e-6 / 2;
NTid = 60 * technology * 1e-6 / 2; //m
PTid = 120 * technology * 1e-6 / 2; // m
NTod = 60 * technology * 1e-6 / 2; // m
PTod = 120 * technology * 1e-6 / 2; // m
calc_router_parameters();
}
Router::~Router() {}
double //wire cap with triple spacing
Router::Cw3(double length) {
Wire wc(g_ip->wt, length, 1, 3, 3);
return (wc.wire_cap(length));
}
/*Function to calculate the gate capacitance*/
double
Router::gate_cap(double w) {
return (double) gate_C (w*1e6 /*u*/, 0);
}
/*Function to calculate the diffusion capacitance*/
double
Router::diff_cap(double w, int type /*0 for n-mos and 1 for p-mos*/,
double s /*number of stacking transistors*/) {
return (double) drain_C_(w*1e6 /*u*/, type, (int) s, 1, g_tp.cell_h_def);
}
/*crossbar related functions */
// Model for simple transmission gate
double
Router::transmission_buf_inpcap() {
return diff_cap(NTtr, 0, 1) + diff_cap(PTtr, 1, 1);
}
double
Router::transmission_buf_outcap() {
return diff_cap(NTtr, 0, 1) + diff_cap(PTtr, 1, 1);
}
double
Router::transmission_buf_ctrcap() {
return gate_cap(NTtr) + gate_cap(PTtr);
}
double
Router::crossbar_inpline() {
return (Cw3(O*flit_size*wt) + O*transmission_buf_inpcap() + gate_cap(NTid) +
gate_cap(PTid) + diff_cap(NTid, 0, 1) + diff_cap(PTid, 1, 1));
}
double
Router::crossbar_outline() {
return (Cw3(I*flit_size*ht) + I*transmission_buf_outcap() + gate_cap(NTod) +
gate_cap(PTod) + diff_cap(NTod, 0, 1) + diff_cap(PTod, 1, 1));
}
double
Router::crossbar_ctrline() {
return (Cw3(0.5*O*flit_size*wt) + flit_size*transmission_buf_ctrcap() +
diff_cap(NTi, 0, 1) + diff_cap(PTi, 1, 1) +
gate_cap(NTi) + gate_cap(PTi));
}
double
Router::tr_crossbar_power() {
return (crossbar_inpline()*Vdd*Vdd*flit_size / 2 +
crossbar_outline()*Vdd*Vdd*flit_size / 2) * 2;
}
void Router::buffer_stats() {
DynamicParameter dyn_p;
dyn_p.is_tag = false;
dyn_p.pure_cam = false;
dyn_p.fully_assoc = false;
dyn_p.pure_ram = true;
dyn_p.is_dram = false;
dyn_p.is_main_mem = false;
dyn_p.num_subarrays = 1;
dyn_p.num_mats = 1;
dyn_p.Ndbl = 1;
dyn_p.Ndwl = 1;
dyn_p.Nspd = 1;
dyn_p.deg_bl_muxing = 1;
dyn_p.deg_senseamp_muxing_non_associativity = 1;
dyn_p.Ndsam_lev_1 = 1;
dyn_p.Ndsam_lev_2 = 1;
dyn_p.Ndcm = 1;
dyn_p.number_addr_bits_mat = 8;
dyn_p.number_way_select_signals_mat = 1;
dyn_p.number_subbanks_decode = 0;
dyn_p.num_act_mats_hor_dir = 1;
dyn_p.V_b_sense = Vdd; // FIXME check power calc.
dyn_p.ram_cell_tech_type = 0;
dyn_p.num_r_subarray = (int) vc_buffer_size;
dyn_p.num_c_subarray = (int) flit_size * (int) vc_count;
dyn_p.num_mats_h_dir = 1;
dyn_p.num_mats_v_dir = 1;
dyn_p.num_do_b_subbank = (int)flit_size;
dyn_p.num_di_b_subbank = (int)flit_size;
dyn_p.num_do_b_mat = (int) flit_size;
dyn_p.num_di_b_mat = (int) flit_size;
dyn_p.num_do_b_mat = (int) flit_size;
dyn_p.num_di_b_mat = (int) flit_size;
dyn_p.num_do_b_bank_per_port = (int) flit_size;
dyn_p.num_di_b_bank_per_port = (int) flit_size;
dyn_p.out_w = (int) flit_size;
dyn_p.use_inp_params = 1;
dyn_p.num_wr_ports = (unsigned int) vc_count;
dyn_p.num_rd_ports = 1;//(unsigned int) vc_count;//based on Bill Dally's book
dyn_p.num_rw_ports = 0;
dyn_p.num_se_rd_ports = 0;
dyn_p.num_search_ports = 0;
dyn_p.cell.h = g_tp.sram.b_h + 2 * g_tp.wire_outside_mat.pitch * (dyn_p.num_wr_ports +
dyn_p.num_rw_ports - 1 + dyn_p.num_rd_ports);
dyn_p.cell.w = g_tp.sram.b_w + 2 * g_tp.wire_outside_mat.pitch * (dyn_p.num_rw_ports - 1 +
(dyn_p.num_rd_ports - dyn_p.num_se_rd_ports) +
dyn_p.num_wr_ports) + g_tp.wire_outside_mat.pitch * dyn_p.num_se_rd_ports;
Mat buff(dyn_p);
buff.compute_delays(0);
buff.compute_power_energy();
buffer.power.readOp = buff.power.readOp;
buffer.power.writeOp = buffer.power.readOp; //FIXME
buffer.area = buff.area;
}
void
Router::cb_stats () {
if (1) {
Crossbar c_b(I, O, flit_size);
c_b.compute_power();
crossbar.delay = c_b.delay;
crossbar.power.readOp.dynamic = c_b.power.readOp.dynamic;
crossbar.power.readOp.leakage = c_b.power.readOp.leakage;
crossbar.power.readOp.gate_leakage = c_b.power.readOp.gate_leakage;
crossbar.area = c_b.area;
// c_b.print_crossbar();
} else {
crossbar.power.readOp.dynamic = tr_crossbar_power();
crossbar.power.readOp.leakage = flit_size * I * O *
cmos_Isub_leakage(NTtr * g_tp.min_w_nmos_, PTtr * min_w_pmos, 1, tg);
crossbar.power.readOp.gate_leakage = flit_size * I * O *
cmos_Ig_leakage(NTtr * g_tp.min_w_nmos_, PTtr * min_w_pmos, 1, tg);
}
}
void
Router::get_router_power() {
/* calculate buffer stats */
buffer_stats();
/* calculate cross-bar stats */
cb_stats();
/* calculate arbiter stats */
Arbiter vcarb(vc_count, flit_size, buffer.area.w);
Arbiter cbarb(I, flit_size, crossbar.area.w);
vcarb.compute_power();
cbarb.compute_power();
arbiter.power.readOp.dynamic = vcarb.power.readOp.dynamic * I +
cbarb.power.readOp.dynamic * O;
arbiter.power.readOp.leakage = vcarb.power.readOp.leakage * I +
cbarb.power.readOp.leakage * O;
arbiter.power.readOp.gate_leakage = vcarb.power.readOp.gate_leakage * I +
cbarb.power.readOp.gate_leakage * O;
// arb_stats();
power.readOp.dynamic = ((buffer.power.readOp.dynamic +
buffer.power.writeOp.dynamic) +
crossbar.power.readOp.dynamic +
arbiter.power.readOp.dynamic) * MIN(I, O) * M;
double pppm_t[4] = {1, I, I, 1};
power = power + (buffer.power * pppm_t + crossbar.power + arbiter.power) *
pppm_lkg;
}
void
Router::get_router_delay () {
FREQUENCY = 5; // move this to config file --TODO
cycle_time = (1 / (double)FREQUENCY) * 1e3; //ps
delay = 4;
max_cyc = 17 * g_tp.FO4; //s
max_cyc *= 1e12; //ps
if (cycle_time < max_cyc) {
FREQUENCY = (1 / max_cyc) * 1e3; //GHz
}
}
void
Router::get_router_area() {
area.h = I * buffer.area.h;
area.w = buffer.area.w + crossbar.area.w;
}
void
Router::calc_router_parameters() {
/* calculate router frequency and pipeline cycles */
get_router_delay();
/* router power stats */
get_router_power();
/* area stats */
get_router_area();
}
void
Router::print_router() {
cout << "\n\nRouter stats:\n";
cout << "\tRouter Area - " << area.get_area()*1e-6 << "(mm^2)\n";
cout << "\tMaximum possible network frequency - " << (1 / max_cyc)*1e3
<< "GHz\n";
cout << "\tNetwork frequency - " << FREQUENCY << " GHz\n";
cout << "\tNo. of Virtual channels - " << vc_count << "\n";
cout << "\tNo. of pipeline stages - " << delay << endl;
cout << "\tLink bandwidth - " << flit_size << " (bits)\n";
cout << "\tNo. of buffer entries per virtual channel - "
<< vc_buffer_size << "\n";
cout << "\tSimple buffer Area - " << buffer.area.get_area()*1e-6
<< "(mm^2)\n";
cout << "\tSimple buffer access (Read) - "
<< buffer.power.readOp.dynamic * 1e9 << " (nJ)\n";
cout << "\tSimple buffer leakage - " << buffer.power.readOp.leakage * 1e3
<< " (mW)\n";
cout << "\tCrossbar Area - " << crossbar.area.get_area()*1e-6
<< "(mm^2)\n";
cout << "\tCross bar access energy - "
<< crossbar.power.readOp.dynamic * 1e9 << " (nJ)\n";
cout << "\tCross bar leakage power - "
<< crossbar.power.readOp.leakage * 1e3 << " (mW)\n";
cout << "\tArbiter access energy (VC arb + Crossbar arb) - "
<< arbiter.power.readOp.dynamic * 1e9 << " (nJ)\n";
cout << "\tArbiter leakage (VC arb + Crossbar arb) - "
<< arbiter.power.readOp.leakage * 1e3 << " (mW)\n";
}