gem5/ext/mcpat/cacti/Ucache.cc
Yasuko Eckert 0deef376d9 ext: McPAT interface changes and fixes
This patch includes software engineering changes and some generic bug fixes
Joel Hestness and Yasuko Eckert made to McPAT 0.8. There are still known
issues/concernts we did not have a chance to address in this patch.

High-level changes in this patch include:
 1) Making XML parsing modular and hierarchical:
   - Shift parsing responsibility into the components
   - Read XML in a (mostly) context-free recursive manner so that McPAT input
     files can contain arbitrary component hierarchies
 2) Making power, energy, and area calculations a hierarchical and recursive
    process
   - Components track their subcomponents and recursively call compute
     functions in stages
   - Make C++ object hierarchy reflect inheritance of classes of components
     with similar structures
   - Simplify computeArea() and computeEnergy() functions to eliminate
     successive calls to calculate separate TDP vs. runtime energy
   - Remove Processor component (now unnecessary) and introduce a more abstract
     System component
 3) Standardizing McPAT output across all components
   - Use a single, common data structure for storing and printing McPAT output
   - Recursively call print functions through component hierarchy
 4) For caches, allow splitting data array and tag array reads and writes for
    better accuracy
 5) Improving the usability of CACTI by printing more helpful warning and error
    messages
 6) Minor: Impose more rigorous code style for clarity (more work still to be
    done)
Overall, these changes greatly reduce the amount of replicated code, and they
improve McPAT runtime and decrease memory footprint.
2014-06-03 13:32:59 -07:00

934 lines
35 KiB
C++

/*****************************************************************************
* McPAT/CACTI
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***************************************************************************/
#include <pthread.h>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <iostream>
#include <list>
#include "Ucache.h"
#include "area.h"
#include "bank.h"
#include "basic_circuit.h"
#include "component.h"
#include "const.h"
#include "decoder.h"
#include "parameter.h"
#include "subarray.h"
#include "uca.h"
using namespace std;
const uint32_t nthreads = NTHREADS;
void min_values_t::update_min_values(const min_values_t * val) {
min_delay = (min_delay > val->min_delay) ? val->min_delay : min_delay;
min_dyn = (min_dyn > val->min_dyn) ? val->min_dyn : min_dyn;
min_leakage = (min_leakage > val->min_leakage) ? val->min_leakage : min_leakage;
min_area = (min_area > val->min_area) ? val->min_area : min_area;
min_cyc = (min_cyc > val->min_cyc) ? val->min_cyc : min_cyc;
}
void min_values_t::update_min_values(const uca_org_t & res) {
min_delay = (min_delay > res.access_time) ? res.access_time : min_delay;
min_dyn = (min_dyn > res.power.readOp.dynamic) ? res.power.readOp.dynamic : min_dyn;
min_leakage = (min_leakage > res.power.readOp.leakage) ? res.power.readOp.leakage : min_leakage;
min_area = (min_area > res.area) ? res.area : min_area;
min_cyc = (min_cyc > res.cycle_time) ? res.cycle_time : min_cyc;
}
void min_values_t::update_min_values(const nuca_org_t * res) {
min_delay = (min_delay > res->nuca_pda.delay) ? res->nuca_pda.delay : min_delay;
min_dyn = (min_dyn > res->nuca_pda.power.readOp.dynamic) ? res->nuca_pda.power.readOp.dynamic : min_dyn;
min_leakage = (min_leakage > res->nuca_pda.power.readOp.leakage) ? res->nuca_pda.power.readOp.leakage : min_leakage;
min_area = (min_area > res->nuca_pda.area.get_area()) ? res->nuca_pda.area.get_area() : min_area;
min_cyc = (min_cyc > res->nuca_pda.cycle_time) ? res->nuca_pda.cycle_time : min_cyc;
}
void min_values_t::update_min_values(const mem_array * res) {
min_delay = (min_delay > res->access_time) ? res->access_time : min_delay;
min_dyn = (min_dyn > res->power.readOp.dynamic) ? res->power.readOp.dynamic : min_dyn;
min_leakage = (min_leakage > res->power.readOp.leakage) ? res->power.readOp.leakage : min_leakage;
min_area = (min_area > res->area) ? res->area : min_area;
min_cyc = (min_cyc > res->cycle_time) ? res->cycle_time : min_cyc;
}
void * calc_time_mt_wrapper(void * void_obj) {
calc_time_mt_wrapper_struct * calc_obj = (calc_time_mt_wrapper_struct *) void_obj;
uint32_t tid = calc_obj->tid;
list<mem_array *> & data_arr = calc_obj->data_arr;
list<mem_array *> & tag_arr = calc_obj->tag_arr;
bool is_tag = calc_obj->is_tag;
bool pure_ram = calc_obj->pure_ram;
bool pure_cam = calc_obj->pure_cam;
bool is_main_mem = calc_obj->is_main_mem;
double Nspd_min = calc_obj->Nspd_min;
min_values_t * data_res = calc_obj->data_res;
min_values_t * tag_res = calc_obj->tag_res;
data_arr.clear();
data_arr.push_back(new mem_array);
tag_arr.clear();
tag_arr.push_back(new mem_array);
uint32_t Ndwl_niter = _log2(MAXDATAN) + 1;
uint32_t Ndbl_niter = _log2(MAXDATAN) + 1;
uint32_t Ndcm_niter = _log2(MAX_COL_MUX) + 1;
uint32_t niter = Ndwl_niter * Ndbl_niter * Ndcm_niter;
bool is_valid_partition;
int wt_min, wt_max;
if (g_ip->force_wiretype) {
if (g_ip->wt == 0) {
wt_min = Low_swing;
wt_max = Low_swing;
} else {
wt_min = Global;
wt_max = Low_swing - 1;
}
} else {
wt_min = Global;
wt_max = Low_swing;
}
for (double Nspd = Nspd_min; Nspd <= MAXDATASPD; Nspd *= 2) {
for (int wr = wt_min; wr <= wt_max; wr++) {
for (uint32_t iter = tid; iter < niter; iter += nthreads) {
// reconstruct Ndwl, Ndbl, Ndcm
unsigned int Ndwl = 1 << (iter / (Ndbl_niter * Ndcm_niter));
unsigned int Ndbl = 1 << ((iter / (Ndcm_niter)) % Ndbl_niter);
unsigned int Ndcm = 1 << (iter % Ndcm_niter);
for (unsigned int Ndsam_lev_1 = 1; Ndsam_lev_1 <= MAX_COL_MUX;
Ndsam_lev_1 *= 2) {
for (unsigned int Ndsam_lev_2 = 1;
Ndsam_lev_2 <= MAX_COL_MUX; Ndsam_lev_2 *= 2) {
//for debuging
if (g_ip->force_cache_config && is_tag == false) {
wr = g_ip->wt;
Ndwl = g_ip->ndwl;
Ndbl = g_ip->ndbl;
Ndcm = g_ip->ndcm;
if (g_ip->nspd != 0) {
Nspd = g_ip->nspd;
}
if (g_ip->ndsam1 != 0) {
Ndsam_lev_1 = g_ip->ndsam1;
Ndsam_lev_2 = g_ip->ndsam2;
}
}
if (is_tag == true) {
is_valid_partition = calculate_time(is_tag, pure_ram, pure_cam, Nspd, Ndwl,
Ndbl, Ndcm, Ndsam_lev_1, Ndsam_lev_2,
tag_arr.back(), 0, NULL, NULL,
is_main_mem);
}
// If it's a fully-associative cache, the data array partition parameters are identical to that of
// the tag array, so compute data array partition properties also here.
if (is_tag == false || g_ip->fully_assoc) {
is_valid_partition = calculate_time(is_tag/*false*/, pure_ram, pure_cam, Nspd, Ndwl,
Ndbl, Ndcm, Ndsam_lev_1, Ndsam_lev_2,
data_arr.back(), 0, NULL, NULL,
is_main_mem);
}
if (is_valid_partition) {
if (is_tag == true) {
tag_arr.back()->wt = (enum Wire_type) wr;
tag_res->update_min_values(tag_arr.back());
tag_arr.push_back(new mem_array);
}
if (is_tag == false || g_ip->fully_assoc) {
data_arr.back()->wt = (enum Wire_type) wr;
data_res->update_min_values(data_arr.back());
data_arr.push_back(new mem_array);
}
}
if (g_ip->force_cache_config && is_tag == false) {
wr = wt_max;
iter = niter;
if (g_ip->nspd != 0) {
Nspd = MAXDATASPD;
}
if (g_ip->ndsam1 != 0) {
Ndsam_lev_1 = MAX_COL_MUX + 1;
Ndsam_lev_2 = MAX_COL_MUX + 1;
}
}
}
}
}
}
}
delete data_arr.back();
delete tag_arr.back();
data_arr.pop_back();
tag_arr.pop_back();
#ifndef DEBUG
pthread_exit(NULL);
#else
return NULL;
#endif
}
bool calculate_time(
bool is_tag,
int pure_ram,
bool pure_cam,
double Nspd,
unsigned int Ndwl,
unsigned int Ndbl,
unsigned int Ndcm,
unsigned int Ndsam_lev_1,
unsigned int Ndsam_lev_2,
mem_array *ptr_array,
int flag_results_populate,
results_mem_array *ptr_results,
uca_org_t *ptr_fin_res,
bool is_main_mem) {
DynamicParameter dyn_p(is_tag, pure_ram, pure_cam, Nspd, Ndwl, Ndbl, Ndcm, Ndsam_lev_1, Ndsam_lev_2, is_main_mem);
if (dyn_p.is_valid == false) {
return false;
}
UCA * uca = new UCA(dyn_p);
//For the final solution, populate the ptr_results data structure
//-- TODO: copy only necessary variables
if (flag_results_populate) {
} else {
int num_act_mats_hor_dir = uca->bank.dp.num_act_mats_hor_dir;
int num_mats = uca->bank.dp.num_mats;
bool is_fa = uca->bank.dp.fully_assoc;
bool pure_cam = uca->bank.dp.pure_cam;
ptr_array->Ndwl = Ndwl;
ptr_array->Ndbl = Ndbl;
ptr_array->Nspd = Nspd;
ptr_array->deg_bl_muxing = dyn_p.deg_bl_muxing;
ptr_array->Ndsam_lev_1 = Ndsam_lev_1;
ptr_array->Ndsam_lev_2 = Ndsam_lev_2;
ptr_array->access_time = uca->access_time;
ptr_array->cycle_time = uca->cycle_time;
ptr_array->multisubbank_interleave_cycle_time =
uca->multisubbank_interleave_cycle_time;
ptr_array->area_ram_cells = uca->area_all_dataramcells;
ptr_array->area = uca->area.get_area();
ptr_array->height = uca->area.h;
ptr_array->width = uca->area.w;
ptr_array->mat_height = uca->bank.mat.area.h;
ptr_array->mat_length = uca->bank.mat.area.w;
ptr_array->subarray_height = uca->bank.mat.subarray.area.h;
ptr_array->subarray_length = uca->bank.mat.subarray.area.w;
ptr_array->power = uca->power;
ptr_array->delay_senseamp_mux_decoder =
MAX(uca->delay_array_to_sa_mux_lev_1_decoder,
uca->delay_array_to_sa_mux_lev_2_decoder);
ptr_array->delay_before_subarray_output_driver =
uca->delay_before_subarray_output_driver;
ptr_array->delay_from_subarray_output_driver_to_output =
uca->delay_from_subarray_out_drv_to_out;
ptr_array->delay_route_to_bank = uca->htree_in_add->delay;
ptr_array->delay_input_htree = uca->bank.htree_in_add->delay;
ptr_array->delay_row_predecode_driver_and_block =
uca->bank.mat.r_predec->delay;
ptr_array->delay_row_decoder = uca->bank.mat.row_dec->delay;
ptr_array->delay_bitlines = uca->bank.mat.delay_bitline;
ptr_array->delay_matchlines = uca->bank.mat.delay_matchchline;
ptr_array->delay_sense_amp = uca->bank.mat.delay_sa;
ptr_array->delay_subarray_output_driver =
uca->bank.mat.delay_subarray_out_drv_htree;
ptr_array->delay_dout_htree = uca->bank.htree_out_data->delay;
ptr_array->delay_comparator = uca->bank.mat.delay_comparator;
ptr_array->all_banks_height = uca->area.h;
ptr_array->all_banks_width = uca->area.w;
ptr_array->area_efficiency = uca->area_all_dataramcells * 100 /
(uca->area.get_area());
ptr_array->power_routing_to_bank = uca->power_routing_to_bank;
ptr_array->power_addr_input_htree = uca->bank.htree_in_add->power;
ptr_array->power_data_input_htree = uca->bank.htree_in_data->power;
ptr_array->power_data_output_htree = uca->bank.htree_out_data->power;
ptr_array->power_row_predecoder_drivers =
uca->bank.mat.r_predec->driver_power;
ptr_array->power_row_predecoder_drivers.readOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_row_predecoder_drivers.writeOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_row_predecoder_drivers.searchOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_row_predecoder_blocks =
uca->bank.mat.r_predec->block_power;
ptr_array->power_row_predecoder_blocks.readOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_row_predecoder_blocks.writeOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_row_predecoder_blocks.searchOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_row_decoders = uca->bank.mat.power_row_decoders;
ptr_array->power_row_decoders.readOp.dynamic *= num_act_mats_hor_dir;
ptr_array->power_row_decoders.writeOp.dynamic *= num_act_mats_hor_dir;
ptr_array->power_row_decoders.searchOp.dynamic *= num_act_mats_hor_dir;
ptr_array->power_bit_mux_predecoder_drivers =
uca->bank.mat.b_mux_predec->driver_power;
ptr_array->power_bit_mux_predecoder_drivers.readOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_bit_mux_predecoder_drivers.writeOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_bit_mux_predecoder_drivers.searchOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_bit_mux_predecoder_blocks =
uca->bank.mat.b_mux_predec->block_power;
ptr_array->power_bit_mux_predecoder_blocks.readOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_bit_mux_predecoder_blocks.writeOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_bit_mux_predecoder_blocks.searchOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_bit_mux_decoders = uca->bank.mat.power_bit_mux_decoders;
ptr_array->power_bit_mux_decoders.readOp.dynamic *= num_act_mats_hor_dir;
ptr_array->power_bit_mux_decoders.writeOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_bit_mux_decoders.searchOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_1_predecoder_drivers =
uca->bank.mat.sa_mux_lev_1_predec->driver_power;
ptr_array->power_senseamp_mux_lev_1_predecoder_drivers .readOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_1_predecoder_drivers .writeOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_1_predecoder_drivers .searchOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_1_predecoder_blocks =
uca->bank.mat.sa_mux_lev_1_predec->block_power;
ptr_array->power_senseamp_mux_lev_1_predecoder_blocks.readOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_1_predecoder_blocks.writeOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_1_predecoder_blocks.searchOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_1_decoders =
uca->bank.mat.power_sa_mux_lev_1_decoders;
ptr_array->power_senseamp_mux_lev_1_decoders.readOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_1_decoders.writeOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_1_decoders.searchOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_2_predecoder_drivers =
uca->bank.mat.sa_mux_lev_2_predec->driver_power;
ptr_array->power_senseamp_mux_lev_2_predecoder_drivers.readOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_2_predecoder_drivers.writeOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_2_predecoder_drivers.searchOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_2_predecoder_blocks =
uca->bank.mat.sa_mux_lev_2_predec->block_power;
ptr_array->power_senseamp_mux_lev_2_predecoder_blocks.readOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_2_predecoder_blocks.writeOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_2_predecoder_blocks.searchOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_2_decoders =
uca->bank.mat.power_sa_mux_lev_2_decoders;
ptr_array->power_senseamp_mux_lev_2_decoders .readOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_2_decoders .writeOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_senseamp_mux_lev_2_decoders .searchOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_bitlines = uca->bank.mat.power_bitline;
ptr_array->power_bitlines.readOp.dynamic *= num_act_mats_hor_dir;
ptr_array->power_bitlines.writeOp.dynamic *= num_act_mats_hor_dir;
ptr_array->power_bitlines.searchOp.dynamic *= num_act_mats_hor_dir;
ptr_array->power_sense_amps = uca->bank.mat.power_sa;
ptr_array->power_sense_amps.readOp.dynamic *= num_act_mats_hor_dir;
ptr_array->power_sense_amps.writeOp.dynamic *= num_act_mats_hor_dir;
ptr_array->power_sense_amps.searchOp.dynamic *= num_act_mats_hor_dir;
ptr_array->power_prechg_eq_drivers =
uca->bank.mat.power_bl_precharge_eq_drv;
ptr_array->power_prechg_eq_drivers.readOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_prechg_eq_drivers.writeOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_prechg_eq_drivers.searchOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_output_drivers_at_subarray =
uca->bank.mat.power_subarray_out_drv;
ptr_array->power_output_drivers_at_subarray.readOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_output_drivers_at_subarray.writeOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_output_drivers_at_subarray.searchOp.dynamic *=
num_act_mats_hor_dir;
ptr_array->power_comparators = uca->bank.mat.power_comparator;
ptr_array->power_comparators.readOp.dynamic *= num_act_mats_hor_dir;
ptr_array->power_comparators.writeOp.dynamic *= num_act_mats_hor_dir;
ptr_array->power_comparators.searchOp.dynamic *= num_act_mats_hor_dir;
if (is_fa || pure_cam) {
ptr_array->power_htree_in_search =
uca->bank.htree_in_search->power;
ptr_array->power_htree_out_search =
uca->bank.htree_out_search->power;
ptr_array->power_searchline = uca->bank.mat.power_searchline;
ptr_array->power_searchline.searchOp.dynamic *= num_mats;
ptr_array->power_searchline_precharge =
uca->bank.mat.power_searchline_precharge;
ptr_array->power_searchline_precharge.searchOp.dynamic *= num_mats;
ptr_array->power_matchlines = uca->bank.mat.power_matchline;
ptr_array->power_matchlines.searchOp.dynamic *= num_mats;
ptr_array->power_matchline_precharge =
uca->bank.mat.power_matchline_precharge;
ptr_array->power_matchline_precharge.searchOp.dynamic *= num_mats;
ptr_array->power_matchline_to_wordline_drv =
uca->bank.mat.power_ml_to_ram_wl_drv;
}
ptr_array->activate_energy = uca->activate_energy;
ptr_array->read_energy = uca->read_energy;
ptr_array->write_energy = uca->write_energy;
ptr_array->precharge_energy = uca->precharge_energy;
ptr_array->refresh_power = uca->refresh_power;
ptr_array->leak_power_subbank_closed_page =
uca->leak_power_subbank_closed_page;
ptr_array->leak_power_subbank_open_page =
uca->leak_power_subbank_open_page;
ptr_array->leak_power_request_and_reply_networks =
uca->leak_power_request_and_reply_networks;
ptr_array->precharge_delay = uca->precharge_delay;
}
delete uca;
return true;
}
bool check_uca_org(uca_org_t & u, min_values_t *minval) {
if (((u.access_time - minval->min_delay) * 100 / minval->min_delay) >
g_ip->delay_dev) {
return false;
}
if (((u.power.readOp.dynamic - minval->min_dyn) / minval->min_dyn)*100 >
g_ip->dynamic_power_dev) {
return false;
}
if (((u.power.readOp.leakage - minval->min_leakage) /
minval->min_leakage) * 100 >
g_ip->leakage_power_dev) {
return false;
}
if (((u.cycle_time - minval->min_cyc) / minval->min_cyc)*100 >
g_ip->cycle_time_dev) {
return false;
}
if (((u.area - minval->min_area) / minval->min_area)*100 >
g_ip->area_dev) {
return false;
}
return true;
}
bool check_mem_org(mem_array & u, const min_values_t *minval) {
if (((u.access_time - minval->min_delay) * 100 / minval->min_delay) >
g_ip->delay_dev) {
return false;
}
if (((u.power.readOp.dynamic - minval->min_dyn) / minval->min_dyn)*100 >
g_ip->dynamic_power_dev) {
return false;
}
if (((u.power.readOp.leakage - minval->min_leakage) /
minval->min_leakage) * 100 >
g_ip->leakage_power_dev) {
return false;
}
if (((u.cycle_time - minval->min_cyc) / minval->min_cyc) * 100 >
g_ip->cycle_time_dev) {
return false;
}
if (((u.area - minval->min_area) / minval->min_area) * 100 >
g_ip->area_dev) {
return false;
}
return true;
}
void find_optimal_uca(uca_org_t *res, min_values_t * minval,
list<uca_org_t> & ulist) {
double cost = 0;
double min_cost = BIGNUM;
float d, a, dp, lp, c;
dp = g_ip->dynamic_power_wt;
lp = g_ip->leakage_power_wt;
a = g_ip->area_wt;
d = g_ip->delay_wt;
c = g_ip->cycle_time_wt;
if (ulist.empty() == true) {
cout << "ERROR: no valid cache organizations found" << endl;
exit(0);
}
for (list<uca_org_t>::iterator niter = ulist.begin(); niter != ulist.end();
niter++) {
if (g_ip->ed == 1) {
cost = ((niter)->access_time / minval->min_delay) *
((niter)->power.readOp.dynamic / minval->min_dyn);
if (min_cost > cost) {
min_cost = cost;
*res = (*(niter));
}
} else if (g_ip->ed == 2) {
cost = ((niter)->access_time / minval->min_delay) *
((niter)->access_time / minval->min_delay) *
((niter)->power.readOp.dynamic / minval->min_dyn);
if (min_cost > cost) {
min_cost = cost;
*res = (*(niter));
}
} else {
/*
* check whether the current organization
* meets the input deviation constraints
*/
bool v = check_uca_org(*niter, minval);
if (v) {
cost = (d * ((niter)->access_time / minval->min_delay) +
c * ((niter)->cycle_time / minval->min_cyc) +
dp * ((niter)->power.readOp.dynamic / minval->min_dyn) +
lp *
((niter)->power.readOp.leakage / minval->min_leakage) +
a * ((niter)->area / minval->min_area));
if (min_cost > cost) {
min_cost = cost;
*res = (*(niter));
niter = ulist.erase(niter);
if (niter != ulist.begin())
niter--;
}
} else {
niter = ulist.erase(niter);
if (niter != ulist.begin())
niter--;
}
}
}
if (min_cost == BIGNUM) {
cout << "ERROR: no cache organizations met optimization criteria"
<< endl;
exit(0);
}
}
void filter_tag_arr(const min_values_t * min, list<mem_array *> & list) {
double cost = BIGNUM;
double cur_cost;
double wt_delay = g_ip->delay_wt;
double wt_dyn = g_ip->dynamic_power_wt;
double wt_leakage = g_ip->leakage_power_wt;
double wt_cyc = g_ip->cycle_time_wt;
double wt_area = g_ip->area_wt;
mem_array * res = NULL;
if (list.empty() == true) {
cout << "ERROR: no valid tag organizations found" << endl;
exit(1);
}
while (list.empty() != true) {
bool v = check_mem_org(*list.back(), min);
if (v) {
cur_cost = wt_delay * (list.back()->access_time / min->min_delay) +
wt_dyn * (list.back()->power.readOp.dynamic /
min->min_dyn) +
wt_leakage * (list.back()->power.readOp.leakage /
min->min_leakage) +
wt_area * (list.back()->area / min->min_area) +
wt_cyc * (list.back()->cycle_time / min->min_cyc);
} else {
cur_cost = BIGNUM;
}
if (cur_cost < cost) {
if (res != NULL) {
delete res;
}
cost = cur_cost;
res = list.back();
} else {
delete list.back();
}
list.pop_back();
}
if (!res) {
cout << "ERROR: no valid tag organizations found" << endl;
exit(0);
}
list.push_back(res);
}
void filter_data_arr(list<mem_array *> & curr_list) {
if (curr_list.empty() == true) {
cout << "ERROR: no valid data array organizations found" << endl;
exit(1);
}
list<mem_array *>::iterator iter;
for (iter = curr_list.begin(); iter != curr_list.end(); ++iter) {
mem_array * m = *iter;
if (m == NULL) exit(1);
if (((m->access_time - m->arr_min->min_delay) / m->arr_min->min_delay >
0.5) &&
((m->power.readOp.dynamic - m->arr_min->min_dyn) /
m->arr_min->min_dyn > 0.5)) {
delete m;
iter = curr_list.erase(iter);
iter --;
}
}
}
/*
* Performs exhaustive search across different sub-array sizes,
* wire types and aspect ratios to find an optimal UCA organization
* 1. First different valid tag array organizations are calculated
* and stored in tag_arr array
* 2. The exhaustive search is repeated to find valid data array
* organizations and stored in data_arr array
* 3. Cache area, delay, power, and cycle time for different
* cache organizations are calculated based on the
* above results
* 4. Cache model with least cost is picked from sol_list
*/
void solve(uca_org_t *fin_res) {
bool is_dram = false;
int pure_ram = g_ip->pure_ram;
bool pure_cam = g_ip->pure_cam;
init_tech_params(g_ip->F_sz_um, false);
list<mem_array *> tag_arr (0);
list<mem_array *> data_arr(0);
list<mem_array *>::iterator miter;
list<uca_org_t> sol_list(1, uca_org_t());
fin_res->tag_array.access_time = 0;
fin_res->tag_array.Ndwl = 0;
fin_res->tag_array.Ndbl = 0;
fin_res->tag_array.Nspd = 0;
fin_res->tag_array.deg_bl_muxing = 0;
fin_res->tag_array.Ndsam_lev_1 = 0;
fin_res->tag_array.Ndsam_lev_2 = 0;
// distribute calculate_time() execution to multiple threads
calc_time_mt_wrapper_struct * calc_array =
new calc_time_mt_wrapper_struct[nthreads];
pthread_t threads[nthreads];
for (uint32_t t = 0; t < nthreads; t++) {
calc_array[t].tid = t;
calc_array[t].pure_ram = pure_ram;
calc_array[t].pure_cam = pure_cam;
calc_array[t].data_res = new min_values_t();
calc_array[t].tag_res = new min_values_t();
}
bool is_tag;
uint32_t ram_cell_tech_type;
// If it's a cache, first calculate the area, delay and power for all tag array partitions.
if (!(pure_ram || pure_cam || g_ip->fully_assoc)) { //cache
is_tag = true;
ram_cell_tech_type = g_ip->tag_arr_ram_cell_tech_type;
is_dram = ((ram_cell_tech_type == lp_dram) ||
(ram_cell_tech_type == comm_dram));
init_tech_params(g_ip->F_sz_um, is_tag);
for (uint32_t t = 0; t < nthreads; t++) {
calc_array[t].is_tag = is_tag;
calc_array[t].is_main_mem = false;
calc_array[t].Nspd_min = 0.125;
#ifndef DEBUG
pthread_create(&threads[t], NULL, calc_time_mt_wrapper,
(void *)(&(calc_array[t])));
#else
calc_time_mt_wrapper((void *)(&(calc_array[t])));
#endif
}
#ifndef DEBUG
for (uint32_t t = 0; t < nthreads; t++) {
pthread_join(threads[t], NULL);
}
#endif
for (uint32_t t = 0; t < nthreads; t++) {
calc_array[t].data_arr.sort(mem_array::lt);
data_arr.merge(calc_array[t].data_arr, mem_array::lt);
calc_array[t].tag_arr.sort(mem_array::lt);
tag_arr.merge(calc_array[t].tag_arr, mem_array::lt);
}
}
// calculate the area, delay and power for all data array partitions (for cache or plain RAM).
// in the new cacti, cam, fully_associative cache are processed as single array in the data portion
is_tag = false;
ram_cell_tech_type = g_ip->data_arr_ram_cell_tech_type;
is_dram = ((ram_cell_tech_type == lp_dram) || (ram_cell_tech_type == comm_dram));
init_tech_params(g_ip->F_sz_um, is_tag);
for (uint32_t t = 0; t < nthreads; t++) {
calc_array[t].is_tag = is_tag;
calc_array[t].is_main_mem = g_ip->is_main_mem;
if (!(pure_cam || g_ip->fully_assoc)) {
calc_array[t].Nspd_min = (double)(g_ip->out_w) /
(double)(g_ip->block_sz * 8);
} else {
calc_array[t].Nspd_min = 1;
}
#ifndef DEBUG
pthread_create(&threads[t], NULL, calc_time_mt_wrapper,
(void *)(&(calc_array[t])));
#else
calc_time_mt_wrapper((void *)(&(calc_array[t])));
#endif
}
#ifndef DEBUG
for (uint32_t t = 0; t < nthreads; t++) {
pthread_join(threads[t], NULL);
}
#endif
data_arr.clear();
for (uint32_t t = 0; t < nthreads; t++) {
calc_array[t].data_arr.sort(mem_array::lt);
data_arr.merge(calc_array[t].data_arr, mem_array::lt);
}
min_values_t * d_min = new min_values_t();
min_values_t * t_min = new min_values_t();
min_values_t * cache_min = new min_values_t();
for (uint32_t t = 0; t < nthreads; t++) {
d_min->update_min_values(calc_array[t].data_res);
t_min->update_min_values(calc_array[t].tag_res);
}
for (miter = data_arr.begin(); miter != data_arr.end(); miter++) {
(*miter)->arr_min = d_min;
}
filter_data_arr(data_arr);
if (!(pure_ram || pure_cam || g_ip->fully_assoc)) {
filter_tag_arr(t_min, tag_arr);
}
if (pure_ram || pure_cam || g_ip->fully_assoc) {
for (miter = data_arr.begin(); miter != data_arr.end(); miter++) {
uca_org_t & curr_org = sol_list.back();
curr_org.tag_array2 = NULL;
curr_org.data_array2 = (*miter);
curr_org.find_delay();
curr_org.find_energy();
curr_org.find_area();
curr_org.find_cyc();
//update min values for the entire cache
cache_min->update_min_values(curr_org);
sol_list.push_back(uca_org_t());
}
} else {
while (tag_arr.empty() != true) {
mem_array * arr_temp = (tag_arr.back());
tag_arr.pop_back();
for (miter = data_arr.begin(); miter != data_arr.end(); miter++) {
uca_org_t & curr_org = sol_list.back();
curr_org.tag_array2 = arr_temp;
curr_org.data_array2 = (*miter);
curr_org.find_delay();
curr_org.find_energy();
curr_org.find_area();
curr_org.find_cyc();
//update min values for the entire cache
cache_min->update_min_values(curr_org);
sol_list.push_back(uca_org_t());
}
}
}
sol_list.pop_back();
find_optimal_uca(fin_res, cache_min, sol_list);
sol_list.clear();
for (miter = data_arr.begin(); miter != data_arr.end(); ++miter) {
if (*miter != fin_res->data_array2) {
delete *miter;
}
}
data_arr.clear();
for (uint32_t t = 0; t < nthreads; t++) {
delete calc_array[t].data_res;
delete calc_array[t].tag_res;
}
delete [] calc_array;
delete cache_min;
delete d_min;
delete t_min;
}
void update(uca_org_t *fin_res)
{
if(fin_res->tag_array2)
{
init_tech_params(g_ip->F_sz_um,true);
DynamicParameter tag_arr_dyn_p(true, g_ip->pure_ram, g_ip->pure_cam,
fin_res->tag_array2->Nspd,
fin_res->tag_array2->Ndwl,
fin_res->tag_array2->Ndbl,
fin_res->tag_array2->Ndcm,
fin_res->tag_array2->Ndsam_lev_1,
fin_res->tag_array2->Ndsam_lev_2,
g_ip->is_main_mem);
if(tag_arr_dyn_p.is_valid)
{
UCA * tag_arr = new UCA(tag_arr_dyn_p);
fin_res->tag_array2->power = tag_arr->power;
}
else
{
cout << "ERROR: Cannot retrieve array structure for leakage feedback"
<< endl;
exit(1);
}
}
init_tech_params(g_ip->F_sz_um,false);
DynamicParameter data_arr_dyn_p(false, g_ip->pure_ram, g_ip->pure_cam,
fin_res->data_array2->Nspd,
fin_res->data_array2->Ndwl,
fin_res->data_array2->Ndbl,
fin_res->data_array2->Ndcm,
fin_res->data_array2->Ndsam_lev_1,
fin_res->data_array2->Ndsam_lev_2,
g_ip->is_main_mem);
if(data_arr_dyn_p.is_valid)
{
UCA * data_arr = new UCA(data_arr_dyn_p);
fin_res->data_array2->power = data_arr->power;
}
else
{
cout << "ERROR: Cannot retrieve array structure for leakage feedback"
<< endl;
exit(1);
}
fin_res->find_energy();
}