gem5/ext/dsent/model/std_cells/DFFQ.cc
Nilay Vaish c1aecc05e6 ext: dsent: adds a Python interface, drops C++ one
This patch extensively modifies DSENT so that it can be accessed using Python.
To access the Python interface, DSENT needs to compiled as a shared library.
For this purpose a CMakeLists.txt file has been added.  Some of the code that
is not required is being removed.
2014-10-11 16:16:00 -05:00

557 lines
31 KiB
C++

/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/std_cells/DFFQ.h"
#include <cmath>
#include "model/PortInfo.h"
#include "model/EventInfo.h"
#include "model/TransitionInfo.h"
#include "model/std_cells/StdCellLib.h"
#include "model/std_cells/CellMacros.h"
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalLoad.h"
#include "model/timing_graph/ElectricalDelay.h"
namespace DSENT
{
using std::ceil;
using std::max;
using std::min;
DFFQ::DFFQ(const String& instance_name_, const TechModel* tech_model_)
: StdCell(instance_name_, tech_model_)
{
initProperties();
}
DFFQ::~DFFQ()
{}
void DFFQ::initProperties()
{
return;
}
void DFFQ::constructModel()
{
// All constructModel should do is create Area/NDDPower/Energy Results as
// well as instantiate any sub-instances using only the hard parameters
createInputPort("D");
createInputPort("CK");
createOutputPort("Q");
createLoad("D_Cap");
createLoad("CK_Cap");
createDelay("D_Setup_delay");
createDelay("CK_to_Q_delay");
createDriver("Q_Ron", true);
ElectricalLoad* d_cap = getLoad("D_Cap");
ElectricalLoad* ck_cap = getLoad("CK_Cap");
ElectricalDelay* d_setup_delay = getDelay("D_Setup_delay");
ElectricalDelay* ck_to_q_delay = getDelay("CK_to_Q_delay");
ElectricalDriver* q_ron = getDriver("Q_Ron");
getNet("D")->addDownstreamNode(d_cap);
getNet("CK")->addDownstreamNode(ck_cap);
d_cap->addDownstreamNode(d_setup_delay);
ck_cap->addDownstreamNode(ck_to_q_delay);
ck_to_q_delay->addDownstreamNode(q_ron);
q_ron->addDownstreamNode(getNet("Q"));
// Create Area result
// Create NDD Power result
createElectricalAtomicResults();
// Create CK Event Energy Result
createElectricalEventAtomicResult("CK");
getEventInfo("CK")->setTransitionInfo("CK", TransitionInfo(0.0, 1.0, 0.0));
// Create DFF Event Energy Result
createElectricalEventAtomicResult("DFFD");
getEventInfo("DFFD")->setTransitionInfo("CK", TransitionInfo(0.0, 1.0, 0.0));
createElectricalEventAtomicResult("DFFQ");
getEventInfo("DFFQ")->setTransitionInfo("CK", TransitionInfo(0.0, 1.0, 0.0));
// Update Idle event for leakage
// CK pin is assumed to be on all the time
EventInfo* idle_event_info = getEventInfo("Idle");
idle_event_info->setTransitionInfo("CK", TransitionInfo(0.0, 1.0, 0.0));
idle_event_info->setTransitionInfo("D", TransitionInfo(0.5, 0.0, 0.5));
return;
}
void DFFQ::updateModel()
{
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Standard cell cache string
String cell_name = "DFFQ_X" + (String) drive_strength;
// Get timing parameters
getLoad("D_Cap")->setLoadCap(cache->get(cell_name + "->Cap->D"));
getLoad("CK_Cap")->setLoadCap(cache->get(cell_name + "->Cap->CK"));
getDriver("Q_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Q"));
getDelay("CK_to_Q_delay")->setDelay(cache->get(cell_name + "->Delay->CK_to_Q"));
getDelay("D_Setup_delay")->setDelay(cache->get(cell_name + "->Delay->D_Setup"));
// Set the cell area
getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active"));
getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Metal1Wire"));
return;
}
void DFFQ::evaluateModel()
{
return;
}
void DFFQ::useModel()
{
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Standard cell cache string
String cell_name = "DFFQ_X" + (String) drive_strength;
// Propagate the transition info and get P_D, P_M, and P_Q
propagateTransitionInfo();
double P_D = getInputPort("D")->getTransitionInfo().getProbability1();
double P_CK = getInputPort("CK")->getTransitionInfo().getProbability1();
double P_Q = getOutputPort("Q")->getTransitionInfo().getProbability1();
double CK_num_trans_01 = getInputPort("CK")->getTransitionInfo().getNumberTransitions01();
double D_num_trans_01 = getInputPort("D")->getTransitionInfo().getNumberTransitions01();
double M_num_trans_01 = m_trans_M_.getNumberTransitions01();
double Q_num_trans_01 = getOutputPort("Q")->getTransitionInfo().getNumberTransitions01();
// Calculate leakage
double leakage = 0;
leakage += cache->get(cell_name + "->Leakage->!D!CK!Q") * (1 - P_D) * (1 - P_CK) * (1 - P_Q);
leakage += cache->get(cell_name + "->Leakage->!D!CKQ") * (1 - P_D) * (1 - P_CK) * P_Q;
leakage += cache->get(cell_name + "->Leakage->!DCK!Q") * (1 - P_D) * P_CK * (1 - P_Q);
leakage += cache->get(cell_name + "->Leakage->!DCKQ") * (1 - P_D) * P_CK * P_Q;
leakage += cache->get(cell_name + "->Leakage->D!CK!Q") * P_D * (1 - P_CK) * (1 - P_Q);
leakage += cache->get(cell_name + "->Leakage->D!CKQ") * P_D * (1 - P_CK) * P_Q;
leakage += cache->get(cell_name + "->Leakage->DCK!Q") * P_D * P_CK * (1 - P_Q);
leakage += cache->get(cell_name + "->Leakage->DCKQ") * P_D * P_CK * P_Q;
getNddPowerResult("Leakage")->setValue(leakage);
// Get VDD
double vdd = getTechModel()->get("Vdd");
// Get capacitances
double ck_b_cap = cache->get(cell_name + "->Cap->CK_b");
double ck_i_cap = cache->get(cell_name + "->Cap->CK_i");
double d_b_cap = cache->get(cell_name + "->Cap->D_b");
double m_b_cap = cache->get(cell_name + "->Cap->M_b");
double m_cap = cache->get(cell_name + "->Cap->M");
double m_i_cap = cache->get(cell_name + "->Cap->M_i");
double q_b_cap = cache->get(cell_name + "->Cap->Q_b");
double q_cap = cache->get(cell_name + "->Cap->Q");
double q_load_cap = getNet("Q")->getTotalDownstreamCap();
// Calculate CK Event energy
double ck_event_energy = 0.0;
ck_event_energy += (ck_b_cap + ck_i_cap) * CK_num_trans_01;
ck_event_energy *= vdd * vdd;
getEventResult("CK")->setValue(ck_event_energy);
// Calculate DFFD Event energy
double dffd_event_energy = 0.0;
dffd_event_energy += (d_b_cap) * D_num_trans_01;
dffd_event_energy += (m_b_cap + m_cap) * M_num_trans_01;
dffd_event_energy *= vdd * vdd;
getEventResult("DFFD")->setValue(dffd_event_energy);
// Calculate DFFQ Event energy
double dffq_event_energy = 0.0;
dffq_event_energy += (m_i_cap + q_b_cap + q_cap + q_load_cap) * Q_num_trans_01;
dffq_event_energy *= vdd * vdd;
getEventResult("DFFQ")->setValue(dffq_event_energy);
return;
}
void DFFQ::propagateTransitionInfo()
{
const TransitionInfo& trans_CK = getInputPort("CK")->getTransitionInfo();
const TransitionInfo& trans_D = getInputPort("D")->getTransitionInfo();
double CK_num_trans_01 = trans_CK.getNumberTransitions01();
double CK_num_trans_10 = CK_num_trans_01;
double CK_num_trans_00 = trans_CK.getNumberTransitions00();
double D_freq_mult = trans_D.getFrequencyMultiplier();
// If thre is no activity on the clock or D, assume M node is randomly distributed among 0 and 1
if(LibUtil::Math::isEqual(CK_num_trans_10 + CK_num_trans_00, 0.0) || LibUtil::Math::isEqual(D_freq_mult, 0.0))
{
m_trans_M_ = TransitionInfo(0.5, 0.0, 0.5);
}
// If the master latch is sampling just as fast or faster than input data signal
// Then it can capture all transitions (though it should be normalized to clock)
else if((CK_num_trans_10 + CK_num_trans_00) >= D_freq_mult)
{
m_trans_M_ = trans_D.scaleFrequencyMultiplier(CK_num_trans_10 + CK_num_trans_00);
}
// If the master latch is sampling slower than the input data signal, then input
// will look like they transition more
else
{
// Calculate scale ratio
double scale_ratio = (CK_num_trans_10 + CK_num_trans_00) / D_freq_mult;
// 00 and 11 transitions become fewer
double D_scaled_diff = 0.5 * (1 - scale_ratio) * (trans_D.getNumberTransitions00() + trans_D.getNumberTransitions11());
double D_scaled_num_trans_00 = trans_D.getNumberTransitions00() * scale_ratio;
double D_scaled_num_trans_11 = trans_D.getNumberTransitions11() * scale_ratio;
// 01 and 10 transitions become more frequent
double D_scaled_num_trans_10 = trans_D.getNumberTransitions01() + D_scaled_diff;
// Create final transition info, remembering to apply scaling ratio to normalize to CK
m_trans_M_ = TransitionInfo(D_scaled_num_trans_00 * scale_ratio,
D_scaled_num_trans_10 * scale_ratio,
D_scaled_num_trans_11 * scale_ratio);
}
// If the clock activity is 0 or if D activity is 0, then we assume that the output is randomly distributed among 0 and 1
if(LibUtil::Math::isEqual(CK_num_trans_01, 0.0) || LibUtil::Math::isEqual(D_freq_mult, 0.0))
{
getOutputPort("Q")->setTransitionInfo(TransitionInfo(0.5, 0.0, 0.5));
}
// If the DFF's CK is running at a higher frequency than D, Q is just D with a
// scaled up frequency multiplier
else if(CK_num_trans_01 >= D_freq_mult)
{
const TransitionInfo& trans_Q = trans_D.scaleFrequencyMultiplier(CK_num_trans_01);
getOutputPort("Q")->setTransitionInfo(trans_Q);
}
// If the DFF is sampling slower than the input data signal, then inputs
// will look like they transition more
else
{
// Calculate scale ratio
double scale_ratio = CK_num_trans_01 / D_freq_mult;
// 00 and 11 transitions become fewer
double D_scaled_diff = 0.5 * (1 - scale_ratio) * (trans_D.getNumberTransitions00() + trans_D.getNumberTransitions11());
double D_scaled_num_trans_00 = trans_D.getNumberTransitions00() * scale_ratio;
double D_scaled_num_trans_11 = trans_D.getNumberTransitions11() * scale_ratio;
// 01 and 10 transitions become more frequent
double D_scaled_num_trans_10 = trans_D.getNumberTransitions01() + D_scaled_diff;
const TransitionInfo trans_Q( D_scaled_num_trans_00 * scale_ratio,
D_scaled_num_trans_10 * scale_ratio,
D_scaled_num_trans_11 * scale_ratio);
getOutputPort("Q")->setTransitionInfo(trans_Q);
}
return;
}
// Creates the standard cell, characterizes and abstracts away the details
void DFFQ::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
{
// Get parameters
double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
Map<double>* cache = cell_lib_->getStdCellCache();
// Standard cell cache string
String cell_name = "DFFQ_X" + (String) drive_strength_;
Log::printLine("=== " + cell_name + " ===");
// Now actually build the full standard cell model
createInputPort("D");
createInputPort("CK");
createOutputPort("Q");
createNet("D_b");
createNet("M_b");
createNet("M");
createNet("M_i");
createNet("Q_b");
createNet("CK_b");
createNet("CK_i");
// Adds macros
CellMacros::addInverter(this, "INV1", false, true, "D", "D_b");
CellMacros::addInverter(this, "INV2", false, true, "M_b", "M");
CellMacros::addInverter(this, "INV3", false, true, "M_i", "Q_b");
CellMacros::addInverter(this, "INV4", true, true, "Q_b", "Q");
CellMacros::addInverter(this, "INV5", false, true, "CK", "CK_b");
CellMacros::addInverter(this, "INV6", false, true, "CK_b", "CK_i");
CellMacros::addTristate(this, "INVZ1", false, true, false, false, "D_b", "CK_b", "CK_i", "M_b"); //trace timing through A->ZN path only
CellMacros::addTristate(this, "INVZ2", false, false, false, false, "M", "CK_i", "CK_b", "M_b"); //don't trace timing through the feedback path
CellMacros::addTristate(this, "INVZ3", false, false, true, true, "M", "CK_i", "CK_b", "M_i"); //trace timing from OE->ZN and OEN->ZN paths only
CellMacros::addTristate(this, "INVZ4", false, false, false, false, "Q_b", "CK_b", "CK_i", "M_i"); //don't trace timing through the feedback path
// Update macros
CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.125);
CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.5);
CellMacros::updateInverter(this, "INV3", drive_strength_ * 0.5);
CellMacros::updateInverter(this, "INV4", drive_strength_ * 1.0);
CellMacros::updateInverter(this, "INV5", drive_strength_ * 0.125);
CellMacros::updateInverter(this, "INV6", drive_strength_ * 0.125);
CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.5);
CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.0625);
CellMacros::updateTristate(this, "INVZ3", drive_strength_ * 0.5);
CellMacros::updateTristate(this, "INVZ4", drive_strength_ * 0.0625);
// Cache area result
double area = 0.0;
area += gate_pitch * getTotalHeight() * 1;
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV3_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV4_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV5_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV6_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ3_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ4_GatePitches").toDouble();
cache->set(cell_name + "->Area->Active", area);
cache->set(cell_name + "->Area->Metal1Wire", area);
Log::printLine(cell_name + "->Area->Active=" + (String) area);
Log::printLine(cell_name + "->Area->Metal1Wire=" + (String) area);
// --------------------------------------------------------------------
// Leakage Model Calculation
// --------------------------------------------------------------------
// Cache leakage power results (for every single signal combination)
double leakage_000 = 0; //!D, !CK, !Q
double leakage_001 = 0; //!D, !CK, Q
double leakage_010 = 0; //!D, CK, !Q
double leakage_011 = 0; //!D, CK, Q
double leakage_100 = 0; //D, !CK, !Q
double leakage_101 = 0; //D, !CK, Q
double leakage_110 = 0; //D, CK, !Q
double leakage_111 = 0; //D, CK, Q
//This is so painful...
leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_000 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_000 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
leakage_000 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
leakage_000 += getGenProperties()->get("INV5_LeakagePower_0").toDouble();
leakage_000 += getGenProperties()->get("INV6_LeakagePower_1").toDouble();
leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble();
leakage_000 += getGenProperties()->get("INVZ3_LeakagePower_011_0").toDouble();
leakage_000 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble();
leakage_001 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_001 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_001 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
leakage_001 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
leakage_001 += getGenProperties()->get("INV5_LeakagePower_0").toDouble();
leakage_001 += getGenProperties()->get("INV6_LeakagePower_1").toDouble();
leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble();
leakage_001 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble();
leakage_001 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble();
leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_010 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_010 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
leakage_010 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
leakage_010 += getGenProperties()->get("INV5_LeakagePower_1").toDouble();
leakage_010 += getGenProperties()->get("INV6_LeakagePower_0").toDouble();
leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_011_0").toDouble();
leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
leakage_010 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble();
leakage_010 += getGenProperties()->get("INVZ4_LeakagePower_011_0").toDouble();
leakage_011 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_011 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_011 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
leakage_011 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
leakage_011 += getGenProperties()->get("INV5_LeakagePower_1").toDouble();
leakage_011 += getGenProperties()->get("INV6_LeakagePower_0").toDouble();
leakage_011 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
leakage_011 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
leakage_011 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble();
leakage_011 += getGenProperties()->get("INVZ4_LeakagePower_010_1").toDouble();
leakage_100 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_100 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_100 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
leakage_100 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
leakage_100 += getGenProperties()->get("INV5_LeakagePower_0").toDouble();
leakage_100 += getGenProperties()->get("INV6_LeakagePower_1").toDouble();
leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble();
leakage_100 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble();
leakage_100 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble();
leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_101 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_101 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
leakage_101 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
leakage_101 += getGenProperties()->get("INV5_LeakagePower_0").toDouble();
leakage_101 += getGenProperties()->get("INV6_LeakagePower_1").toDouble();
leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble();
leakage_101 += getGenProperties()->get("INVZ3_LeakagePower_010_1").toDouble();
leakage_101 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble();
leakage_110 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_110 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_110 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
leakage_110 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
leakage_110 += getGenProperties()->get("INV5_LeakagePower_1").toDouble();
leakage_110 += getGenProperties()->get("INV6_LeakagePower_0").toDouble();
leakage_110 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
leakage_110 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
leakage_110 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble();
leakage_110 += getGenProperties()->get("INVZ4_LeakagePower_011_0").toDouble();
leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_111 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
leakage_111 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
leakage_111 += getGenProperties()->get("INV5_LeakagePower_1").toDouble();
leakage_111 += getGenProperties()->get("INV6_LeakagePower_0").toDouble();
leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_010_1").toDouble();
leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
leakage_111 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble();
leakage_111 += getGenProperties()->get("INVZ4_LeakagePower_010_1").toDouble();
cache->set(cell_name + "->Leakage->!D!CK!Q", leakage_000);
cache->set(cell_name + "->Leakage->!D!CKQ", leakage_001);
cache->set(cell_name + "->Leakage->!DCK!Q", leakage_010);
cache->set(cell_name + "->Leakage->!DCKQ", leakage_011);
cache->set(cell_name + "->Leakage->D!CK!Q", leakage_100);
cache->set(cell_name + "->Leakage->D!CKQ", leakage_101);
cache->set(cell_name + "->Leakage->DCK!Q", leakage_110);
cache->set(cell_name + "->Leakage->DCKQ", leakage_111);
Log::printLine(cell_name + "->Leakage->!D!CK!Q=" + (String) leakage_000);
Log::printLine(cell_name + "->Leakage->!D!CKQ=" + (String) leakage_001);
Log::printLine(cell_name + "->Leakage->!DCK!Q=" + (String) leakage_010);
Log::printLine(cell_name + "->Leakage->!DCKQ=" + (String) leakage_011);
Log::printLine(cell_name + "->Leakage->D!CK!Q=" + (String) leakage_100);
Log::printLine(cell_name + "->Leakage->D!CKQ=" + (String) leakage_101);
Log::printLine(cell_name + "->Leakage->DCK!Q=" + (String) leakage_110);
Log::printLine(cell_name + "->Leakage->DCKQ=" + (String) leakage_111);
// --------------------------------------------------------------------
/*
// Cache event energy results
double event_ck_flip = 0.0;
event_ck_flip += getGenProperties()->get("INV5_A_Flip").toDouble() + getGenProperties()->get("INV5_ZN_Flip").toDouble();
event_ck_flip += getGenProperties()->get("INV6_A_Flip").toDouble() + getGenProperties()->get("INV6_ZN_Flip").toDouble();
event_ck_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble();
event_ck_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble();
event_ck_flip += getGenProperties()->get("INVZ3_OE_Flip").toDouble() + getGenProperties()->get("INVZ3_OEN_Flip").toDouble();
event_ck_flip += getGenProperties()->get("INVZ4_OE_Flip").toDouble() + getGenProperties()->get("INVZ4_OEN_Flip").toDouble();
cache->set(cell_name + "->Event_CK_Flip", event_ck_flip);
Log::printLine(cell_name + "->Event_CK_Flip=" + (String) event_ck_flip);
// Update D flip results
double event_d_flip = 0.0;
event_d_flip += getGenProperties()->get("INV1_A_Flip").toDouble() + getGenProperties()->get("INV1_ZN_Flip").toDouble();
event_d_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
cache->set(cell_name + "->Event_D_Flip", event_d_flip);
Log::printLine(cell_name + "->Event_D_Flip=" + (String) event_d_flip);
// Update M flip results
double event_m_flip = 0.0;
event_m_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble();
event_m_flip += getGenProperties()->get("INV2_A_Flip").toDouble() + getGenProperties()->get("INV2_ZN_Flip").toDouble();
event_m_flip += getGenProperties()->get("INVZ2_A_Flip").toDouble() + getGenProperties()->get("INVZ2_ZN_Flip").toDouble();
event_m_flip += getGenProperties()->get("INVZ3_A_Flip").toDouble();
cache->set(cell_name + "->Event_M_Flip", event_m_flip);
Log::printLine(cell_name + "->Event_M_Flip=" + (String) event_m_flip);
// Update Q flip results
double event_q_flip = 0.0;
event_q_flip += getGenProperties()->get("INVZ3_ZN_Flip").toDouble();
event_q_flip += getGenProperties()->get("INV3_A_Flip").toDouble() + getGenProperties()->get("INV3_ZN_Flip").toDouble();
event_q_flip += getGenProperties()->get("INVZ4_A_Flip").toDouble() + getGenProperties()->get("INVZ4_ZN_Flip").toDouble();
event_q_flip += getGenProperties()->get("INV4_A_Flip").toDouble() + getGenProperties()->get("INV4_ZN_Flip").toDouble();
cache->set(cell_name + "->Event_Q_Flip", event_q_flip);
Log::printLine(cell_name + "->Event_Q_Flip=" + (String) event_q_flip);
*/
// --------------------------------------------------------------------
// Get Node Capacitances
// --------------------------------------------------------------------
double d_cap = getNet("D")->getTotalDownstreamCap();
double d_b_cap = getNet("D_b")->getTotalDownstreamCap();
double m_b_cap = getNet("M_b")->getTotalDownstreamCap();
double m_cap = getNet("M")->getTotalDownstreamCap();
double m_i_cap = getNet("M_i")->getTotalDownstreamCap();
double q_b_cap = getNet("Q_b")->getTotalDownstreamCap();
double q_cap = getNet("Q")->getTotalDownstreamCap();
double ck_cap = getNet("CK")->getTotalDownstreamCap();
double ck_b_cap = getNet("CK_b")->getTotalDownstreamCap();
double ck_i_cap = getNet("CK_i")->getTotalDownstreamCap();
cache->set(cell_name + "->Cap->D", d_cap);
cache->set(cell_name + "->Cap->D_b", d_b_cap);
cache->set(cell_name + "->Cap->M_b", m_b_cap);
cache->set(cell_name + "->Cap->M", m_cap);
cache->set(cell_name + "->Cap->M_i", m_i_cap);
cache->set(cell_name + "->Cap->Q_b", q_b_cap);
cache->set(cell_name + "->Cap->Q", q_cap);
cache->set(cell_name + "->Cap->CK", ck_cap);
cache->set(cell_name + "->Cap->CK_b", ck_b_cap);
cache->set(cell_name + "->Cap->CK_i", ck_i_cap);
Log::printLine(cell_name + "->Cap->D=" + (String) d_cap);
Log::printLine(cell_name + "->Cap->D_b=" + (String) d_b_cap);
Log::printLine(cell_name + "->Cap->M_b=" + (String) m_b_cap);
Log::printLine(cell_name + "->Cap->M=" + (String) m_cap);
Log::printLine(cell_name + "->Cap->M_i=" + (String) m_i_cap);
Log::printLine(cell_name + "->Cap->Q_b=" + (String) q_b_cap);
Log::printLine(cell_name + "->Cap->Q=" + (String) q_cap);
Log::printLine(cell_name + "->Cap->CK=" + (String) ck_cap);
Log::printLine(cell_name + "->Cap->CK_b=" + (String) ck_b_cap);
Log::printLine(cell_name + "->Cap->CK_i=" + (String) ck_i_cap);
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// Build Internal Delay Model
// --------------------------------------------------------------------
double q_ron = getDriver("INV4_RonZN")->getOutputRes();
double d_setup_delay = getDriver("INV1_RonZN")->calculateDelay() +
getDriver("INVZ1_RonZN")->calculateDelay() +
getDriver("INV2_RonZN")->calculateDelay();
double ck_to_q_delay = getDriver("INV5_RonZN")->calculateDelay() +
getDriver("INV6_RonZN")->calculateDelay() +
getDriver("INVZ3_RonZN")->calculateDelay() +
getDriver("INV3_RonZN")->calculateDelay() +
getDriver("INV4_RonZN")->calculateDelay();
cache->set(cell_name + "->DriveRes->Q", q_ron);
cache->set(cell_name + "->Delay->D_Setup", d_setup_delay);
cache->set(cell_name + "->Delay->CK_to_Q", ck_to_q_delay);
Log::printLine(cell_name + "->DriveRes->Q=" + (String) q_ron);
Log::printLine(cell_name + "->Delay->D_Setup=" + (String) d_setup_delay);
Log::printLine(cell_name + "->Delay->CK_to_Q=" + (String) ck_to_q_delay);
return;
// --------------------------------------------------------------------
}
} // namespace DSENT