gem5/ext/dsent/model/optical/SWSRLink.cc
Nilay Vaish c1aecc05e6 ext: dsent: adds a Python interface, drops C++ one
This patch extensively modifies DSENT so that it can be accessed using Python.
To access the Python interface, DSENT needs to compiled as a shared library.
For this purpose a CMakeLists.txt file has been added.  Some of the code that
is not required is being removed.
2014-10-11 16:16:00 -05:00

349 lines
15 KiB
C++

/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/optical/SWSRLink.h"
#include "model/ModelGen.h"
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/optical_graph/OpticalGraph.h"
#include "model/optical_graph/OpticalWaveguide.h"
#include "model/optical/RingModulator.h"
#include "model/optical/RingFilter.h"
#include "model/optical/RingDetector.h"
#include "model/optical/LaserSource.h"
#include "model/optical/ThrottledLaserSource.h"
namespace DSENT
{
SWSRLink::SWSRLink(const String& instance_name_, const TechModel* tech_model_)
: OpticalModel(instance_name_, tech_model_)
{
initParameters();
initProperties();
}
SWSRLink::~SWSRLink()
{}
void SWSRLink::initParameters()
{
addParameterName("NumberBits");
addParameterName("CoreDataRate");
addParameterName("LinkDataRate");
addParameterName("LaserType");
addParameterName("RingTuningMethod");
addParameterName("OptimizeLoss", "TRUE");
return;
}
void SWSRLink::initProperties()
{
addPropertyName("Length");
addPropertyName("OptUtil", 0.5); // default to 50% utilization (a new word 50% of the time)
addPropertyName("ExtinctionRatio", 6); // default properties
addPropertyName("InsertionLoss", 2); // default properties
return;
}
void SWSRLink::constructModel()
{
// Get parameters
unsigned int number_bits = getParameter("NumberBits");
double core_data_rate = getParameter("CoreDataRate");
double link_data_rate = getParameter("LinkDataRate");
// Get directly propagated parameters
const String& ring_tuning_method = getParameter("RingTuningMethod");
// Calculate number of wavelengths needed
unsigned int number_wavelengths = (unsigned int)((double) number_bits * core_data_rate / link_data_rate);
// Set some generated properties
getGenProperties()->set("NumberWavelengths", number_wavelengths);
// Create electrical ports
createInputPort("LinkCK");
createInputPort("In", makeNetIndex(0, number_bits-1));
createOutputPort("Out", makeNetIndex(0, number_bits-1));
// Create Waveguides
// Temporarily assume its all on one waveguide
createWaveguide("LaserToMod", makeWavelengthGroup(0, number_wavelengths-1));
createWaveguide("ModToDetector", makeWavelengthGroup(0, number_wavelengths-1));
// Add area results
addAreaResult(new Result("Photonic"));
createElectricalResults();
// Setup idle event
getEventInfo("Idle")->setStaticTransitionInfos();
// Create a waveguide area result
addAreaResult(new AtomicResult("Waveguide"));
getAreaResult("Photonic")->addSubResult(getAreaResult("Waveguide"), "Waveguide", 1.0);
// Add results
addNddPowerResult(new Result("Laser"));
addNddPowerResult(new Result("RingTuning"));
// Add event result
createElectricalEventResult("Send");
// Create Tx, Rx backends
// Create Tx electrical backend
ElectricalModel* tx_backend = (ElectricalModel*) ModelGen::createModel("OpticalLinkBackendTx", "OpticalLinkBackendTx", getTechModel());
tx_backend->setParameter("InBits", number_bits);
tx_backend->setParameter("CoreDataRate", core_data_rate);
tx_backend->setParameter("LinkDataRate", link_data_rate);
tx_backend->setParameter("RingTuningMethod", ring_tuning_method);
tx_backend->setParameter("BitDuplicate", "TRUE");
tx_backend->construct();
// Create Rx electrical backend
ElectricalModel* rx_backend = (ElectricalModel*) ModelGen::createModel("OpticalLinkBackendRx", "OpticalLinkBackendRx", getTechModel());
rx_backend->setParameter("OutBits", number_bits);
rx_backend->setParameter("CoreDataRate", core_data_rate);
rx_backend->setParameter("LinkDataRate", link_data_rate);
rx_backend->setParameter("RingTuningMethod", ring_tuning_method);
rx_backend->setParameter("BitDuplicate", "TRUE");
rx_backend->construct();
// Connect ports
createNet("TxBackendToTx", makeNetIndex(0, number_wavelengths-1));
createNet("RxToRxBackend", makeNetIndex(0, number_wavelengths-1));
portConnect(tx_backend, "In", "In");
portConnect(tx_backend, "Out", "TxBackendToTx");
portConnect(tx_backend, "LinkCK", "LinkCK");
portConnect(rx_backend, "In", "RxToRxBackend");
portConnect(rx_backend, "Out", "Out");
portConnect(rx_backend, "LinkCK", "LinkCK");
// Add instances
addSubInstances(tx_backend, 1.0);
addSubInstances(rx_backend, 1.0);
// Add electrical results
addElectricalSubResults(tx_backend, 1.0);
addElectricalSubResults(rx_backend, 1.0);
// Add tuning power result
getNddPowerResult("RingTuning")->addSubResult(tx_backend->getNddPowerResult("RingTuning"), "OpticalLinkBackendTx", 1.0);
getNddPowerResult("RingTuning")->addSubResult(rx_backend->getNddPowerResult("RingTuning"), "OpticalLinkBackendRx", 1.0);
// Add event results
getEventInfo("Send")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) link_data_rate / (core_data_rate * 2.0), 0.0));
getEventResult("Send")->addSubResult(tx_backend->getEventResult("ProcessBits"), "OpticalLinkBackendTx", 1.0);
getEventResult("Send")->addSubResult(rx_backend->getEventResult("ProcessBits"), "OpticalLinkBackendRx", 1.0);
buildLaser();
buildModulator();
buildDetector();
return;
}
void SWSRLink::updateModel()
{
// Get parameters
double link_data_rate = getParameter("LinkDataRate");
// Get properties
double length = getProperty("Length");
const String& extinction_ratio = getProperty("ExtinctionRatio");
const String& insertion_loss = getProperty("InsertionLoss");
const double opt_util = getProperty("OptUtil");
// Calculate loss for waveguide
double waveguide_loss = getTechModel()->get("Waveguide->LossPerMeter").toDouble() * length;
// Set loss of the waveguide
getWaveguide("ModToDetector")->setLoss(waveguide_loss);
// Calculate waveguide area
double waveguide_area = length * getTechModel()->get("Waveguide->Pitch").toDouble();
getAreaResult("Waveguide")->setValue(waveguide_area);
// Update the laser
Model* laser = getSubInstance("Laser");
laser->setProperty("LaserEventTime", 1.0 / link_data_rate);
laser->setProperty("OptUtil", opt_util);
laser->update();
// Update the modulator
Model* modulator = getSubInstance("Modulator");
modulator->setProperty("ExtinctionRatio", extinction_ratio);
modulator->setProperty("InsertionLoss", insertion_loss);
modulator->update();
Model* detector = getSubInstance("Detector");
detector->update();
Model* tx_backend = getSubInstance("OpticalLinkBackendTx");
tx_backend->update();
Model* rx_backend = getSubInstance("OpticalLinkBackendRx");
rx_backend->update();
return;
}
void SWSRLink::propagateTransitionInfo()
{
// Get parameters
const String& laser_type = getParameter("LaserType");
// Propagate transition info to tx backend
OpticalModel* tx_backend = (OpticalModel*) getSubInstance("OpticalLinkBackendTx");
propagatePortTransitionInfo(tx_backend, "In", "In");
propagatePortTransitionInfo(tx_backend, "LinkCK", "LinkCK");
tx_backend->use();
// Set transition info for the modulator
OpticalModel* modulator = (OpticalModel*) getSubInstance("Modulator");
propagatePortTransitionInfo(modulator, "In", tx_backend, "Out");
modulator->use();
// Modulator out transition info
const TransitionInfo& mod_out_transitions = modulator->getOpticalOutputPort("Out")->getTransitionInfo();
// Set transition info for the receiver
OpticalModel* detector = (OpticalModel*) getSubInstance("Detector");
detector->getOpticalInputPort("In")->setTransitionInfo(mod_out_transitions);
detector->use();
// Propagate transition info to tx backend
OpticalModel* rx_backend = (OpticalModel*) getSubInstance("OpticalLinkBackendRx");
propagatePortTransitionInfo(rx_backend, "In", detector, "Out");
propagatePortTransitionInfo(rx_backend, "LinkCK", "LinkCK");
rx_backend->use();
// Propagate output transition info to output
propagatePortTransitionInfo("Out", rx_backend, "Out");
// Set enable signals for the laser, if applicable
if (laser_type == "Throttled")
{
// Figure out how many cycles the laser needs to be on
double cycles = getInputPort("In")->getTransitionInfo().getFrequencyMultiplier();
OpticalModel* laser = (OpticalModel*) getSubInstance("Laser");
laser->getInputPort("LaserEnable")->setTransitionInfo(TransitionInfo(0.0, 1.0, cycles - 1.0));
laser->use();
}
return;
}
void SWSRLink::buildLaser()
{
// Get parameters
unsigned int number_wavelengths = getGenProperties()->get("NumberWavelengths");
const String& laser_type = getParameter("LaserType");
// Create laser
OpticalModel* laser = NULL;
if (laser_type == "Throttled") laser = new ThrottledLaserSource("Laser", getTechModel());
else if (laser_type == "Standard") laser = new LaserSource("Laser", getTechModel());
else ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown laser type '" + laser_type + "'!");
laser->setParameter("OutStart", 0);
laser->setParameter("OutEnd", number_wavelengths-1);
laser->setParameter("MaxDetectors", 1);
laser->setParameter("MinDetectors", 1);
laser->construct();
addSubInstances(laser, 1.0);
getAreaResult("Photonic")->addSubResult(laser->getAreaResult("Photonic"), "Laser", 1.0);
// Connect laser output port
opticalPortConnect(laser, "Out", "LaserToMod");
// Without laser gating, laser is pure NDD power
if (laser_type == "Standard") getNddPowerResult("Laser")->addSubResult(laser->getNddPowerResult("Laser"), "Laser", 1.0);
// With laser power gating, laser is an event
else getEventResult("Send")->addSubResult(laser->getEventResult("Laser1"), "Laser", 1.0);
return;
}
void SWSRLink::buildModulator()
{
// Get parameters
double link_data_rate = getParameter("LinkDataRate");
const String& optimize_loss = getParameter("OptimizeLoss");
unsigned int number_wavelengths = getGenProperties()->get("NumberWavelengths");
// Create modulator
RingModulator* modulator = new RingModulator("Modulator", getTechModel());
modulator->setParameter("DataRate", link_data_rate);
modulator->setParameter("InStart", 0);
modulator->setParameter("InEnd", number_wavelengths-1);
modulator->setParameter("ModStart", 0);
modulator->setParameter("ModEnd", number_wavelengths-1);
modulator->setParameter("OptimizeLoss", optimize_loss);
modulator->construct();
addSubInstances(modulator, 1.0);
getAreaResult("Photonic")->addSubResult(modulator->getAreaResult("Photonic"), "Modulator", 1.0);
addElectricalSubResults(modulator, 1.0);
// Connect electrical port
portConnect(modulator, "In", "TxBackendToTx");
// Connect modulator input, output port
opticalPortConnect(modulator, "In", "LaserToMod");
opticalPortConnect(modulator, "Out", "ModToDetector");
// Add modulator energy event for send events
getEventResult("Send")->addSubResult(modulator->getEventResult("Modulate"), "Modulator", 1.0);
return;
}
void SWSRLink::buildDetector()
{
// Get parameters
double link_data_rate = getParameter("LinkDataRate");
unsigned int number_wavelengths = getGenProperties()->get("NumberWavelengths");
// Create resonant ring detector
RingDetector* detector = new RingDetector("Detector", getTechModel());
detector->setParameter("DataRate", link_data_rate);
detector->setParameter("InStart", 0);
detector->setParameter("InEnd", number_wavelengths-1);
detector->setParameter("DetStart", 0);
detector->setParameter("DetEnd", number_wavelengths-1);
detector->setParameter("DropAll", "TRUE");
detector->setParameter("Topology", RingDetector::INTEGRATINGSENSEAMP);
detector->construct();
addSubInstances(detector, 1.0);
getAreaResult("Photonic")->addSubResult(detector->getAreaResult("Photonic"), "Detector", 1.0);
addElectricalSubResults(detector, 1.0);
// connect to electrical port
portConnect(detector, "Out", "RxToRxBackend");
// connect optical input, output port
opticalPortConnect(detector, "In", "ModToDetector");
// Add receiver energy
getEventResult("Send")->addSubResult(detector->getEventResult("Receive"), "Detector", 1.0);
return;
}
} // namespace DSENT