gem5/dev/sinic.cc
Miguel Serrano b64eae5e52 Changes for getting FreeBSD to run.
SConscript:
    Added more files to compile: dev/pcifake.cc, dev/isa_fake.cc, kern/freebsd/freebsd_system.cc, kern/freebsd/freebsd_events.cc.
arch/alpha/isa_traits.hh:
    Added constant for argument register 2 as it is needed by FreebsdSystem::doCalibrateClocks().
cpu/exec_context.hh:
cpu/o3/alpha_cpu.hh:
    Replaced htoa()s with gtoh() and htog().
cpu/o3/fetch_impl.hh:
cpu/simple/cpu.cc:
    Replaced htoa() with gtoh().
dev/disk_image.cc:
    Replaced htoa()s with letoh()s.
dev/ide_ctrl.cc:
    Got rid of magic numbers.
    Added IdeChannel and IdeRegType type names where necessary.
dev/ide_ctrl.hh:
    Got rid of unnecessary macros.
    Changed RegType_t to IdeRegType.
    Changed bmi_regs to allow accessing registers by name instead of just by array index.
    Added IdeChannel enum type to use in place of bool variables which were used to specify IDE channel.
dev/ide_disk.cc:
    Rewrote IdeDisk::read and IdeDisk::write functions to specify registers by name instead of indexing through an array.
dev/ide_disk.hh:
    Updated command register struct.
dev/ns_gige.cc:
dev/ns_gige.hh:
    Made ReadConfig and WriteConfig begin with a lower-case letter.
    writeConfig() now takes a pointer to data as a parameter instead of a copy of data.
dev/pciconfigall.cc:
    writeConfig() now takes a pointer to data as a parameter instead of a copy of data.
dev/pcidev.cc:
    Cleaned up readConfig() and writeConfig() functions.
dev/pcidev.hh:
    Added macros to make code that works with the BARs (base adress registers) more readable. writeConfig() now takes a pointer to data.
dev/pcireg.h:
    Changed PCIConfig struct to make accessing elements more straight forward. Removed type 1 (for PCI-to-PCI bridges) PCI configuration space struct since it is not used.
dev/rtcreg.h:
    Added macros for bit fields in RTC status registers A & B.
dev/sinic.cc:
    Function name change: WriteConfig --> writeConfig.
    writeConfig() now takes a pointer to data instead of a copy of data.
    The accessing of elements of PCIConfig structure is updated.
dev/sinic.hh:
    Function name change: WriteConfig --> writeConfig.
    writeConfig() now takes a pointer to data instead of a copy of data.
dev/tsunami_io.cc:
    Added implementation of new RTC and PIT classes.
dev/tsunami_io.hh:
    Added classes for RTC and PIT modules.
dev/tsunamireg.h:
    Added macros for DMA ports used by Tsunami-Tru64.
dev/uart8250.cc:
    Got rid of a magic number.
    Transmit (Tx) interrupts should clear upon a read of the Interrupt ID register.
dev/uart8250.hh:
    Added comments and macros dealing with the UART Interrupt ID register.
kern/linux/linux_system.cc:
    Replaced htoa() with htog().
python/m5/objects/Pci.py:
    PciFake is a python class for Pci Devices that do nothing.
python/m5/objects/Tsunami.py:
    TsunamiFake was renamed as IsaFake.
sim/system.cc:
    Replaced htoa()s with htog()s.
dev/isa_fake.cc:
    New BitKeeper file ``dev/isa_fake.cc''
    TsunamiFake was renamed as IsaFake.
dev/isa_fake.hh:
    New BitKeeper file ``dev/isa_fake.hh''
    TsunmaiFake was renamed as IsaFake.
dev/pitreg.h:
    New BitKeeper file ``dev/pitreg.h''
    Useful macros for working with PIT (Periodic Interval Timer) registers.

--HG--
extra : convert_revision : 33f3a8a1034af4f6c71b32dd743e371c8613e780
2005-08-15 16:59:58 -04:00

1472 lines
39 KiB
C++

/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cstdio>
#include <deque>
#include <string>
#include "base/inet.hh"
#include "cpu/exec_context.hh"
#include "cpu/intr_control.hh"
#include "dev/etherlink.hh"
#include "dev/sinic.hh"
#include "dev/pciconfigall.hh"
#include "mem/bus/bus.hh"
#include "mem/bus/dma_interface.hh"
#include "mem/bus/pio_interface.hh"
#include "mem/bus/pio_interface_impl.hh"
#include "mem/functional/memory_control.hh"
#include "mem/functional/physical.hh"
#include "sim/builder.hh"
#include "sim/debug.hh"
#include "sim/eventq.hh"
#include "sim/host.hh"
#include "sim/stats.hh"
#include "targetarch/vtophys.hh"
using namespace Net;
namespace Sinic {
const char *RxStateStrings[] =
{
"rxIdle",
"rxFifoBlock",
"rxBeginCopy",
"rxCopy",
"rxCopyDone"
};
const char *TxStateStrings[] =
{
"txIdle",
"txFifoBlock",
"txBeginCopy",
"txCopy",
"txCopyDone"
};
///////////////////////////////////////////////////////////////////////
//
// Sinic PCI Device
//
Base::Base(Params *p)
: PciDev(p), rxEnable(false), txEnable(false), cycleTime(p->cycle_time),
intrDelay(p->intr_delay), intrTick(0), cpuIntrEnable(false),
cpuPendingIntr(false), intrEvent(0), interface(NULL)
{
}
Device::Device(Params *p)
: Base(p), plat(p->plat), physmem(p->physmem),
rxFifo(p->rx_fifo_size), txFifo(p->tx_fifo_size),
rxKickTick(0), txKickTick(0),
txEvent(this), rxDmaEvent(this), txDmaEvent(this),
dmaReadDelay(p->dma_read_delay), dmaReadFactor(p->dma_read_factor),
dmaWriteDelay(p->dma_write_delay), dmaWriteFactor(p->dma_write_factor)
{
reset();
if (p->io_bus) {
pioInterface = newPioInterface(p->name, p->hier, p->io_bus, this,
&Device::cacheAccess);
pioLatency = p->pio_latency * p->io_bus->clockRate;
if (p->payload_bus)
dmaInterface = new DMAInterface<Bus>(p->name + ".dma", p->io_bus,
p->payload_bus, 1,
p->dma_no_allocate);
else
dmaInterface = new DMAInterface<Bus>(p->name + ".dma", p->io_bus,
p->io_bus, 1,
p->dma_no_allocate);
} else if (p->payload_bus) {
pioInterface = newPioInterface(p->name, p->hier, p->payload_bus, this,
&Device::cacheAccess);
pioLatency = p->pio_latency * p->payload_bus->clockRate;
dmaInterface = new DMAInterface<Bus>(p->name + ".dma", p->payload_bus,
p->payload_bus, 1,
p->dma_no_allocate);
}
}
Device::~Device()
{}
void
Device::regStats()
{
rxBytes
.name(name() + ".rxBytes")
.desc("Bytes Received")
.prereq(rxBytes)
;
rxBandwidth
.name(name() + ".rxBandwidth")
.desc("Receive Bandwidth (bits/s)")
.precision(0)
.prereq(rxBytes)
;
rxPackets
.name(name() + ".rxPackets")
.desc("Number of Packets Received")
.prereq(rxBytes)
;
rxPacketRate
.name(name() + ".rxPPS")
.desc("Packet Reception Rate (packets/s)")
.precision(0)
.prereq(rxBytes)
;
rxIpPackets
.name(name() + ".rxIpPackets")
.desc("Number of IP Packets Received")
.prereq(rxBytes)
;
rxTcpPackets
.name(name() + ".rxTcpPackets")
.desc("Number of Packets Received")
.prereq(rxBytes)
;
rxUdpPackets
.name(name() + ".rxUdpPackets")
.desc("Number of UDP Packets Received")
.prereq(rxBytes)
;
rxIpChecksums
.name(name() + ".rxIpChecksums")
.desc("Number of rx IP Checksums done by device")
.precision(0)
.prereq(rxBytes)
;
rxTcpChecksums
.name(name() + ".rxTcpChecksums")
.desc("Number of rx TCP Checksums done by device")
.precision(0)
.prereq(rxBytes)
;
rxUdpChecksums
.name(name() + ".rxUdpChecksums")
.desc("Number of rx UDP Checksums done by device")
.precision(0)
.prereq(rxBytes)
;
totBandwidth
.name(name() + ".totBandwidth")
.desc("Total Bandwidth (bits/s)")
.precision(0)
.prereq(totBytes)
;
totPackets
.name(name() + ".totPackets")
.desc("Total Packets")
.precision(0)
.prereq(totBytes)
;
totBytes
.name(name() + ".totBytes")
.desc("Total Bytes")
.precision(0)
.prereq(totBytes)
;
totPacketRate
.name(name() + ".totPPS")
.desc("Total Tranmission Rate (packets/s)")
.precision(0)
.prereq(totBytes)
;
txBytes
.name(name() + ".txBytes")
.desc("Bytes Transmitted")
.prereq(txBytes)
;
txBandwidth
.name(name() + ".txBandwidth")
.desc("Transmit Bandwidth (bits/s)")
.precision(0)
.prereq(txBytes)
;
txPackets
.name(name() + ".txPackets")
.desc("Number of Packets Transmitted")
.prereq(txBytes)
;
txPacketRate
.name(name() + ".txPPS")
.desc("Packet Tranmission Rate (packets/s)")
.precision(0)
.prereq(txBytes)
;
txIpPackets
.name(name() + ".txIpPackets")
.desc("Number of IP Packets Transmitted")
.prereq(txBytes)
;
txTcpPackets
.name(name() + ".txTcpPackets")
.desc("Number of TCP Packets Transmitted")
.prereq(txBytes)
;
txUdpPackets
.name(name() + ".txUdpPackets")
.desc("Number of Packets Transmitted")
.prereq(txBytes)
;
txIpChecksums
.name(name() + ".txIpChecksums")
.desc("Number of tx IP Checksums done by device")
.precision(0)
.prereq(txBytes)
;
txTcpChecksums
.name(name() + ".txTcpChecksums")
.desc("Number of tx TCP Checksums done by device")
.precision(0)
.prereq(txBytes)
;
txUdpChecksums
.name(name() + ".txUdpChecksums")
.desc("Number of tx UDP Checksums done by device")
.precision(0)
.prereq(txBytes)
;
txBandwidth = txBytes * Stats::constant(8) / simSeconds;
rxBandwidth = rxBytes * Stats::constant(8) / simSeconds;
totBandwidth = txBandwidth + rxBandwidth;
totBytes = txBytes + rxBytes;
totPackets = txPackets + rxPackets;
txPacketRate = txPackets / simSeconds;
rxPacketRate = rxPackets / simSeconds;
}
/**
* This is to write to the PCI general configuration registers
*/
void
Device::writeConfig(int offset, int size, const uint8_t *data)
{
switch (offset) {
case PCI0_BASE_ADDR0:
// Need to catch writes to BARs to update the PIO interface
PciDev::writeConfig(offset, size, data);
if (BARAddrs[0] != 0) {
if (pioInterface)
pioInterface->addAddrRange(RangeSize(BARAddrs[0], BARSize[0]));
BARAddrs[0] &= EV5::PAddrUncachedMask;
}
break;
default:
PciDev::writeConfig(offset, size, data);
}
}
/**
* This reads the device registers, which are detailed in the NS83820
* spec sheet
*/
Fault
Device::read(MemReqPtr &req, uint8_t *data)
{
assert(config.command & PCI_CMD_MSE);
//The mask is to give you only the offset into the device register file
Addr daddr = req->paddr & 0xfff;
if (Regs::regSize(daddr) == 0)
panic("invalid address: da=%#x pa=%#x va=%#x size=%d",
daddr, req->paddr, req->vaddr, req->size);
if (req->size != Regs::regSize(daddr))
panic("invalid size for reg %s: da=%#x pa=%#x va=%#x size=%d",
Regs::regName(daddr), daddr, req->paddr, req->vaddr, req->size);
DPRINTF(EthernetPIO, "read reg=%s da=%#x pa=%#x va=%#x size=%d\n",
Regs::regName(daddr), daddr, req->paddr, req->vaddr, req->size);
uint32_t &reg32 = *(uint32_t *)data;
uint64_t &reg64 = *(uint64_t *)data;
switch (daddr) {
case Regs::Config:
reg32 = regs.Config;
break;
case Regs::RxMaxCopy:
reg32 = regs.RxMaxCopy;
break;
case Regs::TxMaxCopy:
reg32 = regs.TxMaxCopy;
break;
case Regs::RxThreshold:
reg32 = regs.RxThreshold;
break;
case Regs::TxThreshold:
reg32 = regs.TxThreshold;
break;
case Regs::IntrStatus:
reg32 = regs.IntrStatus;
devIntrClear();
break;
case Regs::IntrMask:
reg32 = regs.IntrMask;
break;
case Regs::RxData:
reg64 = regs.RxData;
break;
case Regs::RxDone:
case Regs::RxWait:
reg64 = Regs::set_RxDone_FifoLen(regs.RxDone,
min(rxFifo.packets(), 255));
break;
case Regs::TxData:
reg64 = regs.TxData;
break;
case Regs::TxDone:
case Regs::TxWait:
reg64 = Regs::set_TxDone_FifoLen(regs.TxDone,
min(txFifo.packets(), 255));
break;
case Regs::HwAddr:
reg64 = params()->eaddr;
break;
default:
panic("reading write only register %s: da=%#x pa=%#x va=%#x size=%d",
Regs::regName(daddr), daddr, req->paddr, req->vaddr, req->size);
}
DPRINTF(EthernetPIO, "read reg=%s done val=%#x\n", Regs::regName(daddr),
Regs::regSize(daddr) == 4 ? reg32 : reg64);
return No_Fault;
}
Fault
Device::write(MemReqPtr &req, const uint8_t *data)
{
assert(config.command & PCI_CMD_MSE);
Addr daddr = req->paddr & 0xfff;
if (Regs::regSize(daddr) == 0)
panic("invalid address: da=%#x pa=%#x va=%#x size=%d",
daddr, req->paddr, req->vaddr, req->size);
if (req->size != Regs::regSize(daddr))
panic("invalid size: reg=%s da=%#x pa=%#x va=%#x size=%d",
Regs::regName(daddr), daddr, req->paddr, req->vaddr, req->size);
uint32_t reg32 = *(uint32_t *)data;
uint64_t reg64 = *(uint64_t *)data;
DPRINTF(EthernetPIO, "write reg=%s val=%#x da=%#x pa=%#x va=%#x size=%d\n",
Regs::regName(daddr), Regs::regSize(daddr) == 4 ? reg32 : reg64,
daddr, req->paddr, req->vaddr, req->size);
switch (daddr) {
case Regs::Config:
changeConfig(reg32);
break;
case Regs::RxThreshold:
regs.RxThreshold = reg32;
break;
case Regs::TxThreshold:
regs.TxThreshold = reg32;
break;
case Regs::IntrMask:
devIntrChangeMask(reg32);
break;
case Regs::RxData:
if (rxState != rxIdle)
panic("receive machine busy with another request!");
regs.RxDone = 0;
regs.RxData = reg64;
if (rxEnable) {
rxState = rxFifoBlock;
rxKick();
}
break;
case Regs::TxData:
if (txState != txIdle)
panic("transmit machine busy with another request!");
regs.TxDone = 0;
regs.TxData = reg64;
if (txEnable) {
txState = txFifoBlock;
txKick();
}
break;
default:
panic("writing read only register %s: da=%#x pa=%#x va=%#x size=%d",
Regs::regName(daddr), daddr, req->paddr, req->vaddr, req->size);
}
return No_Fault;
}
void
Device::devIntrPost(uint32_t interrupts)
{
if ((interrupts & Regs::Intr_Res))
panic("Cannot set a reserved interrupt");
regs.IntrStatus |= interrupts;
DPRINTF(EthernetIntr,
"interrupt written to intStatus: intr=%#x status=%#x mask=%#x\n",
interrupts, regs.IntrStatus, regs.IntrMask);
if ((regs.IntrStatus & regs.IntrMask)) {
Tick when = curTick;
if ((regs.IntrStatus & regs.IntrMask & Regs::Intr_NoDelay) == 0)
when += intrDelay;
cpuIntrPost(when);
}
}
void
Device::devIntrClear(uint32_t interrupts)
{
if ((interrupts & Regs::Intr_Res))
panic("Cannot clear a reserved interrupt");
regs.IntrStatus &= ~interrupts;
DPRINTF(EthernetIntr,
"interrupt cleared from intStatus: intr=%x status=%x mask=%x\n",
interrupts, regs.IntrStatus, regs.IntrMask);
if (!(regs.IntrStatus & regs.IntrMask))
cpuIntrClear();
}
void
Device::devIntrChangeMask(uint32_t newmask)
{
if (regs.IntrMask == newmask)
return;
regs.IntrMask = newmask;
DPRINTF(EthernetIntr,
"interrupt mask changed: intStatus=%x intMask=%x masked=%x\n",
regs.IntrStatus, regs.IntrMask, regs.IntrStatus & regs.IntrMask);
if (regs.IntrStatus & regs.IntrMask)
cpuIntrPost(curTick);
else
cpuIntrClear();
}
void
Base::cpuIntrPost(Tick when)
{
// If the interrupt you want to post is later than an interrupt
// already scheduled, just let it post in the coming one and don't
// schedule another.
// HOWEVER, must be sure that the scheduled intrTick is in the
// future (this was formerly the source of a bug)
/**
* @todo this warning should be removed and the intrTick code should
* be fixed.
*/
assert(when >= curTick);
assert(intrTick >= curTick || intrTick == 0);
if (!cpuIntrEnable) {
DPRINTF(EthernetIntr, "interrupts not enabled.\n",
intrTick);
return;
}
if (when > intrTick && intrTick != 0) {
DPRINTF(EthernetIntr, "don't need to schedule event...intrTick=%d\n",
intrTick);
return;
}
intrTick = when;
if (intrTick < curTick) {
debug_break();
intrTick = curTick;
}
DPRINTF(EthernetIntr, "going to schedule an interrupt for intrTick=%d\n",
intrTick);
if (intrEvent)
intrEvent->squash();
intrEvent = new IntrEvent(this, true);
intrEvent->schedule(intrTick);
}
void
Base::cpuInterrupt()
{
assert(intrTick == curTick);
// Whether or not there's a pending interrupt, we don't care about
// it anymore
intrEvent = 0;
intrTick = 0;
// Don't send an interrupt if there's already one
if (cpuPendingIntr) {
DPRINTF(EthernetIntr,
"would send an interrupt now, but there's already pending\n");
} else {
// Send interrupt
cpuPendingIntr = true;
DPRINTF(EthernetIntr, "posting interrupt\n");
intrPost();
}
}
void
Base::cpuIntrClear()
{
if (!cpuPendingIntr)
return;
if (intrEvent) {
intrEvent->squash();
intrEvent = 0;
}
intrTick = 0;
cpuPendingIntr = false;
DPRINTF(EthernetIntr, "clearing cchip interrupt\n");
intrClear();
}
bool
Base::cpuIntrPending() const
{ return cpuPendingIntr; }
void
Device::changeConfig(uint32_t newconf)
{
uint32_t changed = regs.Config ^ newconf;
if (!changed)
return;
regs.Config = newconf;
if ((changed & Regs::Config_Reset)) {
assert(regs.Config & Regs::Config_Reset);
reset();
regs.Config &= ~Regs::Config_Reset;
}
if ((changed & Regs::Config_IntEn)) {
cpuIntrEnable = regs.Config & Regs::Config_IntEn;
if (cpuIntrEnable) {
if (regs.IntrStatus & regs.IntrMask)
cpuIntrPost(curTick);
} else {
cpuIntrClear();
}
}
if ((changed & Regs::Config_TxEn)) {
txEnable = regs.Config & Regs::Config_TxEn;
if (txEnable)
txKick();
}
if ((changed & Regs::Config_RxEn)) {
rxEnable = regs.Config & Regs::Config_RxEn;
if (rxEnable)
rxKick();
}
}
void
Device::reset()
{
using namespace Regs;
memset(&regs, 0, sizeof(regs));
regs.RxMaxCopy = params()->rx_max_copy;
regs.TxMaxCopy = params()->tx_max_copy;
regs.IntrMask = Intr_TxFifo | Intr_RxFifo | Intr_RxData;
rxState = rxIdle;
txState = txIdle;
rxFifo.clear();
txFifo.clear();
}
void
Device::rxDmaCopy()
{
assert(rxState == rxCopy);
rxState = rxCopyDone;
physmem->dma_write(rxDmaAddr, (uint8_t *)rxDmaData, rxDmaLen);
DPRINTF(EthernetDMA, "rx dma write paddr=%#x len=%d\n",
rxDmaAddr, rxDmaLen);
DDUMP(EthernetDMA, rxDmaData, rxDmaLen);
}
void
Device::rxDmaDone()
{
rxDmaCopy();
rxKick();
}
void
Device::rxKick()
{
DPRINTF(EthernetSM, "receive kick rxState=%s (rxFifo.size=%d)\n",
RxStateStrings[rxState], rxFifo.size());
if (rxKickTick > curTick) {
DPRINTF(EthernetSM, "receive kick exiting, can't run till %d\n",
rxKickTick);
return;
}
next:
switch (rxState) {
case rxIdle:
if (rxPioRequest) {
pioInterface->respond(rxPioRequest, curTick);
rxPioRequest = 0;
}
goto exit;
case rxFifoBlock:
if (rxPacket) {
rxState = rxBeginCopy;
break;
}
if (rxFifo.empty()) {
DPRINTF(EthernetSM, "receive waiting for data. Nothing to do.\n");
goto exit;
}
// Grab a new packet from the fifo.
rxPacket = rxFifo.front();
rxPacketBufPtr = rxPacket->data;
rxPktBytes = rxPacket->length;
assert(rxPktBytes);
rxDoneData = 0;
/* scope for variables */ {
IpPtr ip(rxPacket);
if (ip) {
rxDoneData |= Regs::RxDone_IpPacket;
rxIpChecksums++;
if (cksum(ip) != 0) {
DPRINTF(EthernetCksum, "Rx IP Checksum Error\n");
rxDoneData |= Regs::RxDone_IpError;
}
TcpPtr tcp(ip);
UdpPtr udp(ip);
if (tcp) {
rxDoneData |= Regs::RxDone_TcpPacket;
rxTcpChecksums++;
if (cksum(tcp) != 0) {
DPRINTF(EthernetCksum, "Rx TCP Checksum Error\n");
rxDoneData |= Regs::RxDone_TcpError;
}
} else if (udp) {
rxDoneData |= Regs::RxDone_UdpPacket;
rxUdpChecksums++;
if (cksum(udp) != 0) {
DPRINTF(EthernetCksum, "Rx UDP Checksum Error\n");
rxDoneData |= Regs::RxDone_UdpError;
}
}
}
}
rxState = rxBeginCopy;
break;
case rxBeginCopy:
rxDmaAddr = plat->pciToDma(Regs::get_RxData_Addr(regs.RxData));
rxDmaLen = min<int>(Regs::get_RxData_Len(regs.RxData), rxPktBytes);
rxDmaData = rxPacketBufPtr;
if (dmaInterface) {
if (!dmaInterface->busy()) {
dmaInterface->doDMA(WriteInvalidate, rxDmaAddr, rxDmaLen,
curTick, &rxDmaEvent, true);
rxState = rxCopy;
}
goto exit;
}
rxState = rxCopy;
if (dmaWriteDelay != 0 || dmaWriteFactor != 0) {
Tick factor = ((rxDmaLen + ULL(63)) >> ULL(6)) * dmaWriteFactor;
Tick start = curTick + dmaWriteDelay + factor;
rxDmaEvent.schedule(start);
goto exit;
}
rxDmaCopy();
break;
case rxCopy:
DPRINTF(EthernetSM, "receive machine still copying\n");
goto exit;
case rxCopyDone:
regs.RxDone = rxDoneData | rxDmaLen;
if (rxPktBytes == rxDmaLen) {
rxPacket = NULL;
rxFifo.pop();
} else {
regs.RxDone |= Regs::RxDone_More;
rxPktBytes -= rxDmaLen;
rxPacketBufPtr += rxDmaLen;
}
regs.RxDone |= Regs::RxDone_Complete;
devIntrPost(Regs::Intr_RxData);
rxState = rxIdle;
break;
default:
panic("Invalid rxState!");
}
DPRINTF(EthernetSM, "entering next rxState=%s\n",
RxStateStrings[rxState]);
goto next;
exit:
/**
* @todo do we want to schedule a future kick?
*/
DPRINTF(EthernetSM, "rx state machine exited rxState=%s\n",
RxStateStrings[rxState]);
}
void
Device::txDmaCopy()
{
assert(txState == txCopy);
txState = txCopyDone;
physmem->dma_read((uint8_t *)txDmaData, txDmaAddr, txDmaLen);
DPRINTF(EthernetDMA, "tx dma read paddr=%#x len=%d\n",
txDmaAddr, txDmaLen);
DDUMP(EthernetDMA, txDmaData, txDmaLen);
}
void
Device::txDmaDone()
{
txDmaCopy();
txKick();
}
void
Device::transmit()
{
if (txFifo.empty()) {
DPRINTF(Ethernet, "nothing to transmit\n");
return;
}
PacketPtr packet = txFifo.front();
if (!interface->sendPacket(packet)) {
DPRINTF(Ethernet, "Packet Transmit: failed txFifo available %d\n",
txFifo.avail());
goto reschedule;
}
txFifo.pop();
#if TRACING_ON
if (DTRACE(Ethernet)) {
IpPtr ip(packet);
if (ip) {
DPRINTF(Ethernet, "ID is %d\n", ip->id());
TcpPtr tcp(ip);
if (tcp) {
DPRINTF(Ethernet, "Src Port=%d, Dest Port=%d\n",
tcp->sport(), tcp->dport());
}
}
}
#endif
DDUMP(Ethernet, packet->data, packet->length);
txBytes += packet->length;
txPackets++;
DPRINTF(Ethernet, "Packet Transmit: successful txFifo Available %d\n",
txFifo.avail());
if (txFifo.size() <= params()->tx_fifo_threshold)
devIntrPost(Regs::Intr_TxFifo);
devIntrPost(Regs::Intr_TxDone);
reschedule:
if (!txFifo.empty() && !txEvent.scheduled()) {
DPRINTF(Ethernet, "reschedule transmit\n");
txEvent.schedule(curTick + retryTime);
}
}
void
Device::txKick()
{
DPRINTF(EthernetSM, "transmit kick txState=%s (txFifo.size=%d)\n",
TxStateStrings[txState], txFifo.size());
if (txKickTick > curTick) {
DPRINTF(EthernetSM, "transmit kick exiting, can't run till %d\n",
txKickTick);
return;
}
next:
switch (txState) {
case txIdle:
if (txPioRequest) {
pioInterface->respond(txPioRequest, curTick + pioLatency);
txPioRequest = 0;
}
goto exit;
case txFifoBlock:
if (!txPacket) {
// Grab a new packet from the fifo.
txPacket = new PacketData(16384);
txPacketBufPtr = txPacket->data;
}
if (txFifo.avail() - txPacket->length <
Regs::get_TxData_Len(regs.TxData)) {
DPRINTF(EthernetSM, "transmit fifo full. Nothing to do.\n");
goto exit;
}
txState = txBeginCopy;
break;
case txBeginCopy:
txDmaAddr = plat->pciToDma(Regs::get_TxData_Addr(regs.TxData));
txDmaLen = Regs::get_TxData_Len(regs.TxData);
txDmaData = txPacketBufPtr;
if (dmaInterface) {
if (!dmaInterface->busy()) {
dmaInterface->doDMA(Read, txDmaAddr, txDmaLen,
curTick, &txDmaEvent, true);
txState = txCopy;
}
goto exit;
}
txState = txCopy;
if (dmaReadDelay != 0 || dmaReadFactor != 0) {
Tick factor = ((txDmaLen + ULL(63)) >> ULL(6)) * dmaReadFactor;
Tick start = curTick + dmaReadDelay + factor;
txDmaEvent.schedule(start);
goto exit;
}
txDmaCopy();
break;
case txCopy:
DPRINTF(EthernetSM, "transmit machine still copying\n");
goto exit;
case txCopyDone:
txPacket->length += txDmaLen;
if ((regs.TxData & Regs::TxData_More)) {
txPacketBufPtr += txDmaLen;
} else {
assert(txPacket->length <= txFifo.avail());
if ((regs.TxData & Regs::TxData_Checksum)) {
IpPtr ip(txPacket);
if (ip) {
TcpPtr tcp(ip);
if (tcp) {
tcp->sum(0);
tcp->sum(cksum(tcp));
txTcpChecksums++;
}
UdpPtr udp(ip);
if (udp) {
udp->sum(0);
udp->sum(cksum(udp));
txUdpChecksums++;
}
ip->sum(0);
ip->sum(cksum(ip));
txIpChecksums++;
}
}
txFifo.push(txPacket);
txPacket = 0;
transmit();
}
regs.TxDone = txDmaLen | Regs::TxDone_Complete;
devIntrPost(Regs::Intr_TxData);
txState = txIdle;
break;
default:
panic("Invalid txState!");
}
DPRINTF(EthernetSM, "entering next txState=%s\n",
TxStateStrings[txState]);
goto next;
exit:
/**
* @todo do we want to schedule a future kick?
*/
DPRINTF(EthernetSM, "tx state machine exited txState=%s\n",
TxStateStrings[txState]);
}
void
Device::transferDone()
{
if (txFifo.empty()) {
DPRINTF(Ethernet, "transfer complete: txFifo empty...nothing to do\n");
return;
}
DPRINTF(Ethernet, "transfer complete: data in txFifo...schedule xmit\n");
if (txEvent.scheduled())
txEvent.reschedule(curTick + cycles(1));
else
txEvent.schedule(curTick + cycles(1));
}
bool
Device::rxFilter(const PacketPtr &packet)
{
if (!Regs::get_Config_Filter(regs.Config))
return false;
panic("receive filter not implemented\n");
bool drop = true;
#if 0
string type;
EthHdr *eth = packet->eth();
if (eth->unicast()) {
// If we're accepting all unicast addresses
if (acceptUnicast)
drop = false;
// If we make a perfect match
if (acceptPerfect && params->eaddr == eth.dst())
drop = false;
if (acceptArp && eth->type() == ETH_TYPE_ARP)
drop = false;
} else if (eth->broadcast()) {
// if we're accepting broadcasts
if (acceptBroadcast)
drop = false;
} else if (eth->multicast()) {
// if we're accepting all multicasts
if (acceptMulticast)
drop = false;
}
if (drop) {
DPRINTF(Ethernet, "rxFilter drop\n");
DDUMP(EthernetData, packet->data, packet->length);
}
#endif
return drop;
}
bool
Device::recvPacket(PacketPtr packet)
{
rxBytes += packet->length;
rxPackets++;
DPRINTF(Ethernet, "Receiving packet from wire, rxFifo Available is %d\n",
rxFifo.avail());
if (!rxEnable) {
DPRINTF(Ethernet, "receive disabled...packet dropped\n");
interface->recvDone();
return true;
}
if (rxFilter(packet)) {
DPRINTF(Ethernet, "packet filtered...dropped\n");
interface->recvDone();
return true;
}
if (rxFifo.size() >= params()->rx_fifo_threshold)
devIntrPost(Regs::Intr_RxFifo);
if (!rxFifo.push(packet)) {
DPRINTF(Ethernet,
"packet will not fit in receive buffer...packet dropped\n");
return false;
}
interface->recvDone();
devIntrPost(Regs::Intr_RxDone);
rxKick();
return true;
}
//=====================================================================
//
//
void
Base::serialize(ostream &os)
{
// Serialize the PciDev base class
PciDev::serialize(os);
SERIALIZE_SCALAR(rxEnable);
SERIALIZE_SCALAR(txEnable);
SERIALIZE_SCALAR(cpuIntrEnable);
/*
* Keep track of pending interrupt status.
*/
SERIALIZE_SCALAR(intrTick);
SERIALIZE_SCALAR(cpuPendingIntr);
Tick intrEventTick = 0;
if (intrEvent)
intrEventTick = intrEvent->when();
SERIALIZE_SCALAR(intrEventTick);
}
void
Base::unserialize(Checkpoint *cp, const std::string &section)
{
// Unserialize the PciDev base class
PciDev::unserialize(cp, section);
UNSERIALIZE_SCALAR(rxEnable);
UNSERIALIZE_SCALAR(txEnable);
UNSERIALIZE_SCALAR(cpuIntrEnable);
/*
* Keep track of pending interrupt status.
*/
UNSERIALIZE_SCALAR(intrTick);
UNSERIALIZE_SCALAR(cpuPendingIntr);
Tick intrEventTick;
UNSERIALIZE_SCALAR(intrEventTick);
if (intrEventTick) {
intrEvent = new IntrEvent(this, true);
intrEvent->schedule(intrEventTick);
}
}
void
Device::serialize(ostream &os)
{
// Serialize the PciDev base class
Base::serialize(os);
if (rxDmaEvent.scheduled())
rxDmaCopy();
if (txDmaEvent.scheduled())
txDmaCopy();
/*
* Serialize the device registers
*/
SERIALIZE_SCALAR(regs.Config);
SERIALIZE_SCALAR(regs.RxMaxCopy);
SERIALIZE_SCALAR(regs.TxMaxCopy);
SERIALIZE_SCALAR(regs.RxThreshold);
SERIALIZE_SCALAR(regs.TxThreshold);
SERIALIZE_SCALAR(regs.IntrStatus);
SERIALIZE_SCALAR(regs.IntrMask);
SERIALIZE_SCALAR(regs.RxData);
SERIALIZE_SCALAR(regs.RxDone);
SERIALIZE_SCALAR(regs.TxData);
SERIALIZE_SCALAR(regs.TxDone);
/*
* Serialize rx state machine
*/
int rxState = this->rxState;
SERIALIZE_SCALAR(rxState);
rxFifo.serialize("rxFifo", os);
bool rxPacketExists = rxPacket;
SERIALIZE_SCALAR(rxPacketExists);
if (rxPacketExists) {
rxPacket->serialize("rxPacket", os);
uint32_t rxPktBufPtr = (uint32_t) (rxPacketBufPtr - rxPacket->data);
SERIALIZE_SCALAR(rxPktBufPtr);
SERIALIZE_SCALAR(rxPktBytes);
}
SERIALIZE_SCALAR(rxDoneData);
/*
* Serialize tx state machine
*/
int txState = this->txState;
SERIALIZE_SCALAR(txState);
txFifo.serialize("txFifo", os);
bool txPacketExists = txPacket;
SERIALIZE_SCALAR(txPacketExists);
if (txPacketExists) {
txPacket->serialize("txPacket", os);
uint32_t txPktBufPtr = (uint32_t) (txPacketBufPtr - txPacket->data);
SERIALIZE_SCALAR(txPktBufPtr);
SERIALIZE_SCALAR(txPktBytes);
}
/*
* If there's a pending transmit, store the time so we can
* reschedule it later
*/
Tick transmitTick = txEvent.scheduled() ? txEvent.when() - curTick : 0;
SERIALIZE_SCALAR(transmitTick);
}
void
Device::unserialize(Checkpoint *cp, const std::string &section)
{
// Unserialize the PciDev base class
Base::unserialize(cp, section);
/*
* Unserialize the device registers
*/
UNSERIALIZE_SCALAR(regs.Config);
UNSERIALIZE_SCALAR(regs.RxMaxCopy);
UNSERIALIZE_SCALAR(regs.TxMaxCopy);
UNSERIALIZE_SCALAR(regs.RxThreshold);
UNSERIALIZE_SCALAR(regs.TxThreshold);
UNSERIALIZE_SCALAR(regs.IntrStatus);
UNSERIALIZE_SCALAR(regs.IntrMask);
UNSERIALIZE_SCALAR(regs.RxData);
UNSERIALIZE_SCALAR(regs.RxDone);
UNSERIALIZE_SCALAR(regs.TxData);
UNSERIALIZE_SCALAR(regs.TxDone);
/*
* Unserialize rx state machine
*/
int rxState;
UNSERIALIZE_SCALAR(rxState);
this->rxState = (RxState) rxState;
rxFifo.unserialize("rxFifo", cp, section);
bool rxPacketExists;
UNSERIALIZE_SCALAR(rxPacketExists);
rxPacket = 0;
if (rxPacketExists) {
rxPacket = new PacketData(16384);
rxPacket->unserialize("rxPacket", cp, section);
uint32_t rxPktBufPtr;
UNSERIALIZE_SCALAR(rxPktBufPtr);
this->rxPacketBufPtr = (uint8_t *) rxPacket->data + rxPktBufPtr;
UNSERIALIZE_SCALAR(rxPktBytes);
}
UNSERIALIZE_SCALAR(rxDoneData);
/*
* Unserialize tx state machine
*/
int txState;
UNSERIALIZE_SCALAR(txState);
this->txState = (TxState) txState;
txFifo.unserialize("txFifo", cp, section);
bool txPacketExists;
UNSERIALIZE_SCALAR(txPacketExists);
txPacket = 0;
if (txPacketExists) {
txPacket = new PacketData(16384);
txPacket->unserialize("txPacket", cp, section);
uint32_t txPktBufPtr;
UNSERIALIZE_SCALAR(txPktBufPtr);
this->txPacketBufPtr = (uint8_t *) txPacket->data + txPktBufPtr;
UNSERIALIZE_SCALAR(txPktBytes);
}
/*
* If there's a pending transmit, reschedule it now
*/
Tick transmitTick;
UNSERIALIZE_SCALAR(transmitTick);
if (transmitTick)
txEvent.schedule(curTick + transmitTick);
/*
* re-add addrRanges to bus bridges
*/
if (pioInterface)
pioInterface->addAddrRange(RangeSize(BARAddrs[0], BARSize[0]));
}
Tick
Device::cacheAccess(MemReqPtr &req)
{
//The mask is to give you only the offset into the device register file
Addr daddr = req->paddr - addr;
DPRINTF(EthernetPIO, "timing access to paddr=%#x (daddr=%#x)\n",
req->paddr, daddr);
Tick when = curTick + pioLatency;
switch (daddr) {
case Regs::RxDone:
if (rxState != rxIdle) {
rxPioRequest = req;
when = 0;
}
break;
case Regs::TxDone:
if (txState != txIdle) {
txPioRequest = req;
when = 0;
}
break;
}
return when;
}
BEGIN_DECLARE_SIM_OBJECT_PARAMS(Interface)
SimObjectParam<EtherInt *> peer;
SimObjectParam<Device *> device;
END_DECLARE_SIM_OBJECT_PARAMS(Interface)
BEGIN_INIT_SIM_OBJECT_PARAMS(Interface)
INIT_PARAM_DFLT(peer, "peer interface", NULL),
INIT_PARAM(device, "Ethernet device of this interface")
END_INIT_SIM_OBJECT_PARAMS(Interface)
CREATE_SIM_OBJECT(Interface)
{
Interface *dev_int = new Interface(getInstanceName(), device);
EtherInt *p = (EtherInt *)peer;
if (p) {
dev_int->setPeer(p);
p->setPeer(dev_int);
}
return dev_int;
}
REGISTER_SIM_OBJECT("SinicInt", Interface)
BEGIN_DECLARE_SIM_OBJECT_PARAMS(Device)
Param<Addr> addr;
Param<Tick> cycle_time;
Param<Tick> tx_delay;
Param<Tick> rx_delay;
Param<Tick> intr_delay;
SimObjectParam<MemoryController *> mmu;
SimObjectParam<PhysicalMemory *> physmem;
Param<bool> rx_filter;
Param<string> hardware_address;
SimObjectParam<Bus*> io_bus;
SimObjectParam<Bus*> payload_bus;
SimObjectParam<HierParams *> hier;
Param<Tick> pio_latency;
SimObjectParam<PciConfigAll *> configspace;
SimObjectParam<PciConfigData *> configdata;
SimObjectParam<Platform *> platform;
Param<uint32_t> pci_bus;
Param<uint32_t> pci_dev;
Param<uint32_t> pci_func;
Param<uint32_t> rx_max_copy;
Param<uint32_t> tx_max_copy;
Param<uint32_t> rx_fifo_size;
Param<uint32_t> tx_fifo_size;
Param<uint32_t> rx_fifo_threshold;
Param<uint32_t> tx_fifo_threshold;
Param<Tick> dma_read_delay;
Param<Tick> dma_read_factor;
Param<Tick> dma_write_delay;
Param<Tick> dma_write_factor;
Param<bool> dma_no_allocate;
END_DECLARE_SIM_OBJECT_PARAMS(Device)
BEGIN_INIT_SIM_OBJECT_PARAMS(Device)
INIT_PARAM(addr, "Device Address"),
INIT_PARAM(cycle_time, "State machine cycle time"),
INIT_PARAM_DFLT(tx_delay, "Transmit Delay", 1000),
INIT_PARAM_DFLT(rx_delay, "Receive Delay", 1000),
INIT_PARAM_DFLT(intr_delay, "Interrupt Delay in microseconds", 0),
INIT_PARAM(mmu, "Memory Controller"),
INIT_PARAM(physmem, "Physical Memory"),
INIT_PARAM_DFLT(rx_filter, "Enable Receive Filter", true),
INIT_PARAM_DFLT(hardware_address, "Ethernet Hardware Address",
"00:99:00:00:00:01"),
INIT_PARAM_DFLT(io_bus, "The IO Bus to attach to for headers", NULL),
INIT_PARAM_DFLT(payload_bus, "The IO Bus to attach to for payload", NULL),
INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams),
INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1),
INIT_PARAM(configspace, "PCI Configspace"),
INIT_PARAM(configdata, "PCI Config data"),
INIT_PARAM(platform, "Platform"),
INIT_PARAM(pci_bus, "PCI bus"),
INIT_PARAM(pci_dev, "PCI device number"),
INIT_PARAM(pci_func, "PCI function code"),
INIT_PARAM_DFLT(rx_max_copy, "rx max copy", 16*1024),
INIT_PARAM_DFLT(tx_max_copy, "rx max copy", 16*1024),
INIT_PARAM_DFLT(rx_fifo_size, "max size in bytes of rxFifo", 64*1024),
INIT_PARAM_DFLT(tx_fifo_size, "max size in bytes of txFifo", 64*1024),
INIT_PARAM_DFLT(rx_fifo_threshold, "max size in bytes of rxFifo", 48*1024),
INIT_PARAM_DFLT(tx_fifo_threshold, "max size in bytes of txFifo", 16*1024),
INIT_PARAM_DFLT(dma_read_delay, "fixed delay for dma reads", 0),
INIT_PARAM_DFLT(dma_read_factor, "multiplier for dma reads", 0),
INIT_PARAM_DFLT(dma_write_delay, "fixed delay for dma writes", 0),
INIT_PARAM_DFLT(dma_write_factor, "multiplier for dma writes", 0),
INIT_PARAM_DFLT(dma_no_allocate, "Should we allocat on read in cache", true)
END_INIT_SIM_OBJECT_PARAMS(Device)
CREATE_SIM_OBJECT(Device)
{
Device::Params *params = new Device::Params;
params->name = getInstanceName();
params->intr_delay = intr_delay;
params->physmem = physmem;
params->cycle_time = cycle_time;
params->tx_delay = tx_delay;
params->rx_delay = rx_delay;
params->mmu = mmu;
params->hier = hier;
params->io_bus = io_bus;
params->payload_bus = payload_bus;
params->pio_latency = pio_latency;
params->configSpace = configspace;
params->configData = configdata;
params->plat = platform;
params->busNum = pci_bus;
params->deviceNum = pci_dev;
params->functionNum = pci_func;
params->rx_filter = rx_filter;
params->eaddr = hardware_address;
params->rx_max_copy = rx_max_copy;
params->tx_max_copy = tx_max_copy;
params->rx_fifo_size = rx_fifo_size;
params->tx_fifo_size = tx_fifo_size;
params->rx_fifo_threshold = rx_fifo_threshold;
params->tx_fifo_threshold = tx_fifo_threshold;
params->dma_read_delay = dma_read_delay;
params->dma_read_factor = dma_read_factor;
params->dma_write_delay = dma_write_delay;
params->dma_write_factor = dma_write_factor;
params->dma_no_allocate = dma_no_allocate;
return new Device(params);
}
REGISTER_SIM_OBJECT("Sinic", Device)
/* namespace Sinic */ }