2eff368dd0
arch/alpha/ev5.cc: Commented out the intr_post function since it's not used. If this really -is- needed, it should be moved into the fault class. arch/alpha/faults.cc: arch/alpha/faults.hh: Moved the fault invocation code into the fault class fully, and got rid of the need for isA. cpu/exec_context.cc: cpu/exec_context.hh: Removed the trap function from the ExecContext. The faults will execute normally in full system mode, but always panic in syscall emulation mode. cpu/ozone/cpu.hh: cpu/simple/cpu.hh: Changed the execution context executing a fault to a fault executing on the execution context. sim/faults.cc: If not in full system mode, trying to invoke a fault causes a panic. sim/faults.hh: Removed the isA function. --HG-- extra : convert_revision : 894dc8f0755c8efc4b7ef5a09fb2cf7373042395
626 lines
16 KiB
C++
626 lines
16 KiB
C++
/*
|
|
* Copyright (c) 2005 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __CPU_OOO_CPU_OOO_CPU_HH__
|
|
#define __CPU_OOO_CPU_OOO_CPU_HH__
|
|
|
|
#include "base/statistics.hh"
|
|
#include "config/full_system.hh"
|
|
#include "cpu/base.hh"
|
|
#include "cpu/exec_context.hh"
|
|
#include "encumbered/cpu/full/fu_pool.hh"
|
|
#include "cpu/ooo_cpu/ea_list.hh"
|
|
#include "cpu/pc_event.hh"
|
|
#include "cpu/static_inst.hh"
|
|
#include "mem/mem_interface.hh"
|
|
#include "sim/eventq.hh"
|
|
|
|
// forward declarations
|
|
#if FULL_SYSTEM
|
|
class Processor;
|
|
class AlphaITB;
|
|
class AlphaDTB;
|
|
class PhysicalMemory;
|
|
|
|
class RemoteGDB;
|
|
class GDBListener;
|
|
|
|
#else
|
|
|
|
class Process;
|
|
|
|
#endif // FULL_SYSTEM
|
|
|
|
class Checkpoint;
|
|
class MemInterface;
|
|
|
|
namespace Trace {
|
|
class InstRecord;
|
|
}
|
|
|
|
/**
|
|
* Declaration of Out-of-Order CPU class. Basically it is a SimpleCPU with
|
|
* simple out-of-order capabilities added to it. It is still a 1 CPI machine
|
|
* (?), but is capable of handling cache misses. Basically it models having
|
|
* a ROB/IQ by only allowing a certain amount of instructions to execute while
|
|
* the cache miss is outstanding.
|
|
*/
|
|
|
|
template <class Impl>
|
|
class OoOCPU : public BaseCPU
|
|
{
|
|
private:
|
|
typedef typename Impl::DynInst DynInst;
|
|
typedef typename Impl::DynInstPtr DynInstPtr;
|
|
|
|
public:
|
|
// main simulation loop (one cycle)
|
|
void tick();
|
|
|
|
private:
|
|
struct TickEvent : public Event
|
|
{
|
|
OoOCPU *cpu;
|
|
int width;
|
|
|
|
TickEvent(OoOCPU *c, int w);
|
|
void process();
|
|
const char *description();
|
|
};
|
|
|
|
TickEvent tickEvent;
|
|
|
|
/// Schedule tick event, regardless of its current state.
|
|
void scheduleTickEvent(int delay)
|
|
{
|
|
if (tickEvent.squashed())
|
|
tickEvent.reschedule(curTick + delay);
|
|
else if (!tickEvent.scheduled())
|
|
tickEvent.schedule(curTick + delay);
|
|
}
|
|
|
|
/// Unschedule tick event, regardless of its current state.
|
|
void unscheduleTickEvent()
|
|
{
|
|
if (tickEvent.scheduled())
|
|
tickEvent.squash();
|
|
}
|
|
|
|
private:
|
|
Trace::InstRecord *traceData;
|
|
|
|
template<typename T>
|
|
void trace_data(T data);
|
|
|
|
public:
|
|
//
|
|
enum Status {
|
|
Running,
|
|
Idle,
|
|
IcacheMiss,
|
|
IcacheMissComplete,
|
|
DcacheMissStall,
|
|
SwitchedOut
|
|
};
|
|
|
|
private:
|
|
Status _status;
|
|
|
|
public:
|
|
void post_interrupt(int int_num, int index);
|
|
|
|
void zero_fill_64(Addr addr) {
|
|
static int warned = 0;
|
|
if (!warned) {
|
|
warn ("WH64 is not implemented");
|
|
warned = 1;
|
|
}
|
|
};
|
|
|
|
struct Params : public BaseCPU::Params
|
|
{
|
|
MemInterface *icache_interface;
|
|
MemInterface *dcache_interface;
|
|
int width;
|
|
#if FULL_SYSTEM
|
|
AlphaITB *itb;
|
|
AlphaDTB *dtb;
|
|
FunctionalMemory *mem;
|
|
#else
|
|
Process *process;
|
|
#endif
|
|
int issueWidth;
|
|
};
|
|
|
|
OoOCPU(Params *params);
|
|
|
|
virtual ~OoOCPU();
|
|
|
|
void init();
|
|
|
|
private:
|
|
void copyFromXC();
|
|
|
|
public:
|
|
// execution context
|
|
ExecContext *xc;
|
|
|
|
void switchOut();
|
|
void takeOverFrom(BaseCPU *oldCPU);
|
|
|
|
#if FULL_SYSTEM
|
|
Addr dbg_vtophys(Addr addr);
|
|
|
|
bool interval_stats;
|
|
#endif
|
|
|
|
// L1 instruction cache
|
|
MemInterface *icacheInterface;
|
|
|
|
// L1 data cache
|
|
MemInterface *dcacheInterface;
|
|
|
|
FuncUnitPool *fuPool;
|
|
|
|
// Refcounted pointer to the one memory request.
|
|
MemReqPtr cacheMemReq;
|
|
|
|
class ICacheCompletionEvent : public Event
|
|
{
|
|
private:
|
|
OoOCPU *cpu;
|
|
|
|
public:
|
|
ICacheCompletionEvent(OoOCPU *_cpu);
|
|
|
|
virtual void process();
|
|
virtual const char *description();
|
|
};
|
|
|
|
// Will need to create a cache completion event upon any memory miss.
|
|
ICacheCompletionEvent iCacheCompletionEvent;
|
|
|
|
class DCacheCompletionEvent;
|
|
|
|
typedef typename
|
|
std::list<DCacheCompletionEvent>::iterator DCacheCompEventIt;
|
|
|
|
class DCacheCompletionEvent : public Event
|
|
{
|
|
private:
|
|
OoOCPU *cpu;
|
|
DynInstPtr inst;
|
|
DCacheCompEventIt dcceIt;
|
|
|
|
public:
|
|
DCacheCompletionEvent(OoOCPU *_cpu, DynInstPtr &_inst,
|
|
DCacheCompEventIt &_dcceIt);
|
|
|
|
virtual void process();
|
|
virtual const char *description();
|
|
};
|
|
|
|
friend class DCacheCompletionEvent;
|
|
|
|
protected:
|
|
std::list<DCacheCompletionEvent> dCacheCompList;
|
|
DCacheCompEventIt dcceIt;
|
|
|
|
private:
|
|
Status status() const { return _status; }
|
|
|
|
virtual void activateContext(int thread_num, int delay);
|
|
virtual void suspendContext(int thread_num);
|
|
virtual void deallocateContext(int thread_num);
|
|
virtual void haltContext(int thread_num);
|
|
|
|
// statistics
|
|
virtual void regStats();
|
|
virtual void resetStats();
|
|
|
|
// number of simulated instructions
|
|
Counter numInst;
|
|
Counter startNumInst;
|
|
Stats::Scalar<> numInsts;
|
|
|
|
virtual Counter totalInstructions() const
|
|
{
|
|
return numInst - startNumInst;
|
|
}
|
|
|
|
// number of simulated memory references
|
|
Stats::Scalar<> numMemRefs;
|
|
|
|
// number of simulated loads
|
|
Counter numLoad;
|
|
Counter startNumLoad;
|
|
|
|
// number of idle cycles
|
|
Stats::Average<> notIdleFraction;
|
|
Stats::Formula idleFraction;
|
|
|
|
// number of cycles stalled for I-cache misses
|
|
Stats::Scalar<> icacheStallCycles;
|
|
Counter lastIcacheStall;
|
|
|
|
// number of cycles stalled for D-cache misses
|
|
Stats::Scalar<> dcacheStallCycles;
|
|
Counter lastDcacheStall;
|
|
|
|
void processICacheCompletion();
|
|
|
|
public:
|
|
|
|
virtual void serialize(std::ostream &os);
|
|
virtual void unserialize(Checkpoint *cp, const std::string §ion);
|
|
|
|
#if FULL_SYSTEM
|
|
bool validInstAddr(Addr addr) { return true; }
|
|
bool validDataAddr(Addr addr) { return true; }
|
|
int getInstAsid() { return xc->regs.instAsid(); }
|
|
int getDataAsid() { return xc->regs.dataAsid(); }
|
|
|
|
Fault translateInstReq(MemReqPtr &req)
|
|
{
|
|
return itb->translate(req);
|
|
}
|
|
|
|
Fault translateDataReadReq(MemReqPtr &req)
|
|
{
|
|
return dtb->translate(req, false);
|
|
}
|
|
|
|
Fault translateDataWriteReq(MemReqPtr &req)
|
|
{
|
|
return dtb->translate(req, true);
|
|
}
|
|
|
|
#else
|
|
bool validInstAddr(Addr addr)
|
|
{ return xc->validInstAddr(addr); }
|
|
|
|
bool validDataAddr(Addr addr)
|
|
{ return xc->validDataAddr(addr); }
|
|
|
|
int getInstAsid() { return xc->asid; }
|
|
int getDataAsid() { return xc->asid; }
|
|
|
|
Fault dummyTranslation(MemReqPtr &req)
|
|
{
|
|
#if 0
|
|
assert((req->vaddr >> 48 & 0xffff) == 0);
|
|
#endif
|
|
|
|
// put the asid in the upper 16 bits of the paddr
|
|
req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
|
|
req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
|
|
return NoFault;
|
|
}
|
|
Fault translateInstReq(MemReqPtr &req)
|
|
{
|
|
return dummyTranslation(req);
|
|
}
|
|
Fault translateDataReadReq(MemReqPtr &req)
|
|
{
|
|
return dummyTranslation(req);
|
|
}
|
|
Fault translateDataWriteReq(MemReqPtr &req)
|
|
{
|
|
return dummyTranslation(req);
|
|
}
|
|
|
|
#endif
|
|
|
|
template <class T>
|
|
Fault read(Addr addr, T &data, unsigned flags, DynInstPtr inst);
|
|
|
|
template <class T>
|
|
Fault write(T data, Addr addr, unsigned flags,
|
|
uint64_t *res, DynInstPtr inst);
|
|
|
|
void prefetch(Addr addr, unsigned flags)
|
|
{
|
|
// need to do this...
|
|
}
|
|
|
|
void writeHint(Addr addr, int size, unsigned flags)
|
|
{
|
|
// need to do this...
|
|
}
|
|
|
|
Fault copySrcTranslate(Addr src);
|
|
|
|
Fault copy(Addr dest);
|
|
|
|
private:
|
|
bool executeInst(DynInstPtr &inst);
|
|
|
|
void renameInst(DynInstPtr &inst);
|
|
|
|
void addInst(DynInstPtr &inst);
|
|
|
|
void commitHeadInst();
|
|
|
|
bool getOneInst();
|
|
|
|
Fault fetchCacheLine();
|
|
|
|
InstSeqNum getAndIncrementInstSeq();
|
|
|
|
bool ambigMemAddr;
|
|
|
|
private:
|
|
InstSeqNum globalSeqNum;
|
|
|
|
DynInstPtr renameTable[TheISA::TotalNumRegs];
|
|
DynInstPtr commitTable[TheISA::TotalNumRegs];
|
|
|
|
// Might need a table of the shadow registers as well.
|
|
#if FULL_SYSTEM
|
|
DynInstPtr palShadowTable[TheISA::NumIntRegs];
|
|
#endif
|
|
|
|
public:
|
|
// The register accessor methods provide the index of the
|
|
// instruction's operand (e.g., 0 or 1), not the architectural
|
|
// register index, to simplify the implementation of register
|
|
// renaming. We find the architectural register index by indexing
|
|
// into the instruction's own operand index table. Note that a
|
|
// raw pointer to the StaticInst is provided instead of a
|
|
// ref-counted StaticInstPtr to redice overhead. This is fine as
|
|
// long as these methods don't copy the pointer into any long-term
|
|
// storage (which is pretty hard to imagine they would have reason
|
|
// to do).
|
|
|
|
// In the OoO case these shouldn't read from the XC but rather from the
|
|
// rename table of DynInsts. Also these likely shouldn't be called very
|
|
// often, other than when adding things into the xc during say a syscall.
|
|
|
|
uint64_t readIntReg(StaticInst *si, int idx)
|
|
{
|
|
return xc->readIntReg(si->srcRegIdx(idx));
|
|
}
|
|
|
|
float readFloatRegSingle(StaticInst *si, int idx)
|
|
{
|
|
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
|
|
return xc->readFloatRegSingle(reg_idx);
|
|
}
|
|
|
|
double readFloatRegDouble(StaticInst *si, int idx)
|
|
{
|
|
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
|
|
return xc->readFloatRegDouble(reg_idx);
|
|
}
|
|
|
|
uint64_t readFloatRegInt(StaticInst *si, int idx)
|
|
{
|
|
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
|
|
return xc->readFloatRegInt(reg_idx);
|
|
}
|
|
|
|
void setIntReg(StaticInst *si, int idx, uint64_t val)
|
|
{
|
|
xc->setIntReg(si->destRegIdx(idx), val);
|
|
}
|
|
|
|
void setFloatRegSingle(StaticInst *si, int idx, float val)
|
|
{
|
|
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
|
|
xc->setFloatRegSingle(reg_idx, val);
|
|
}
|
|
|
|
void setFloatRegDouble(StaticInst *si, int idx, double val)
|
|
{
|
|
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
|
|
xc->setFloatRegDouble(reg_idx, val);
|
|
}
|
|
|
|
void setFloatRegInt(StaticInst *si, int idx, uint64_t val)
|
|
{
|
|
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
|
|
xc->setFloatRegInt(reg_idx, val);
|
|
}
|
|
|
|
uint64_t readPC() { return PC; }
|
|
void setNextPC(Addr val) { nextPC = val; }
|
|
|
|
private:
|
|
Addr PC;
|
|
Addr nextPC;
|
|
|
|
unsigned issueWidth;
|
|
|
|
bool fetchRedirExcp;
|
|
bool fetchRedirBranch;
|
|
|
|
/** Mask to get a cache block's address. */
|
|
Addr cacheBlkMask;
|
|
|
|
unsigned cacheBlkSize;
|
|
|
|
Addr cacheBlkPC;
|
|
|
|
/** The cache line being fetched. */
|
|
uint8_t *cacheData;
|
|
|
|
protected:
|
|
bool cacheBlkValid;
|
|
|
|
private:
|
|
|
|
// Align an address (typically a PC) to the start of an I-cache block.
|
|
// We fold in the PISA 64- to 32-bit conversion here as well.
|
|
Addr icacheBlockAlignPC(Addr addr)
|
|
{
|
|
addr = TheISA::realPCToFetchPC(addr);
|
|
return (addr & ~(cacheBlkMask));
|
|
}
|
|
|
|
unsigned instSize;
|
|
|
|
// ROB tracking stuff.
|
|
DynInstPtr robHeadPtr;
|
|
DynInstPtr robTailPtr;
|
|
unsigned robSize;
|
|
unsigned robInsts;
|
|
|
|
// List of outstanding EA instructions.
|
|
protected:
|
|
EAList eaList;
|
|
|
|
public:
|
|
void branchToTarget(Addr val)
|
|
{
|
|
if (!fetchRedirExcp) {
|
|
fetchRedirBranch = true;
|
|
PC = val;
|
|
}
|
|
}
|
|
|
|
// ISA stuff:
|
|
uint64_t readUniq() { return xc->readUniq(); }
|
|
void setUniq(uint64_t val) { xc->setUniq(val); }
|
|
|
|
uint64_t readFpcr() { return xc->readFpcr(); }
|
|
void setFpcr(uint64_t val) { xc->setFpcr(val); }
|
|
|
|
#if FULL_SYSTEM
|
|
uint64_t readIpr(int idx, Fault &fault) { return xc->readIpr(idx, fault); }
|
|
Fault setIpr(int idx, uint64_t val) { return xc->setIpr(idx, val); }
|
|
Fault hwrei() { return xc->hwrei(); }
|
|
int readIntrFlag() { return xc->readIntrFlag(); }
|
|
void setIntrFlag(int val) { xc->setIntrFlag(val); }
|
|
bool inPalMode() { return xc->inPalMode(); }
|
|
void trap(Fault fault) { fault->invoke(xc); }
|
|
bool simPalCheck(int palFunc) { return xc->simPalCheck(palFunc); }
|
|
#else
|
|
void syscall() { xc->syscall(); }
|
|
#endif
|
|
|
|
ExecContext *xcBase() { return xc; }
|
|
};
|
|
|
|
|
|
// precise architected memory state accessor macros
|
|
template <class Impl>
|
|
template <class T>
|
|
Fault
|
|
OoOCPU<Impl>::read(Addr addr, T &data, unsigned flags, DynInstPtr inst)
|
|
{
|
|
MemReqPtr readReq = new MemReq();
|
|
readReq->xc = xc;
|
|
readReq->asid = 0;
|
|
readReq->data = new uint8_t[64];
|
|
|
|
readReq->reset(addr, sizeof(T), flags);
|
|
|
|
// translate to physical address - This might be an ISA impl call
|
|
Fault fault = translateDataReadReq(readReq);
|
|
|
|
// do functional access
|
|
if (fault == NoFault)
|
|
fault = xc->mem->read(readReq, data);
|
|
#if 0
|
|
if (traceData) {
|
|
traceData->setAddr(addr);
|
|
if (fault == NoFault)
|
|
traceData->setData(data);
|
|
}
|
|
#endif
|
|
|
|
// if we have a cache, do cache access too
|
|
if (fault == NoFault && dcacheInterface) {
|
|
readReq->cmd = Read;
|
|
readReq->completionEvent = NULL;
|
|
readReq->time = curTick;
|
|
/*MemAccessResult result = */dcacheInterface->access(readReq);
|
|
|
|
if (dcacheInterface->doEvents()) {
|
|
readReq->completionEvent = new DCacheCompletionEvent(this, inst,
|
|
dcceIt);
|
|
}
|
|
}
|
|
|
|
if (!dcacheInterface && (readReq->flags & UNCACHEABLE))
|
|
recordEvent("Uncached Read");
|
|
|
|
return fault;
|
|
}
|
|
|
|
template <class Impl>
|
|
template <class T>
|
|
Fault
|
|
OoOCPU<Impl>::write(T data, Addr addr, unsigned flags,
|
|
uint64_t *res, DynInstPtr inst)
|
|
{
|
|
MemReqPtr writeReq = new MemReq();
|
|
writeReq->xc = xc;
|
|
writeReq->asid = 0;
|
|
writeReq->data = new uint8_t[64];
|
|
|
|
#if 0
|
|
if (traceData) {
|
|
traceData->setAddr(addr);
|
|
traceData->setData(data);
|
|
}
|
|
#endif
|
|
|
|
writeReq->reset(addr, sizeof(T), flags);
|
|
|
|
// translate to physical address
|
|
Fault fault = translateDataWriteReq(writeReq);
|
|
|
|
// do functional access
|
|
if (fault == NoFault)
|
|
fault = xc->write(writeReq, data);
|
|
|
|
if (fault == NoFault && dcacheInterface) {
|
|
writeReq->cmd = Write;
|
|
memcpy(writeReq->data,(uint8_t *)&data,writeReq->size);
|
|
writeReq->completionEvent = NULL;
|
|
writeReq->time = curTick;
|
|
/*MemAccessResult result = */dcacheInterface->access(writeReq);
|
|
|
|
if (dcacheInterface->doEvents()) {
|
|
writeReq->completionEvent = new DCacheCompletionEvent(this, inst,
|
|
dcceIt);
|
|
}
|
|
}
|
|
|
|
if (res && (fault == NoFault))
|
|
*res = writeReq->result;
|
|
|
|
if (!dcacheInterface && (writeReq->flags & UNCACHEABLE))
|
|
recordEvent("Uncached Write");
|
|
|
|
return fault;
|
|
}
|
|
|
|
|
|
#endif // __CPU_OOO_CPU_OOO_CPU_HH__
|