gem5/ext/dsent/model/electrical/MuxTreeSerializer.cc
Nilay Vaish c1aecc05e6 ext: dsent: adds a Python interface, drops C++ one
This patch extensively modifies DSENT so that it can be accessed using Python.
To access the Python interface, DSENT needs to compiled as a shared library.
For this purpose a CMakeLists.txt file has been added.  Some of the code that
is not required is being removed.
2014-10-11 16:16:00 -05:00

247 lines
12 KiB
C++

/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/electrical/MuxTreeSerializer.h"
#include <cmath>
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/std_cells/StdCellLib.h"
#include "model/std_cells/StdCell.h"
#include "model/electrical/Multiplexer.h"
#include "model/timing_graph/ElectricalNet.h"
namespace DSENT
{
using std::ceil;
MuxTreeSerializer::MuxTreeSerializer(const String& instance_name_, const TechModel* tech_model_)
: ElectricalModel(instance_name_, tech_model_)
{
initParameters();
initProperties();
}
MuxTreeSerializer::~MuxTreeSerializer()
{}
void MuxTreeSerializer::initParameters()
{
addParameterName("InDataRate");
addParameterName("OutDataRate");
addParameterName("InBits"); //Output width will just be input width / serialization ratio
}
void MuxTreeSerializer::initProperties()
{
return;
}
MuxTreeSerializer* MuxTreeSerializer::clone() const
{
// TODO
return NULL;
}
void MuxTreeSerializer::constructModel()
{
// Get parameters
double in_data_rate = getParameter("InDataRate").toDouble();
double out_data_rate = getParameter("OutDataRate").toDouble();
unsigned int in_bits = getParameter("InBits").toUInt();
// Calculate serialization ratio
unsigned int serialization_ratio = (unsigned int) floor(out_data_rate / in_data_rate);
ASSERT(serialization_ratio == out_data_rate / in_data_rate,
"[Error] " + getInstanceName() + " -> Cannot have non-integer serialization ratios " +
"(" + (String) (in_data_rate / out_data_rate) + ")!");
// Calculate output width
ASSERT(floor((double) in_bits / serialization_ratio) == (double) in_bits / serialization_ratio,
"[Error] " + getInstanceName() + " -> Input width (" + (String) in_bits + ") " +
"must be a multiple of the serialization ratio (" + (String) serialization_ratio + ")!");
unsigned int output_bits = in_bits / serialization_ratio;
// Calculate the number of multiplexer stages
unsigned int number_stages = (unsigned int)ceil(log2((double) serialization_ratio));
// Store calculated values
getGenProperties()->set("SerializationRatio", serialization_ratio);
getGenProperties()->set("OutputBits", output_bits);
getGenProperties()->set("NumberStages", number_stages);
// Create ports
createInputPort("In", makeNetIndex(0, in_bits-1));
createInputPort("OutCK");
createOutputPort("Out", makeNetIndex(0, output_bits-1));
//Create energy, power, and area results
createElectricalResults();
createElectricalEventResult("Serialize");
getEventInfo("Serialize")->setTransitionInfo("OutCK", TransitionInfo(0.0, (double) serialization_ratio / 2.0, 0.0));
//Set conditions during idle state
getEventInfo("Idle")->setStaticTransitionInfos();
getEventInfo("Idle")->setTransitionInfo("OutCK", TransitionInfo(0.0, (double) serialization_ratio / 2.0, 0.0));
// Mark OutCK as a false path (since timing tool will do strange stuff due to all the clock divides and stuff)
getNet("OutCK")->setFalsePath(true);
// Create mux-tree instance
if (serialization_ratio == 1)
{
// No need to do anything, hohoho
assign("Out", "In");
}
else
{
// Create multiplexer
String mux_tree_name = "MuxTree";
ElectricalModel* mux_tree = new Multiplexer(mux_tree_name, getTechModel());
mux_tree->setParameter("NumberInputs", serialization_ratio);
mux_tree->setParameter("NumberBits", output_bits);
mux_tree->setParameter("BitDuplicate", "TRUE");
mux_tree->construct();
// Create nets
if (number_stages > 1)
createNet("MuxSel_b", makeNetIndex(0, number_stages-2));
createNet("MuxSel", makeNetIndex(0, number_stages-1));
assign("MuxSel", makeNetIndex(number_stages-1), "OutCK");
// Create reindexed net (to help out with indexing)
createNet("InTmp", makeNetIndex(0, in_bits-1));
for (unsigned int i = 0; i < serialization_ratio; ++i)
for (unsigned int j = 0; j < output_bits; ++j)
assign("InTmp", makeNetIndex(i*output_bits+j), "In", makeNetIndex(j*serialization_ratio+i));
// Connect ports
for (unsigned int i = 0; i < serialization_ratio; ++i)
portConnect(mux_tree, "In" + (String) i, "InTmp", makeNetIndex(i*output_bits, (i+1)*output_bits-1));
for (unsigned int i = 0; i < number_stages; ++i)
portConnect(mux_tree, "Sel" + (String) i, "MuxSel", makeNetIndex(i));
portConnect(mux_tree, "Out", "Out");
// Add subinstance and events
addSubInstances(mux_tree, 1.0);
addElectricalSubResults(mux_tree, 1.0);
// Add serialize event/power
getEventResult("Serialize")->addSubResult(mux_tree->getEventResult("Mux"), mux_tree_name, 1.0);
// Create clock dividers (assumes power of 2...), don't need divider for fastest output stage
for (unsigned int i = 0; i < number_stages - 1; ++i)
{
// Clk dividing registers
const String& clk_div_dff_name = "ClkDivDFF_" + (String) i;
StdCell* clk_div_dff = getTechModel()->getStdCellLib()->createStdCell("DFFQ", clk_div_dff_name);
clk_div_dff->construct();
portConnect(clk_div_dff, "D", "MuxSel_b", makeNetIndex(i));
portConnect(clk_div_dff, "Q", "MuxSel", makeNetIndex(i));
portConnect(clk_div_dff, "CK", "MuxSel", makeNetIndex(i+1));
addSubInstances(clk_div_dff, 1.0);
addElectricalSubResults(clk_div_dff, 1.0);
// Inversions
const String& clk_div_inv_name = "ClkDivINV_" + (String) i;
StdCell* clk_div_inv = getTechModel()->getStdCellLib()->createStdCell("INV", clk_div_inv_name);
clk_div_inv->construct();
portConnect(clk_div_inv, "A", "MuxSel", makeNetIndex(i));
portConnect(clk_div_inv, "Y", "MuxSel_b", makeNetIndex(i));
addSubInstances(clk_div_inv, 1.0);
addElectricalSubResults(clk_div_inv, 1.0);
getEventResult("Serialize")->addSubResult(clk_div_dff->getEventResult("CK"), clk_div_dff_name, 1.0);
getEventResult("Serialize")->addSubResult(clk_div_dff->getEventResult("DFFD"), clk_div_dff_name, 1.0);
getEventResult("Serialize")->addSubResult(clk_div_dff->getEventResult("DFFQ"), clk_div_dff_name, 1.0);
getEventResult("Serialize")->addSubResult(clk_div_inv->getEventResult("INV"), clk_div_inv_name, 1.0);
}
}
return;
}
void MuxTreeSerializer::propagateTransitionInfo()
{
// Get some generated properties
const unsigned int serialization_ratio = getGenProperties()->get("SerializationRatio");
const unsigned int number_stages = getGenProperties()->get("NumberStages");
// Set transition info of the mux tree and clock divide DFF
if (serialization_ratio == 1)
{
// If no serialization, then just propagate input transition info to output port
propagatePortTransitionInfo("Out", "In");
}
else
{
// Propagate transition probabilities to the mux tree
ElectricalModel* mux_tree = (ElectricalModel*) getSubInstance("MuxTree");
// All input ports of the mux have the same probability
for (unsigned int i = 0; i < serialization_ratio; ++i)
propagatePortTransitionInfo(mux_tree, "In" + (String) i, "In");
// Connect last stage of the mux
propagatePortTransitionInfo(mux_tree, "Sel" + (String) (number_stages - 1), "OutCK");
// Keep track of the last clock divider
ElectricalModel* last_clk_div_dff = NULL;
// Find P01 of OutCK
double last_P01_CK = getInputPort("OutCK")->getTransitionInfo().getNumberTransitions01();
// Start from the last stage (since it is the stage with no clock division)
for (unsigned int i = 0; i < number_stages - 1; ++i)
{
const String& clk_div_dff_name = "ClkDivDFF_" + (String) (number_stages - i - 2);
const String& clk_div_inv_name = "ClkDivINV_" + (String) (number_stages - i - 2);
ElectricalModel* clk_div_dff = (ElectricalModel*) getSubInstance(clk_div_dff_name);
if (last_clk_div_dff == NULL)
propagatePortTransitionInfo(clk_div_dff, "CK", "OutCK");
else
propagatePortTransitionInfo(clk_div_dff, "CK", last_clk_div_dff, "Q");
// Since it is a clock divider, P01 is D and Q are simply half the P01 of D and Q of
// the input clock
if (last_P01_CK != 0) clk_div_dff->getInputPort("D")->setTransitionInfo(TransitionInfo(0.0, last_P01_CK * 0.5, 0.0));
else clk_div_dff->getInputPort("D")->setTransitionInfo(TransitionInfo(0.5, 0.0, 0.5));
clk_div_dff->use();
ElectricalModel* clk_div_inv = (ElectricalModel*) getSubInstance(clk_div_inv_name);
propagatePortTransitionInfo(clk_div_inv, "A", clk_div_dff, "Q");
clk_div_inv->use();
// Connect select port of the mux
propagatePortTransitionInfo(mux_tree, "Sel" + (String) (number_stages - i - 2), clk_div_dff, "Q");
// Clk divide by 2;
last_P01_CK = last_P01_CK * 0.5;
// Remember the last clk div DFF
last_clk_div_dff = clk_div_dff;
}
mux_tree->use();
// Set output transition info to be the output transition info of the mux tree
propagatePortTransitionInfo("Out", mux_tree, "Out");
}
return;
}
} // namespace DSENT