gem5/mem/physical.cc
Ron Dreslinski b403abfbdb Move the port from base memory object into the physical memory object.
The Memory is now a pure virtual base class for all memory type objects (DRAM, physical).
We should consider renaming MemObject to something more meaningful to represent it is for all memory heirarchy objects, perhaps MemHeirObject?

mem/physical.cc:
mem/physical.hh:
    Move the port from the base class into the actual object.

--HG--
extra : convert_revision : b7754ee7b90fd8f816f9876dce374c1d43c7e34b
2006-02-22 17:29:04 -05:00

394 lines
9.9 KiB
C++

/*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/types.h>
#include <sys/mman.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <zlib.h>
#include <cstdio>
#include <iostream>
#include <string>
#include "base/misc.hh"
#include "config/full_system.hh"
#if FULL_SYSTEM
#include "mem/functional/memory_control.hh"
#endif
#include "mem/physical.hh"
#include "sim/host.hh"
#include "sim/builder.hh"
#include "targetarch/isa_traits.hh"
using namespace std;
#if FULL_SYSTEM
PhysicalMemory::PhysicalMemory(const string &n, Range<Addr> range,
MemoryController *mmu, const std::string &fname)
: Memory(n), base_addr(range.start), pmem_size(range.size()),
pmem_addr(NULL)
{
if (pmem_size % TheISA::PageBytes != 0)
panic("Memory Size not divisible by page size\n");
mmu->add_child(this, range);
int fd = -1;
if (!fname.empty()) {
fd = open(fname.c_str(), O_RDWR | O_CREAT, 0644);
if (fd == -1) {
perror("open");
fatal("Could not open physical memory file: %s\n", fname);
}
ftruncate(fd, pmem_size);
}
int map_flags = (fd == -1) ? (MAP_ANON | MAP_PRIVATE) : MAP_SHARED;
pmem_addr = (uint8_t *)mmap(NULL, pmem_size, PROT_READ | PROT_WRITE,
map_flags, fd, 0);
if (fd != -1)
close(fd);
if (pmem_addr == (void *)MAP_FAILED) {
perror("mmap");
fatal("Could not mmap!\n");
}
page_ptr = 0;
}
#endif
PhysicalMemory::PhysicalMemory(const string &n)
: Memory(n), memoryPort(this), base_addr(0), pmem_addr(NULL)
{
// Hardcoded to 128 MB for now.
pmem_size = 1 << 27;
if (pmem_size % TheISA::PageBytes != 0)
panic("Memory Size not divisible by page size\n");
int map_flags = MAP_ANON | MAP_PRIVATE;
pmem_addr = (uint8_t *)mmap(NULL, pmem_size, PROT_READ | PROT_WRITE,
map_flags, -1, 0);
if (pmem_addr == (void *)MAP_FAILED) {
perror("mmap");
fatal("Could not mmap!\n");
}
page_ptr = 0;
}
PhysicalMemory::~PhysicalMemory()
{
if (pmem_addr)
munmap(pmem_addr, pmem_size);
}
Addr
PhysicalMemory::new_page()
{
Addr return_addr = page_ptr << LogVMPageSize;
return_addr += base_addr;
++page_ptr;
return return_addr;
}
//
// little helper for better prot_* error messages
//
void
PhysicalMemory::prot_access_error(Addr addr, int size, const string &func)
{
panic("invalid physical memory access!\n"
"%s: %s(addr=%#x, size=%d) out of range (max=%#x)\n",
name(), func, addr, size, pmem_size - 1);
}
void
PhysicalMemory::prot_read(Addr addr, uint8_t *p, int size)
{
if (addr + size >= pmem_size)
prot_access_error(addr, size, "prot_read");
memcpy(p, pmem_addr + addr - base_addr, size);
}
void
PhysicalMemory::prot_write(Addr addr, const uint8_t *p, int size)
{
if (addr + size >= pmem_size)
prot_access_error(addr, size, "prot_write");
memcpy(pmem_addr + addr - base_addr, p, size);
}
void
PhysicalMemory::prot_memset(Addr addr, uint8_t val, int size)
{
if (addr + size >= pmem_size)
prot_access_error(addr, size, "prot_memset");
memset(pmem_addr + addr - base_addr, val, size);
}
int
PhysicalMemory::deviceBlockSize()
{
//Can accept anysize request
return 0;
}
bool
PhysicalMemory::doTimingAccess (Packet &pkt)
{
doFunctionalAccess(pkt);
//Schedule a response event at curTick + lat;
return true;
}
Tick
PhysicalMemory::doAtomicAccess(Packet &pkt)
{
doFunctionalAccess(pkt);
return curTick + lat;
}
void
PhysicalMemory::doFunctionalAccess(Packet &pkt)
{
switch (pkt.cmd) {
case Read:
prot_read(pkt.addr, (uint8_t *)pkt.data, pkt.size);
case Write:
prot_write(pkt.addr, (uint8_t *)pkt.data, pkt.size);
default:
panic("unimplemented");
}
}
Port *
PhysicalMemory::getPort(const char *if_name)
{
return &memoryPort;
}
void
PhysicalMemory::recvStatusChange(Port::Status status)
{
panic("??");
}
PhysicalMemory::MemoryPort::MemoryPort(PhysicalMemory *_memory)
: memory(_memory)
{ }
void
PhysicalMemory::MemoryPort::recvStatusChange(Port::Status status)
{
memory->recvStatusChange(status);
}
void
PhysicalMemory::MemoryPort::getDeviceAddressRanges(AddrRangeList &range_list,
bool &owner)
{
panic("??");
}
bool
PhysicalMemory::MemoryPort::recvTiming(Packet &pkt)
{
return memory->doTimingAccess(pkt);
}
Tick
PhysicalMemory::MemoryPort::recvAtomic(Packet &pkt)
{
return memory->doAtomicAccess(pkt);
}
void
PhysicalMemory::MemoryPort::recvFunctional(Packet &pkt)
{
memory->doFunctionalAccess(pkt);
}
void
PhysicalMemory::serialize(ostream &os)
{
gzFile compressedMem;
string filename = name() + ".physmem";
SERIALIZE_SCALAR(pmem_size);
SERIALIZE_SCALAR(filename);
// write memory file
string thefile = Checkpoint::dir() + "/" + filename.c_str();
int fd = creat(thefile.c_str(), 0664);
if (fd < 0) {
perror("creat");
fatal("Can't open physical memory checkpoint file '%s'\n", filename);
}
compressedMem = gzdopen(fd, "wb");
if (compressedMem == NULL)
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
if (gzwrite(compressedMem, pmem_addr, pmem_size) != pmem_size) {
fatal("Write failed on physical memory checkpoint file '%s'\n",
filename);
}
if (gzclose(compressedMem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
}
void
PhysicalMemory::unserialize(Checkpoint *cp, const string &section)
{
gzFile compressedMem;
long *tempPage;
long *pmem_current;
uint64_t curSize;
uint32_t bytesRead;
const int chunkSize = 16384;
// unmap file that was mmaped in the constructor
munmap(pmem_addr, pmem_size);
string filename;
UNSERIALIZE_SCALAR(pmem_size);
UNSERIALIZE_SCALAR(filename);
filename = cp->cptDir + "/" + filename;
// mmap memoryfile
int fd = open(filename.c_str(), O_RDONLY);
if (fd < 0) {
perror("open");
fatal("Can't open physical memory checkpoint file '%s'", filename);
}
compressedMem = gzdopen(fd, "rb");
if (compressedMem == NULL)
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
pmem_addr = (uint8_t *)mmap(NULL, pmem_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
if (pmem_addr == (void *)MAP_FAILED) {
perror("mmap");
fatal("Could not mmap physical memory!\n");
}
curSize = 0;
tempPage = (long*)malloc(chunkSize);
if (tempPage == NULL)
fatal("Unable to malloc memory to read file %s\n", filename);
/* Only copy bytes that are non-zero, so we don't give the VM system hell */
while (curSize < pmem_size) {
bytesRead = gzread(compressedMem, tempPage, chunkSize);
if (bytesRead != chunkSize && bytesRead != pmem_size - curSize)
fatal("Read failed on physical memory checkpoint file '%s'"
" got %d bytes, expected %d or %d bytes\n",
filename, bytesRead, chunkSize, pmem_size-curSize);
assert(bytesRead % sizeof(long) == 0);
for (int x = 0; x < bytesRead/sizeof(long); x++)
{
if (*(tempPage+x) != 0) {
pmem_current = (long*)(pmem_addr + curSize + x * sizeof(long));
*pmem_current = *(tempPage+x);
}
}
curSize += bytesRead;
}
free(tempPage);
if (gzclose(compressedMem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
}
BEGIN_DECLARE_SIM_OBJECT_PARAMS(PhysicalMemory)
Param<string> file;
#if FULL_SYSTEM
SimObjectParam<MemoryController *> mmu;
#endif
Param<Range<Addr> > range;
END_DECLARE_SIM_OBJECT_PARAMS(PhysicalMemory)
BEGIN_INIT_SIM_OBJECT_PARAMS(PhysicalMemory)
INIT_PARAM_DFLT(file, "memory mapped file", ""),
#if FULL_SYSTEM
INIT_PARAM(mmu, "Memory Controller"),
#endif
INIT_PARAM(range, "Device Address Range")
END_INIT_SIM_OBJECT_PARAMS(PhysicalMemory)
CREATE_SIM_OBJECT(PhysicalMemory)
{
#if FULL_SYSTEM
if (mmu) {
return new PhysicalMemory(getInstanceName(), range, mmu, file);
}
#endif
return new PhysicalMemory(getInstanceName());
}
REGISTER_SIM_OBJECT("PhysicalMemory", PhysicalMemory)