gem5/dev/pcidev.cc
Nathan Binkert b031888038 Use parameter structs for initialization so it's easier
to add new devices.  Abstract the Platform more so that
it is unnecessary to know know platform specifics for
interrupting or translating PCI DMA addresses.

dev/ide_ctrl.cc:
    convert to parameter struct for initialization
    use the interrupt functions in the PciDev base class
    convert from tsunami to using platform
    We don't need an interrupt controller here.
dev/ide_ctrl.hh:
    don't use Tsunami, use Platform
    make the IdeDisk a friend so that it can access my plaform
    convert to parameter struct for construction
dev/ide_disk.cc:
    don't use tsunami references, but platform references
dev/ns_gige.cc:
    Convert to parameter struct for initialzation. Use code in
    base class for interrupts so we don't need to know anything
    about the platform. Don't need an IntrControl *.
dev/ns_gige.hh:
    We don't need a Tsunami * anymore
    convert to a parameter struct for construction
dev/pcidev.cc:
    deal with new parameter struct
dev/pcidev.hh:
    - Move all of the configuration parameters into a param struct
    that we can pass into the constructor.
    - Add a Platform * for accessing new generic interrupt post/clear
    and dma address translation fuctions
    - Create functions for posting/clearing interrupts and translating
    dma addresses
dev/platform.cc:
    have default functions that panic on pci calls
dev/platform.hh:
    don't make the pci stuff pure virtual, but rather provide
    default implementations that panic.  Also, add dma address
    translation.
dev/tsunami.cc:
    this-> isn't necessary here.
    add pci address translation
dev/tsunami.hh:
    implement the pciToDma address translation

--HG--
extra : convert_revision : 7db27a2fa1f1bd84704921ec7ca0280b5653c43e
2004-11-13 15:45:22 -05:00

394 lines
15 KiB
C++

/*
* Copyright (c) 2004 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* @file
* A single PCI device configuration space entry.
*/
#include <list>
#include <sstream>
#include <string>
#include <vector>
#include "base/inifile.hh"
#include "base/misc.hh"
#include "base/str.hh" // for to_number
#include "base/trace.hh"
#include "dev/pciareg.h"
#include "dev/pcidev.hh"
#include "dev/pciconfigall.hh"
#include "mem/functional_mem/memory_control.hh"
#include "sim/builder.hh"
#include "sim/param.hh"
#include "sim/universe.hh"
#include "dev/tsunamireg.h"
using namespace std;
PciDev::PciDev(Params *p)
: DmaDevice(p->name), _params(p), plat(p->plat), configData(p->configData)
{
// copy the config data from the PciConfigData object
if (configData) {
memcpy(config.data, configData->config.data, sizeof(config.data));
memcpy(BARSize, configData->BARSize, sizeof(BARSize));
memcpy(BARAddrs, configData->BARAddrs, sizeof(BARAddrs));
} else
panic("NULL pointer to configuration data");
// Setup pointer in config space to point to this entry
if (p->configSpace->deviceExists(p->deviceNum, p->functionNum))
panic("Two PCI devices occuping same dev: %#x func: %#x",
p->deviceNum, p->functionNum);
else
p->configSpace->registerDevice(p->deviceNum, p->functionNum, this);
}
void
PciDev::ReadConfig(int offset, int size, uint8_t *data)
{
switch(size) {
case sizeof(uint32_t):
memcpy((uint8_t*)data, config.data + offset, sizeof(uint32_t));
*(uint32_t*)data = htoa(*(uint32_t*)data);
DPRINTF(PCIDEV,
"read device: %#x function: %#x register: %#x %d bytes: data: %#x\n",
params()->deviceNum, params()->functionNum, offset, size,
*(uint32_t*)(config.data + offset));
break;
case sizeof(uint16_t):
memcpy((uint8_t*)data, config.data + offset, sizeof(uint16_t));
*(uint16_t*)data = htoa(*(uint16_t*)data);
DPRINTF(PCIDEV,
"read device: %#x function: %#x register: %#x %d bytes: data: %#x\n",
params()->deviceNum, params()->functionNum, offset, size,
*(uint16_t*)(config.data + offset));
break;
case sizeof(uint8_t):
memcpy((uint8_t*)data, config.data + offset, sizeof(uint8_t));
DPRINTF(PCIDEV,
"read device: %#x function: %#x register: %#x %d bytes: data: %#x\n",
params()->deviceNum, params()->functionNum, offset, size,
(uint16_t)(*(uint8_t*)(config.data + offset)));
break;
default:
panic("Invalid Read Size");
}
}
void
PciDev::WriteConfig(int offset, int size, uint32_t data)
{
uint32_t barnum;
union {
uint8_t byte_value;
uint16_t half_value;
uint32_t word_value;
};
word_value = data;
DPRINTF(PCIDEV,
"write device: %#x function: %#x reg: %#x size: %d data: %#x\n",
params()->deviceNum, params()->functionNum, offset, size,
word_value);
barnum = (offset - PCI0_BASE_ADDR0) >> 2;
switch (size) {
case sizeof(uint8_t): // 1-byte access
switch (offset) {
case PCI0_INTERRUPT_LINE:
case PCI_CACHE_LINE_SIZE:
case PCI_LATENCY_TIMER:
*(uint8_t *)&config.data[offset] = htoa(byte_value);
break;
default:
panic("writing to a read only register");
}
break;
case sizeof(uint16_t): // 2-byte access
switch (offset) {
case PCI_COMMAND:
case PCI_STATUS:
case PCI_CACHE_LINE_SIZE:
*(uint16_t *)&config.data[offset] = htoa(half_value);
break;
default:
panic("writing to a read only register");
}
break;
case sizeof(uint16_t)+1: // 3-byte access
panic("invalid access size");
case sizeof(uint32_t): // 4-byte access
switch (offset) {
case PCI0_BASE_ADDR0:
case PCI0_BASE_ADDR1:
case PCI0_BASE_ADDR2:
case PCI0_BASE_ADDR3:
case PCI0_BASE_ADDR4:
case PCI0_BASE_ADDR5:
// Writing 0xffffffff to a BAR tells the card to set the
// value of the bar
// to size of memory it needs
if (word_value == 0xffffffff) {
// This is I/O Space, bottom two bits are read only
if (htoa(config.data[offset]) & 0x1) {
*(uint32_t *)&config.data[offset] = htoa(
~(BARSize[barnum] - 1) |
(htoa(config.data[offset]) & 0x3));
} else {
// This is memory space, bottom four bits are read only
*(uint32_t *)&config.data[offset] = htoa(
~(BARSize[barnum] - 1) |
(htoa(config.data[offset]) & 0xF));
}
} else {
MemoryController *mmu = params()->mmu;
// This is I/O Space, bottom two bits are read only
if(htoa(config.data[offset]) & 0x1) {
*(uint32_t *)&config.data[offset] = htoa((word_value & ~0x3) |
(htoa(config.data[offset]) & 0x3));
if (word_value & ~0x1) {
Addr base_addr = (word_value & ~0x1) + TSUNAMI_PCI0_IO;
Addr base_size = BARSize[barnum];
// It's never been set
if (BARAddrs[barnum] == 0)
mmu->add_child((FunctionalMemory *)this,
RangeSize(base_addr, base_size));
else
mmu->update_child((FunctionalMemory *)this,
RangeSize(BARAddrs[barnum],
base_size),
RangeSize(base_addr, base_size));
BARAddrs[barnum] = base_addr;
}
} else {
// This is memory space, bottom four bits are read only
*(uint32_t *)&config.data[offset] = htoa((word_value & ~0xF) |
(htoa(config.data[offset]) & 0xF));
if (word_value & ~0x3) {
Addr base_addr = (word_value & ~0x3) +
TSUNAMI_PCI0_MEMORY;
Addr base_size = BARSize[barnum];
// It's never been set
if (BARAddrs[barnum] == 0)
mmu->add_child((FunctionalMemory *)this,
RangeSize(base_addr, base_size));
else
mmu->update_child((FunctionalMemory *)this,
RangeSize(BARAddrs[barnum],
base_size),
RangeSize(base_addr, base_size));
BARAddrs[barnum] = base_addr;
}
}
}
break;
case PCI0_ROM_BASE_ADDR:
if (word_value == 0xfffffffe)
*(uint32_t *)&config.data[offset] = 0xffffffff;
else
*(uint32_t *)&config.data[offset] = htoa(word_value);
break;
case PCI_COMMAND:
// This could also clear some of the error bits in the Status
// register. However they should never get set, so lets ignore
// it for now
*(uint16_t *)&config.data[offset] = htoa(half_value);
break;
default:
DPRINTF(PCIDEV, "Writing to a read only register");
}
break;
}
}
void
PciDev::serialize(ostream &os)
{
SERIALIZE_ARRAY(BARSize, 6);
SERIALIZE_ARRAY(BARAddrs, 6);
SERIALIZE_ARRAY(config.data, 64);
}
void
PciDev::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_ARRAY(BARSize, 6);
UNSERIALIZE_ARRAY(BARAddrs, 6);
UNSERIALIZE_ARRAY(config.data, 64);
// Add the MMU mappings for the BARs
for (int i=0; i < 6; i++) {
if (BARAddrs[i] != 0)
params()->mmu->add_child(this, RangeSize(BARAddrs[i], BARSize[i]));
}
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
BEGIN_DECLARE_SIM_OBJECT_PARAMS(PciConfigData)
Param<uint16_t> VendorID;
Param<uint16_t> DeviceID;
Param<uint16_t> Command;
Param<uint16_t> Status;
Param<uint8_t> Revision;
Param<uint8_t> ProgIF;
Param<uint8_t> SubClassCode;
Param<uint8_t> ClassCode;
Param<uint8_t> CacheLineSize;
Param<uint8_t> LatencyTimer;
Param<uint8_t> HeaderType;
Param<uint8_t> BIST;
Param<uint32_t> BAR0;
Param<uint32_t> BAR1;
Param<uint32_t> BAR2;
Param<uint32_t> BAR3;
Param<uint32_t> BAR4;
Param<uint32_t> BAR5;
Param<uint32_t> CardbusCIS;
Param<uint16_t> SubsystemVendorID;
Param<uint16_t> SubsystemID;
Param<uint32_t> ExpansionROM;
Param<uint8_t> InterruptLine;
Param<uint8_t> InterruptPin;
Param<uint8_t> MinimumGrant;
Param<uint8_t> MaximumLatency;
Param<uint32_t> BAR0Size;
Param<uint32_t> BAR1Size;
Param<uint32_t> BAR2Size;
Param<uint32_t> BAR3Size;
Param<uint32_t> BAR4Size;
Param<uint32_t> BAR5Size;
END_DECLARE_SIM_OBJECT_PARAMS(PciConfigData)
BEGIN_INIT_SIM_OBJECT_PARAMS(PciConfigData)
INIT_PARAM(VendorID, "Vendor ID"),
INIT_PARAM(DeviceID, "Device ID"),
INIT_PARAM_DFLT(Command, "Command Register", 0x00),
INIT_PARAM_DFLT(Status, "Status Register", 0x00),
INIT_PARAM_DFLT(Revision, "Device Revision", 0x00),
INIT_PARAM_DFLT(ProgIF, "Programming Interface", 0x00),
INIT_PARAM(SubClassCode, "Sub-Class Code"),
INIT_PARAM(ClassCode, "Class Code"),
INIT_PARAM_DFLT(CacheLineSize, "System Cacheline Size", 0x00),
INIT_PARAM_DFLT(LatencyTimer, "PCI Latency Timer", 0x00),
INIT_PARAM_DFLT(HeaderType, "PCI Header Type", 0x00),
INIT_PARAM_DFLT(BIST, "Built In Self Test", 0x00),
INIT_PARAM_DFLT(BAR0, "Base Address Register 0", 0x00),
INIT_PARAM_DFLT(BAR1, "Base Address Register 1", 0x00),
INIT_PARAM_DFLT(BAR2, "Base Address Register 2", 0x00),
INIT_PARAM_DFLT(BAR3, "Base Address Register 3", 0x00),
INIT_PARAM_DFLT(BAR4, "Base Address Register 4", 0x00),
INIT_PARAM_DFLT(BAR5, "Base Address Register 5", 0x00),
INIT_PARAM_DFLT(CardbusCIS, "Cardbus Card Information Structure", 0x00),
INIT_PARAM_DFLT(SubsystemVendorID, "Subsystem Vendor ID", 0x00),
INIT_PARAM_DFLT(SubsystemID, "Subsystem ID", 0x00),
INIT_PARAM_DFLT(ExpansionROM, "Expansion ROM Base Address Register", 0x00),
INIT_PARAM(InterruptLine, "Interrupt Line Register"),
INIT_PARAM(InterruptPin, "Interrupt Pin Register"),
INIT_PARAM_DFLT(MinimumGrant, "Minimum Grant", 0x00),
INIT_PARAM_DFLT(MaximumLatency, "Maximum Latency", 0x00),
INIT_PARAM_DFLT(BAR0Size, "Base Address Register 0 Size", 0x00),
INIT_PARAM_DFLT(BAR1Size, "Base Address Register 1 Size", 0x00),
INIT_PARAM_DFLT(BAR2Size, "Base Address Register 2 Size", 0x00),
INIT_PARAM_DFLT(BAR3Size, "Base Address Register 3 Size", 0x00),
INIT_PARAM_DFLT(BAR4Size, "Base Address Register 4 Size", 0x00),
INIT_PARAM_DFLT(BAR5Size, "Base Address Register 5 Size", 0x00)
END_INIT_SIM_OBJECT_PARAMS(PciConfigData)
CREATE_SIM_OBJECT(PciConfigData)
{
PciConfigData *data = new PciConfigData(getInstanceName());
data->config.hdr.vendor = htoa(VendorID);
data->config.hdr.device = htoa(DeviceID);
data->config.hdr.command = htoa(Command);
data->config.hdr.status = htoa(Status);
data->config.hdr.revision = htoa(Revision);
data->config.hdr.progIF = htoa(ProgIF);
data->config.hdr.subClassCode = htoa(SubClassCode);
data->config.hdr.classCode = htoa(ClassCode);
data->config.hdr.cacheLineSize = htoa(CacheLineSize);
data->config.hdr.latencyTimer = htoa(LatencyTimer);
data->config.hdr.headerType = htoa(HeaderType);
data->config.hdr.bist = htoa(BIST);
data->config.hdr.pci0.baseAddr0 = htoa(BAR0);
data->config.hdr.pci0.baseAddr1 = htoa(BAR1);
data->config.hdr.pci0.baseAddr2 = htoa(BAR2);
data->config.hdr.pci0.baseAddr3 = htoa(BAR3);
data->config.hdr.pci0.baseAddr4 = htoa(BAR4);
data->config.hdr.pci0.baseAddr5 = htoa(BAR5);
data->config.hdr.pci0.cardbusCIS = htoa(CardbusCIS);
data->config.hdr.pci0.subsystemVendorID = htoa(SubsystemVendorID);
data->config.hdr.pci0.subsystemID = htoa(SubsystemVendorID);
data->config.hdr.pci0.expansionROM = htoa(ExpansionROM);
data->config.hdr.pci0.interruptLine = htoa(InterruptLine);
data->config.hdr.pci0.interruptPin = htoa(InterruptPin);
data->config.hdr.pci0.minimumGrant = htoa(MinimumGrant);
data->config.hdr.pci0.maximumLatency = htoa(MaximumLatency);
data->BARSize[0] = BAR0Size;
data->BARSize[1] = BAR1Size;
data->BARSize[2] = BAR2Size;
data->BARSize[3] = BAR3Size;
data->BARSize[4] = BAR4Size;
data->BARSize[5] = BAR5Size;
return data;
}
REGISTER_SIM_OBJECT("PciConfigData", PciConfigData)
#endif // DOXYGEN_SHOULD_SKIP_THIS