gem5/dev/ide_ctrl.cc
Nathan Binkert b031888038 Use parameter structs for initialization so it's easier
to add new devices.  Abstract the Platform more so that
it is unnecessary to know know platform specifics for
interrupting or translating PCI DMA addresses.

dev/ide_ctrl.cc:
    convert to parameter struct for initialization
    use the interrupt functions in the PciDev base class
    convert from tsunami to using platform
    We don't need an interrupt controller here.
dev/ide_ctrl.hh:
    don't use Tsunami, use Platform
    make the IdeDisk a friend so that it can access my plaform
    convert to parameter struct for construction
dev/ide_disk.cc:
    don't use tsunami references, but platform references
dev/ns_gige.cc:
    Convert to parameter struct for initialzation. Use code in
    base class for interrupts so we don't need to know anything
    about the platform. Don't need an IntrControl *.
dev/ns_gige.hh:
    We don't need a Tsunami * anymore
    convert to a parameter struct for construction
dev/pcidev.cc:
    deal with new parameter struct
dev/pcidev.hh:
    - Move all of the configuration parameters into a param struct
    that we can pass into the constructor.
    - Add a Platform * for accessing new generic interrupt post/clear
    and dma address translation fuctions
    - Create functions for posting/clearing interrupts and translating
    dma addresses
dev/platform.cc:
    have default functions that panic on pci calls
dev/platform.hh:
    don't make the pci stuff pure virtual, but rather provide
    default implementations that panic.  Also, add dma address
    translation.
dev/tsunami.cc:
    this-> isn't necessary here.
    add pci address translation
dev/tsunami.hh:
    implement the pciToDma address translation

--HG--
extra : convert_revision : 7db27a2fa1f1bd84704921ec7ca0280b5653c43e
2004-11-13 15:45:22 -05:00

719 lines
22 KiB
C++

/*
* Copyright (c) 2004 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cstddef>
#include <cstdlib>
#include <string>
#include <vector>
#include "base/trace.hh"
#include "cpu/intr_control.hh"
#include "dev/dma.hh"
#include "dev/ide_ctrl.hh"
#include "dev/ide_disk.hh"
#include "dev/pciconfigall.hh"
#include "dev/pcireg.h"
#include "dev/platform.hh"
#include "mem/bus/bus.hh"
#include "mem/bus/dma_interface.hh"
#include "mem/bus/pio_interface.hh"
#include "mem/bus/pio_interface_impl.hh"
#include "mem/functional_mem/memory_control.hh"
#include "mem/functional_mem/physical_memory.hh"
#include "sim/builder.hh"
#include "sim/sim_object.hh"
using namespace std;
////
// Initialization and destruction
////
IdeController::IdeController(Params *p)
: PciDev(p)
{
// initialize the PIO interface addresses
pri_cmd_addr = 0;
pri_cmd_size = BARSize[0];
pri_ctrl_addr = 0;
pri_ctrl_size = BARSize[1];
sec_cmd_addr = 0;
sec_cmd_size = BARSize[2];
sec_ctrl_addr = 0;
sec_ctrl_size = BARSize[3];
// initialize the bus master interface (BMI) address to be configured
// via PCI
bmi_addr = 0;
bmi_size = BARSize[4];
// zero out all of the registers
memset(bmi_regs, 0, sizeof(bmi_regs));
memset(pci_regs, 0, sizeof(pci_regs));
// setup initial values
*(uint32_t *)&pci_regs[IDETIM] = 0x80008000; // enable both channels
*(uint8_t *)&bmi_regs[BMIS0] = 0x60;
*(uint8_t *)&bmi_regs[BMIS1] = 0x60;
// reset all internal variables
io_enabled = false;
bm_enabled = false;
memset(cmd_in_progress, 0, sizeof(cmd_in_progress));
// create the PIO and DMA interfaces
if (params()->host_bus) {
pioInterface = newPioInterface(name(), params()->hier,
params()->host_bus, this,
&IdeController::cacheAccess);
dmaInterface = new DMAInterface<Bus>(name() + ".dma",
params()->host_bus,
params()->host_bus, 1);
pioLatency = params()->pio_latency * params()->host_bus->clockRatio;
}
// setup the disks attached to controller
memset(disks, 0, sizeof(IdeDisk *) * 4);
if (params()->disks.size() > 3)
panic("IDE controllers support a maximum of 4 devices attached!\n");
for (int i = 0; i < params()->disks.size(); i++) {
disks[i] = params()->disks[i];
disks[i]->setController(this, dmaInterface);
}
}
IdeController::~IdeController()
{
for (int i = 0; i < 4; i++)
if (disks[i])
delete disks[i];
}
////
// Utility functions
///
void
IdeController::parseAddr(const Addr &addr, Addr &offset, bool &primary,
RegType_t &type)
{
offset = addr;
if (addr >= pri_cmd_addr && addr < (pri_cmd_addr + pri_cmd_size)) {
offset -= pri_cmd_addr;
type = COMMAND_BLOCK;
primary = true;
} else if (addr >= pri_ctrl_addr &&
addr < (pri_ctrl_addr + pri_ctrl_size)) {
offset -= pri_ctrl_addr;
type = CONTROL_BLOCK;
primary = true;
} else if (addr >= sec_cmd_addr &&
addr < (sec_cmd_addr + sec_cmd_size)) {
offset -= sec_cmd_addr;
type = COMMAND_BLOCK;
primary = false;
} else if (addr >= sec_ctrl_addr &&
addr < (sec_ctrl_addr + sec_ctrl_size)) {
offset -= sec_ctrl_addr;
type = CONTROL_BLOCK;
primary = false;
} else if (addr >= bmi_addr && addr < (bmi_addr + bmi_size)) {
offset -= bmi_addr;
type = BMI_BLOCK;
primary = (offset < BMIC1) ? true : false;
} else {
panic("IDE controller access to invalid address: %#x\n", addr);
}
}
int
IdeController::getDisk(bool primary)
{
int disk = 0;
uint8_t *devBit = &dev[0];
if (!primary) {
disk += 2;
devBit = &dev[1];
}
disk += *devBit;
assert(*devBit == 0 || *devBit == 1);
return disk;
}
int
IdeController::getDisk(IdeDisk *diskPtr)
{
for (int i = 0; i < 4; i++) {
if ((long)diskPtr == (long)disks[i])
return i;
}
return -1;
}
bool
IdeController::isDiskSelected(IdeDisk *diskPtr)
{
for (int i = 0; i < 4; i++) {
if ((long)diskPtr == (long)disks[i]) {
// is disk is on primary or secondary channel
int channel = i/2;
// is disk the master or slave
int devID = i%2;
return (dev[channel] == devID);
}
}
panic("Unable to find disk by pointer!!\n");
}
////
// Command completion
////
void
IdeController::setDmaComplete(IdeDisk *disk)
{
int diskNum = getDisk(disk);
if (diskNum < 0)
panic("Unable to find disk based on pointer %#x\n", disk);
if (diskNum < 2) {
// clear the start/stop bit in the command register
bmi_regs[BMIC0] &= ~SSBM;
// clear the bus master active bit in the status register
bmi_regs[BMIS0] &= ~BMIDEA;
// set the interrupt bit
bmi_regs[BMIS0] |= IDEINTS;
} else {
// clear the start/stop bit in the command register
bmi_regs[BMIC1] &= ~SSBM;
// clear the bus master active bit in the status register
bmi_regs[BMIS1] &= ~BMIDEA;
// set the interrupt bit
bmi_regs[BMIS1] |= IDEINTS;
}
}
////
// Bus timing and bus access functions
////
Tick
IdeController::cacheAccess(MemReqPtr &req)
{
// @todo Add more accurate timing to cache access
return curTick + pioLatency;
}
////
// Read and write handling
////
void
IdeController::ReadConfig(int offset, int size, uint8_t *data)
{
#if TRACING_ON
Addr origOffset = offset;
#endif
if (offset < PCI_DEVICE_SPECIFIC) {
PciDev::ReadConfig(offset, size, data);
} else {
if (offset >= PCI_IDE_TIMING && offset < (PCI_IDE_TIMING + 4)) {
offset -= PCI_IDE_TIMING;
offset += IDETIM;
if ((offset + size) > (IDETIM + 4))
panic("PCI read of IDETIM with invalid size\n");
} else if (offset == PCI_SLAVE_TIMING) {
offset -= PCI_SLAVE_TIMING;
offset += SIDETIM;
if ((offset + size) > (SIDETIM + 1))
panic("PCI read of SIDETIM with invalid size\n");
} else if (offset == PCI_UDMA33_CTRL) {
offset -= PCI_UDMA33_CTRL;
offset += UDMACTL;
if ((offset + size) > (UDMACTL + 1))
panic("PCI read of UDMACTL with invalid size\n");
} else if (offset >= PCI_UDMA33_TIMING &&
offset < (PCI_UDMA33_TIMING + 2)) {
offset -= PCI_UDMA33_TIMING;
offset += UDMATIM;
if ((offset + size) > (UDMATIM + 2))
panic("PCI read of UDMATIM with invalid size\n");
} else {
panic("PCI read of unimplemented register: %x\n", offset);
}
memcpy((void *)data, (void *)&pci_regs[offset], size);
}
DPRINTF(IdeCtrl, "IDE PCI read offset: %#x (%#x) size: %#x data: %#x\n",
origOffset, offset, size, *(uint32_t *)data);
}
void
IdeController::WriteConfig(int offset, int size, uint32_t data)
{
DPRINTF(IdeCtrl, "IDE PCI write offset: %#x size: %#x data: %#x\n",
offset, size, data);
// do standard write stuff if in standard PCI space
if (offset < PCI_DEVICE_SPECIFIC) {
PciDev::WriteConfig(offset, size, data);
} else {
if (offset >= PCI_IDE_TIMING && offset < (PCI_IDE_TIMING + 4)) {
offset -= PCI_IDE_TIMING;
offset += IDETIM;
if ((offset + size) > (IDETIM + 4))
panic("PCI write to IDETIM with invalid size\n");
} else if (offset == PCI_SLAVE_TIMING) {
offset -= PCI_SLAVE_TIMING;
offset += SIDETIM;
if ((offset + size) > (SIDETIM + 1))
panic("PCI write to SIDETIM with invalid size\n");
} else if (offset == PCI_UDMA33_CTRL) {
offset -= PCI_UDMA33_CTRL;
offset += UDMACTL;
if ((offset + size) > (UDMACTL + 1))
panic("PCI write to UDMACTL with invalid size\n");
} else if (offset >= PCI_UDMA33_TIMING &&
offset < (PCI_UDMA33_TIMING + 2)) {
offset -= PCI_UDMA33_TIMING;
offset += UDMATIM;
if ((offset + size) > (UDMATIM + 2))
panic("PCI write to UDMATIM with invalid size\n");
} else {
panic("PCI write to unimplemented register: %x\n", offset);
}
memcpy((void *)&pci_regs[offset], (void *)&data, size);
}
// Catch the writes to specific PCI registers that have side affects
// (like updating the PIO ranges)
switch (offset) {
case PCI_COMMAND:
if (config.data[offset] & PCI_CMD_IOSE)
io_enabled = true;
else
io_enabled = false;
if (config.data[offset] & PCI_CMD_BME)
bm_enabled = true;
else
bm_enabled = false;
break;
case PCI0_BASE_ADDR0:
if (BARAddrs[0] != 0) {
pri_cmd_addr = BARAddrs[0];
if (pioInterface)
pioInterface->addAddrRange(RangeSize(pri_cmd_addr,
pri_cmd_size));
pri_cmd_addr &= EV5::PAddrUncachedMask;
}
break;
case PCI0_BASE_ADDR1:
if (BARAddrs[1] != 0) {
pri_ctrl_addr = BARAddrs[1];
if (pioInterface)
pioInterface->addAddrRange(RangeSize(pri_ctrl_addr,
pri_ctrl_size));
pri_ctrl_addr &= EV5::PAddrUncachedMask;
}
break;
case PCI0_BASE_ADDR2:
if (BARAddrs[2] != 0) {
sec_cmd_addr = BARAddrs[2];
if (pioInterface)
pioInterface->addAddrRange(RangeSize(sec_cmd_addr,
sec_cmd_size));
sec_cmd_addr &= EV5::PAddrUncachedMask;
}
break;
case PCI0_BASE_ADDR3:
if (BARAddrs[3] != 0) {
sec_ctrl_addr = BARAddrs[3];
if (pioInterface)
pioInterface->addAddrRange(RangeSize(sec_ctrl_addr,
sec_ctrl_size));
sec_ctrl_addr &= EV5::PAddrUncachedMask;
}
break;
case PCI0_BASE_ADDR4:
if (BARAddrs[4] != 0) {
bmi_addr = BARAddrs[4];
if (pioInterface)
pioInterface->addAddrRange(RangeSize(bmi_addr, bmi_size));
bmi_addr &= EV5::PAddrUncachedMask;
}
break;
}
}
Fault
IdeController::read(MemReqPtr &req, uint8_t *data)
{
Addr offset;
bool primary;
bool byte;
bool cmdBlk;
RegType_t type;
int disk;
parseAddr(req->paddr, offset, primary, type);
byte = (req->size == sizeof(uint8_t)) ? true : false;
cmdBlk = (type == COMMAND_BLOCK) ? true : false;
if (!io_enabled)
return No_Fault;
// sanity check the size (allows byte, word, or dword access)
if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) &&
req->size != sizeof(uint32_t))
panic("IDE controller read of invalid size: %#x\n", req->size);
if (type != BMI_BLOCK) {
assert(req->size != sizeof(uint32_t));
disk = getDisk(primary);
if (disks[disk])
disks[disk]->read(offset, byte, cmdBlk, data);
} else {
memcpy((void *)data, &bmi_regs[offset], req->size);
}
DPRINTF(IdeCtrl, "IDE read from offset: %#x size: %#x data: %#x\n",
offset, req->size, *(uint32_t *)data);
return No_Fault;
}
Fault
IdeController::write(MemReqPtr &req, const uint8_t *data)
{
Addr offset;
bool primary;
bool byte;
bool cmdBlk;
RegType_t type;
int disk;
parseAddr(req->paddr, offset, primary, type);
byte = (req->size == sizeof(uint8_t)) ? true : false;
cmdBlk = (type == COMMAND_BLOCK) ? true : false;
DPRINTF(IdeCtrl, "IDE write from offset: %#x size: %#x data: %#x\n",
offset, req->size, *(uint32_t *)data);
uint8_t oldVal, newVal;
if (!io_enabled)
return No_Fault;
if (type == BMI_BLOCK && !bm_enabled)
return No_Fault;
if (type != BMI_BLOCK) {
// shadow the dev bit
if (type == COMMAND_BLOCK && offset == IDE_SELECT_OFFSET) {
uint8_t *devBit = (primary ? &dev[0] : &dev[1]);
*devBit = ((*data & IDE_SELECT_DEV_BIT) ? 1 : 0);
}
assert(req->size != sizeof(uint32_t));
disk = getDisk(primary);
if (disks[disk])
disks[disk]->write(offset, byte, cmdBlk, data);
} else {
switch (offset) {
// Bus master IDE command register
case BMIC1:
case BMIC0:
if (req->size != sizeof(uint8_t))
panic("Invalid BMIC write size: %x\n", req->size);
// select the current disk based on DEV bit
disk = getDisk(primary);
oldVal = bmi_regs[offset];
newVal = *data;
// if a DMA transfer is in progress, R/W control cannot change
if (oldVal & SSBM) {
if ((oldVal & RWCON) ^ (newVal & RWCON)) {
(oldVal & RWCON) ? newVal |= RWCON : newVal &= ~RWCON;
}
}
// see if the start/stop bit is being changed
if ((oldVal & SSBM) ^ (newVal & SSBM)) {
if (oldVal & SSBM) {
// stopping DMA transfer
DPRINTF(IdeCtrl, "Stopping DMA transfer\n");
// clear the BMIDEA bit
bmi_regs[offset + 0x2] &= ~BMIDEA;
if (disks[disk] == NULL)
panic("DMA stop for disk %d which does not exist\n",
disk);
// inform the disk of the DMA transfer abort
disks[disk]->abortDma();
} else {
// starting DMA transfer
DPRINTF(IdeCtrl, "Starting DMA transfer\n");
// set the BMIDEA bit
bmi_regs[offset + 0x2] |= BMIDEA;
if (disks[disk] == NULL)
panic("DMA start for disk %d which does not exist\n",
disk);
// inform the disk of the DMA transfer start
if (primary)
disks[disk]->startDma(*(uint32_t *)&bmi_regs[BMIDTP0]);
else
disks[disk]->startDma(*(uint32_t *)&bmi_regs[BMIDTP1]);
}
}
// update the register value
bmi_regs[offset] = newVal;
break;
// Bus master IDE status register
case BMIS0:
case BMIS1:
if (req->size != sizeof(uint8_t))
panic("Invalid BMIS write size: %x\n", req->size);
oldVal = bmi_regs[offset];
newVal = *data;
// the BMIDEA bit is RO
newVal |= (oldVal & BMIDEA);
// to reset (set 0) IDEINTS and IDEDMAE, write 1 to each
if ((oldVal & IDEINTS) && (newVal & IDEINTS))
newVal &= ~IDEINTS; // clear the interrupt?
else
(oldVal & IDEINTS) ? newVal |= IDEINTS : newVal &= ~IDEINTS;
if ((oldVal & IDEDMAE) && (newVal & IDEDMAE))
newVal &= ~IDEDMAE;
else
(oldVal & IDEDMAE) ? newVal |= IDEDMAE : newVal &= ~IDEDMAE;
bmi_regs[offset] = newVal;
break;
// Bus master IDE descriptor table pointer register
case BMIDTP0:
case BMIDTP1:
if (req->size != sizeof(uint32_t))
panic("Invalid BMIDTP write size: %x\n", req->size);
*(uint32_t *)&bmi_regs[offset] = *(uint32_t *)data & ~0x3;
break;
default:
if (req->size != sizeof(uint8_t) &&
req->size != sizeof(uint16_t) &&
req->size != sizeof(uint32_t))
panic("IDE controller write of invalid write size: %x\n",
req->size);
// do a default copy of data into the registers
memcpy((void *)&bmi_regs[offset], data, req->size);
}
}
return No_Fault;
}
////
// Serialization
////
void
IdeController::serialize(std::ostream &os)
{
// Serialize the PciDev base class
PciDev::serialize(os);
// Serialize register addresses and sizes
SERIALIZE_SCALAR(pri_cmd_addr);
SERIALIZE_SCALAR(pri_cmd_size);
SERIALIZE_SCALAR(pri_ctrl_addr);
SERIALIZE_SCALAR(pri_ctrl_size);
SERIALIZE_SCALAR(sec_cmd_addr);
SERIALIZE_SCALAR(sec_cmd_size);
SERIALIZE_SCALAR(sec_ctrl_addr);
SERIALIZE_SCALAR(sec_ctrl_size);
SERIALIZE_SCALAR(bmi_addr);
SERIALIZE_SCALAR(bmi_size);
// Serialize registers
SERIALIZE_ARRAY(bmi_regs, 16);
SERIALIZE_ARRAY(dev, 2);
SERIALIZE_ARRAY(pci_regs, 8);
// Serialize internal state
SERIALIZE_SCALAR(io_enabled);
SERIALIZE_SCALAR(bm_enabled);
SERIALIZE_ARRAY(cmd_in_progress, 4);
}
void
IdeController::unserialize(Checkpoint *cp, const std::string &section)
{
// Unserialize the PciDev base class
PciDev::unserialize(cp, section);
// Unserialize register addresses and sizes
UNSERIALIZE_SCALAR(pri_cmd_addr);
UNSERIALIZE_SCALAR(pri_cmd_size);
UNSERIALIZE_SCALAR(pri_ctrl_addr);
UNSERIALIZE_SCALAR(pri_ctrl_size);
UNSERIALIZE_SCALAR(sec_cmd_addr);
UNSERIALIZE_SCALAR(sec_cmd_size);
UNSERIALIZE_SCALAR(sec_ctrl_addr);
UNSERIALIZE_SCALAR(sec_ctrl_size);
UNSERIALIZE_SCALAR(bmi_addr);
UNSERIALIZE_SCALAR(bmi_size);
// Unserialize registers
UNSERIALIZE_ARRAY(bmi_regs, 16);
UNSERIALIZE_ARRAY(dev, 2);
UNSERIALIZE_ARRAY(pci_regs, 8);
// Unserialize internal state
UNSERIALIZE_SCALAR(io_enabled);
UNSERIALIZE_SCALAR(bm_enabled);
UNSERIALIZE_ARRAY(cmd_in_progress, 4);
if (pioInterface) {
pioInterface->addAddrRange(RangeSize(pri_cmd_addr, pri_cmd_size));
pioInterface->addAddrRange(RangeSize(pri_ctrl_addr, pri_ctrl_size));
pioInterface->addAddrRange(RangeSize(sec_cmd_addr, sec_cmd_size));
pioInterface->addAddrRange(RangeSize(sec_ctrl_addr, sec_ctrl_size));
pioInterface->addAddrRange(RangeSize(bmi_addr, bmi_size));
}
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
BEGIN_DECLARE_SIM_OBJECT_PARAMS(IdeController)
SimObjectVectorParam<IdeDisk *> disks;
SimObjectParam<MemoryController *> mmu;
SimObjectParam<PciConfigAll *> configspace;
SimObjectParam<PciConfigData *> configdata;
SimObjectParam<Platform *> platform;
Param<uint32_t> pci_bus;
Param<uint32_t> pci_dev;
Param<uint32_t> pci_func;
SimObjectParam<Bus *> io_bus;
Param<Tick> pio_latency;
SimObjectParam<HierParams *> hier;
END_DECLARE_SIM_OBJECT_PARAMS(IdeController)
BEGIN_INIT_SIM_OBJECT_PARAMS(IdeController)
INIT_PARAM(disks, "IDE disks attached to this controller"),
INIT_PARAM(mmu, "Memory controller"),
INIT_PARAM(configspace, "PCI Configspace"),
INIT_PARAM(configdata, "PCI Config data"),
INIT_PARAM(platform, "Platform pointer"),
INIT_PARAM(pci_bus, "PCI bus ID"),
INIT_PARAM(pci_dev, "PCI device number"),
INIT_PARAM(pci_func, "PCI function code"),
INIT_PARAM_DFLT(io_bus, "Host bus to attach to", NULL),
INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1),
INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams)
END_INIT_SIM_OBJECT_PARAMS(IdeController)
CREATE_SIM_OBJECT(IdeController)
{
IdeController::Params *params = new IdeController::Params;
params->name = getInstanceName();
params->mmu = mmu;
params->configSpace = configspace;
params->configData = configdata;
params->plat = platform;
params->busNum = pci_bus;
params->deviceNum = pci_dev;
params->functionNum = pci_func;
params->disks = disks;
params->host_bus = io_bus;
params->pio_latency = pio_latency;
params->hier = hier;
return new IdeController(params);
}
REGISTER_SIM_OBJECT("IdeController", IdeController)
#endif //DOXYGEN_SHOULD_SKIP_THIS