9023f5c96d
single place so it's easier to work with. - Add support for binning kernel/user/idle time separately from lisa's binning stuff, but make the two compatible. - KernelStats used to directly implement the pImpl idiom, but it makes more sense to just remove the level of indirection and make the exec context have a pointer to the stats. - Factor common code out of LinuxSystem and Tru64System and put it into the System base class. While doing that, make all constructors take a pointer to a parameter struct instead of naming the parameters individually to make it much easier to add parameters to these classes. SConscript: Move the function tracking and binning stuff around. arch/alpha/ev5.cc: kernelStats is now a pointer arch/alpha/pseudo_inst.cc: kernelStats is now a pointer the parameters to the system have been moved into their own struct base/trace.hh: provide a little functor class for wrapping a string that can allow you to define name() in any scope very simply for use with DPRINTF cpu/base_cpu.cc: New order of arguments for consistency. cpu/exec_context.cc: kernelStats no longer has the level of indirection in it, execContext has the indirection now. so, kernelStats is a pointer. We also need a pointer to the kernelBinning stuff from the system and we need to figure out if we want to do binning or not. Move a whole bunch of code into kern_binning.cc so it's all in the same place. cpu/exec_context.hh: We want pointers to the kernel binning/stats stuff and we'll have the exec_context and system have the level of indirection instead of having the extra layer in the kernel stats class. cpu/simple_cpu/simple_cpu.cc: call through the exec context to do the special binning stuff. kern/kernel_stats.cc: kern/kernel_stats.hh: Re-organize the stats stuff and remove the level of indirection (that was there to simplify building) and move the binning stuff into its own class/file. kern/linux/linux_system.cc: kern/linux/linux_system.hh: kern/tru64/tru64_system.cc: kern/tru64/tru64_system.hh: sim/system.cc: sim/system.hh: move lots of common system code into the base system class so that it can be shared between linux, tru64, and whatever else we decide to support in the future. Make the constructor take a pointer to a parameter struct so that it is easier to pass parameters to the parent. kern/system_events.cc: move the majority of the binning code into the Kernel::Binning class in the kern_binning file kern/system_events.hh: FnEvents only need to know the bin create the Idle start event to find the PCBB of the idle process when it starts. kern/tru64/tru64_events.cc: memCtrl -> memctrl sim/process.cc: sim/process.hh: re-order args for consistency --HG-- extra : convert_revision : 86cb39738c41fcd680f2aad125c9dde000227b2b
880 lines
23 KiB
C++
880 lines
23 KiB
C++
/*
|
|
* Copyright (c) 2002-2004 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <list>
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
#include "base/cprintf.hh"
|
|
#include "base/inifile.hh"
|
|
#include "base/loader/symtab.hh"
|
|
#include "base/misc.hh"
|
|
#include "base/pollevent.hh"
|
|
#include "base/range.hh"
|
|
#include "base/trace.hh"
|
|
#include "base/stats/events.hh"
|
|
#include "cpu/base_cpu.hh"
|
|
#include "cpu/exec_context.hh"
|
|
#include "cpu/exetrace.hh"
|
|
#include "cpu/full_cpu/smt.hh"
|
|
#include "cpu/simple_cpu/simple_cpu.hh"
|
|
#include "cpu/static_inst.hh"
|
|
#include "mem/base_mem.hh"
|
|
#include "mem/mem_interface.hh"
|
|
#include "sim/builder.hh"
|
|
#include "sim/debug.hh"
|
|
#include "sim/host.hh"
|
|
#include "sim/sim_events.hh"
|
|
#include "sim/sim_object.hh"
|
|
#include "sim/stats.hh"
|
|
|
|
#ifdef FULL_SYSTEM
|
|
#include "base/remote_gdb.hh"
|
|
#include "dev/alpha_access.h"
|
|
#include "dev/pciareg.h"
|
|
#include "mem/functional_mem/memory_control.hh"
|
|
#include "mem/functional_mem/physical_memory.hh"
|
|
#include "sim/system.hh"
|
|
#include "targetarch/alpha_memory.hh"
|
|
#include "targetarch/vtophys.hh"
|
|
#else // !FULL_SYSTEM
|
|
#include "eio/eio.hh"
|
|
#include "mem/functional_mem/functional_memory.hh"
|
|
#endif // FULL_SYSTEM
|
|
|
|
using namespace std;
|
|
|
|
SimpleCPU::TickEvent::TickEvent(SimpleCPU *c)
|
|
: Event(&mainEventQueue, CPU_Tick_Pri), cpu(c), multiplier(1)
|
|
{
|
|
}
|
|
|
|
void
|
|
SimpleCPU::TickEvent::process()
|
|
{
|
|
int count = multiplier;
|
|
do {
|
|
cpu->tick();
|
|
} while (--count > 0 && cpu->status() == Running);
|
|
}
|
|
|
|
const char *
|
|
SimpleCPU::TickEvent::description()
|
|
{
|
|
return "SimpleCPU tick event";
|
|
}
|
|
|
|
|
|
SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
|
|
: Event(&mainEventQueue),
|
|
cpu(_cpu)
|
|
{
|
|
}
|
|
|
|
void SimpleCPU::CacheCompletionEvent::process()
|
|
{
|
|
cpu->processCacheCompletion();
|
|
}
|
|
|
|
const char *
|
|
SimpleCPU::CacheCompletionEvent::description()
|
|
{
|
|
return "SimpleCPU cache completion event";
|
|
}
|
|
|
|
#ifdef FULL_SYSTEM
|
|
SimpleCPU::SimpleCPU(const string &_name,
|
|
System *_system,
|
|
Counter max_insts_any_thread,
|
|
Counter max_insts_all_threads,
|
|
Counter max_loads_any_thread,
|
|
Counter max_loads_all_threads,
|
|
AlphaITB *itb, AlphaDTB *dtb,
|
|
FunctionalMemory *mem,
|
|
MemInterface *icache_interface,
|
|
MemInterface *dcache_interface,
|
|
bool _def_reg, Tick freq)
|
|
: BaseCPU(_name, /* number_of_threads */ 1,
|
|
max_insts_any_thread, max_insts_all_threads,
|
|
max_loads_any_thread, max_loads_all_threads,
|
|
_system, freq),
|
|
#else
|
|
SimpleCPU::SimpleCPU(const string &_name, Process *_process,
|
|
Counter max_insts_any_thread,
|
|
Counter max_insts_all_threads,
|
|
Counter max_loads_any_thread,
|
|
Counter max_loads_all_threads,
|
|
MemInterface *icache_interface,
|
|
MemInterface *dcache_interface,
|
|
bool _def_reg)
|
|
: BaseCPU(_name, /* number_of_threads */ 1,
|
|
max_insts_any_thread, max_insts_all_threads,
|
|
max_loads_any_thread, max_loads_all_threads),
|
|
#endif
|
|
tickEvent(this), xc(NULL), defer_registration(_def_reg),
|
|
cacheCompletionEvent(this)
|
|
{
|
|
_status = Idle;
|
|
#ifdef FULL_SYSTEM
|
|
xc = new ExecContext(this, 0, system, itb, dtb, mem);
|
|
|
|
// initialize CPU, including PC
|
|
TheISA::initCPU(&xc->regs);
|
|
#else
|
|
xc = new ExecContext(this, /* thread_num */ 0, _process, /* asid */ 0);
|
|
#endif // !FULL_SYSTEM
|
|
|
|
icacheInterface = icache_interface;
|
|
dcacheInterface = dcache_interface;
|
|
|
|
memReq = new MemReq();
|
|
memReq->xc = xc;
|
|
memReq->asid = 0;
|
|
memReq->data = new uint8_t[64];
|
|
|
|
numInst = 0;
|
|
startNumInst = 0;
|
|
numLoad = 0;
|
|
startNumLoad = 0;
|
|
lastIcacheStall = 0;
|
|
lastDcacheStall = 0;
|
|
|
|
execContexts.push_back(xc);
|
|
}
|
|
|
|
SimpleCPU::~SimpleCPU()
|
|
{
|
|
}
|
|
|
|
void SimpleCPU::init()
|
|
{
|
|
if (!defer_registration) {
|
|
this->registerExecContexts();
|
|
}
|
|
}
|
|
|
|
void
|
|
SimpleCPU::switchOut()
|
|
{
|
|
_status = SwitchedOut;
|
|
if (tickEvent.scheduled())
|
|
tickEvent.squash();
|
|
}
|
|
|
|
|
|
void
|
|
SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
|
|
{
|
|
BaseCPU::takeOverFrom(oldCPU);
|
|
|
|
assert(!tickEvent.scheduled());
|
|
|
|
// if any of this CPU's ExecContexts are active, mark the CPU as
|
|
// running and schedule its tick event.
|
|
for (int i = 0; i < execContexts.size(); ++i) {
|
|
ExecContext *xc = execContexts[i];
|
|
if (xc->status() == ExecContext::Active && _status != Running) {
|
|
_status = Running;
|
|
tickEvent.schedule(curTick);
|
|
}
|
|
}
|
|
|
|
oldCPU->switchOut();
|
|
}
|
|
|
|
|
|
void
|
|
SimpleCPU::activateContext(int thread_num, int delay)
|
|
{
|
|
assert(thread_num == 0);
|
|
assert(xc);
|
|
|
|
assert(_status == Idle);
|
|
notIdleFraction++;
|
|
scheduleTickEvent(delay);
|
|
_status = Running;
|
|
}
|
|
|
|
|
|
void
|
|
SimpleCPU::suspendContext(int thread_num)
|
|
{
|
|
assert(thread_num == 0);
|
|
assert(xc);
|
|
|
|
assert(_status == Running);
|
|
notIdleFraction--;
|
|
unscheduleTickEvent();
|
|
_status = Idle;
|
|
}
|
|
|
|
|
|
void
|
|
SimpleCPU::deallocateContext(int thread_num)
|
|
{
|
|
// for now, these are equivalent
|
|
suspendContext(thread_num);
|
|
}
|
|
|
|
|
|
void
|
|
SimpleCPU::haltContext(int thread_num)
|
|
{
|
|
// for now, these are equivalent
|
|
suspendContext(thread_num);
|
|
}
|
|
|
|
|
|
void
|
|
SimpleCPU::regStats()
|
|
{
|
|
using namespace Stats;
|
|
|
|
BaseCPU::regStats();
|
|
|
|
numInsts
|
|
.name(name() + ".num_insts")
|
|
.desc("Number of instructions executed")
|
|
;
|
|
|
|
numMemRefs
|
|
.name(name() + ".num_refs")
|
|
.desc("Number of memory references")
|
|
;
|
|
|
|
notIdleFraction
|
|
.name(name() + ".not_idle_fraction")
|
|
.desc("Percentage of non-idle cycles")
|
|
;
|
|
|
|
idleFraction
|
|
.name(name() + ".idle_fraction")
|
|
.desc("Percentage of idle cycles")
|
|
;
|
|
|
|
icacheStallCycles
|
|
.name(name() + ".icache_stall_cycles")
|
|
.desc("ICache total stall cycles")
|
|
.prereq(icacheStallCycles)
|
|
;
|
|
|
|
dcacheStallCycles
|
|
.name(name() + ".dcache_stall_cycles")
|
|
.desc("DCache total stall cycles")
|
|
.prereq(dcacheStallCycles)
|
|
;
|
|
|
|
idleFraction = constant(1.0) - notIdleFraction;
|
|
}
|
|
|
|
void
|
|
SimpleCPU::resetStats()
|
|
{
|
|
startNumInst = numInst;
|
|
notIdleFraction = (_status != Idle);
|
|
}
|
|
|
|
void
|
|
SimpleCPU::serialize(ostream &os)
|
|
{
|
|
BaseCPU::serialize(os);
|
|
SERIALIZE_ENUM(_status);
|
|
SERIALIZE_SCALAR(inst);
|
|
nameOut(os, csprintf("%s.xc", name()));
|
|
xc->serialize(os);
|
|
nameOut(os, csprintf("%s.tickEvent", name()));
|
|
tickEvent.serialize(os);
|
|
nameOut(os, csprintf("%s.cacheCompletionEvent", name()));
|
|
cacheCompletionEvent.serialize(os);
|
|
}
|
|
|
|
void
|
|
SimpleCPU::unserialize(Checkpoint *cp, const string §ion)
|
|
{
|
|
BaseCPU::unserialize(cp, section);
|
|
UNSERIALIZE_ENUM(_status);
|
|
UNSERIALIZE_SCALAR(inst);
|
|
xc->unserialize(cp, csprintf("%s.xc", section));
|
|
tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
|
|
cacheCompletionEvent
|
|
.unserialize(cp, csprintf("%s.cacheCompletionEvent", section));
|
|
}
|
|
|
|
void
|
|
change_thread_state(int thread_number, int activate, int priority)
|
|
{
|
|
}
|
|
|
|
Fault
|
|
SimpleCPU::copySrcTranslate(Addr src)
|
|
{
|
|
memReq->reset(src, (dcacheInterface) ?
|
|
dcacheInterface->getBlockSize()
|
|
: 64);
|
|
|
|
// translate to physical address
|
|
Fault fault = xc->translateDataReadReq(memReq);
|
|
|
|
if (fault == No_Fault) {
|
|
xc->copySrcAddr = src;
|
|
xc->copySrcPhysAddr = memReq->paddr;
|
|
} else {
|
|
xc->copySrcAddr = 0;
|
|
xc->copySrcPhysAddr = 0;
|
|
}
|
|
return fault;
|
|
}
|
|
|
|
Fault
|
|
SimpleCPU::copy(Addr dest)
|
|
{
|
|
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
|
|
uint8_t data[blk_size];
|
|
assert(xc->copySrcAddr);
|
|
memReq->reset(dest, blk_size);
|
|
// translate to physical address
|
|
Fault fault = xc->translateDataWriteReq(memReq);
|
|
if (fault == No_Fault) {
|
|
Addr dest_addr = memReq->paddr;
|
|
// Need to read straight from memory since we have more than 8 bytes.
|
|
memReq->paddr = xc->copySrcPhysAddr;
|
|
xc->mem->read(memReq, data);
|
|
memReq->paddr = dest_addr;
|
|
xc->mem->write(memReq, data);
|
|
}
|
|
return fault;
|
|
}
|
|
|
|
// precise architected memory state accessor macros
|
|
template <class T>
|
|
Fault
|
|
SimpleCPU::read(Addr addr, T &data, unsigned flags)
|
|
{
|
|
memReq->reset(addr, sizeof(T), flags);
|
|
|
|
// translate to physical address
|
|
Fault fault = xc->translateDataReadReq(memReq);
|
|
|
|
// do functional access
|
|
if (fault == No_Fault)
|
|
fault = xc->read(memReq, data);
|
|
|
|
if (traceData) {
|
|
traceData->setAddr(addr);
|
|
if (fault == No_Fault)
|
|
traceData->setData(data);
|
|
}
|
|
|
|
// if we have a cache, do cache access too
|
|
if (fault == No_Fault && dcacheInterface) {
|
|
memReq->cmd = Read;
|
|
memReq->completionEvent = NULL;
|
|
memReq->time = curTick;
|
|
MemAccessResult result = dcacheInterface->access(memReq);
|
|
|
|
// Ugly hack to get an event scheduled *only* if the access is
|
|
// a miss. We really should add first-class support for this
|
|
// at some point.
|
|
if (result != MA_HIT && dcacheInterface->doEvents()) {
|
|
memReq->completionEvent = &cacheCompletionEvent;
|
|
lastDcacheStall = curTick;
|
|
unscheduleTickEvent();
|
|
_status = DcacheMissStall;
|
|
}
|
|
}
|
|
|
|
if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
|
|
recordEvent("Uncached Read");
|
|
|
|
return fault;
|
|
}
|
|
|
|
#ifndef DOXYGEN_SHOULD_SKIP_THIS
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
|
|
|
|
#endif //DOXYGEN_SHOULD_SKIP_THIS
|
|
|
|
template<>
|
|
Fault
|
|
SimpleCPU::read(Addr addr, double &data, unsigned flags)
|
|
{
|
|
return read(addr, *(uint64_t*)&data, flags);
|
|
}
|
|
|
|
template<>
|
|
Fault
|
|
SimpleCPU::read(Addr addr, float &data, unsigned flags)
|
|
{
|
|
return read(addr, *(uint32_t*)&data, flags);
|
|
}
|
|
|
|
|
|
template<>
|
|
Fault
|
|
SimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
|
|
{
|
|
return read(addr, (uint32_t&)data, flags);
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Fault
|
|
SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
if (traceData) {
|
|
traceData->setAddr(addr);
|
|
traceData->setData(data);
|
|
}
|
|
|
|
memReq->reset(addr, sizeof(T), flags);
|
|
|
|
// translate to physical address
|
|
Fault fault = xc->translateDataWriteReq(memReq);
|
|
|
|
// do functional access
|
|
if (fault == No_Fault)
|
|
fault = xc->write(memReq, data);
|
|
|
|
if (fault == No_Fault && dcacheInterface) {
|
|
memReq->cmd = Write;
|
|
memcpy(memReq->data,(uint8_t *)&data,memReq->size);
|
|
memReq->completionEvent = NULL;
|
|
memReq->time = curTick;
|
|
MemAccessResult result = dcacheInterface->access(memReq);
|
|
|
|
// Ugly hack to get an event scheduled *only* if the access is
|
|
// a miss. We really should add first-class support for this
|
|
// at some point.
|
|
if (result != MA_HIT && dcacheInterface->doEvents()) {
|
|
memReq->completionEvent = &cacheCompletionEvent;
|
|
lastDcacheStall = curTick;
|
|
unscheduleTickEvent();
|
|
_status = DcacheMissStall;
|
|
}
|
|
}
|
|
|
|
if (res && (fault == No_Fault))
|
|
*res = memReq->result;
|
|
|
|
if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
|
|
recordEvent("Uncached Write");
|
|
|
|
return fault;
|
|
}
|
|
|
|
|
|
#ifndef DOXYGEN_SHOULD_SKIP_THIS
|
|
template
|
|
Fault
|
|
SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
|
|
|
|
#endif //DOXYGEN_SHOULD_SKIP_THIS
|
|
|
|
template<>
|
|
Fault
|
|
SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
return write(*(uint64_t*)&data, addr, flags, res);
|
|
}
|
|
|
|
template<>
|
|
Fault
|
|
SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
return write(*(uint32_t*)&data, addr, flags, res);
|
|
}
|
|
|
|
|
|
template<>
|
|
Fault
|
|
SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
return write((uint32_t)data, addr, flags, res);
|
|
}
|
|
|
|
|
|
#ifdef FULL_SYSTEM
|
|
Addr
|
|
SimpleCPU::dbg_vtophys(Addr addr)
|
|
{
|
|
return vtophys(xc, addr);
|
|
}
|
|
#endif // FULL_SYSTEM
|
|
|
|
Tick save_cycle = 0;
|
|
|
|
|
|
void
|
|
SimpleCPU::processCacheCompletion()
|
|
{
|
|
switch (status()) {
|
|
case IcacheMissStall:
|
|
icacheStallCycles += curTick - lastIcacheStall;
|
|
_status = IcacheMissComplete;
|
|
scheduleTickEvent(1);
|
|
break;
|
|
case DcacheMissStall:
|
|
dcacheStallCycles += curTick - lastDcacheStall;
|
|
_status = Running;
|
|
scheduleTickEvent(1);
|
|
break;
|
|
case SwitchedOut:
|
|
// If this CPU has been switched out due to sampling/warm-up,
|
|
// ignore any further status changes (e.g., due to cache
|
|
// misses outstanding at the time of the switch).
|
|
return;
|
|
default:
|
|
panic("SimpleCPU::processCacheCompletion: bad state");
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef FULL_SYSTEM
|
|
void
|
|
SimpleCPU::post_interrupt(int int_num, int index)
|
|
{
|
|
BaseCPU::post_interrupt(int_num, index);
|
|
|
|
if (xc->status() == ExecContext::Suspended) {
|
|
DPRINTF(IPI,"Suspended Processor awoke\n");
|
|
xc->activate();
|
|
}
|
|
}
|
|
#endif // FULL_SYSTEM
|
|
|
|
/* start simulation, program loaded, processor precise state initialized */
|
|
void
|
|
SimpleCPU::tick()
|
|
{
|
|
numCycles++;
|
|
|
|
traceData = NULL;
|
|
|
|
Fault fault = No_Fault;
|
|
|
|
#ifdef FULL_SYSTEM
|
|
if (AlphaISA::check_interrupts &&
|
|
xc->cpu->check_interrupts() &&
|
|
!PC_PAL(xc->regs.pc) &&
|
|
status() != IcacheMissComplete) {
|
|
int ipl = 0;
|
|
int summary = 0;
|
|
AlphaISA::check_interrupts = 0;
|
|
IntReg *ipr = xc->regs.ipr;
|
|
|
|
if (xc->regs.ipr[TheISA::IPR_SIRR]) {
|
|
for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
|
|
i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
|
|
if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
|
|
// See table 4-19 of 21164 hardware reference
|
|
ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
|
|
summary |= (ULL(1) << i);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t interrupts = xc->cpu->intr_status();
|
|
for (int i = TheISA::INTLEVEL_EXTERNAL_MIN;
|
|
i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
|
|
if (interrupts & (ULL(1) << i)) {
|
|
// See table 4-19 of 21164 hardware reference
|
|
ipl = i;
|
|
summary |= (ULL(1) << i);
|
|
}
|
|
}
|
|
|
|
if (ipr[TheISA::IPR_ASTRR])
|
|
panic("asynchronous traps not implemented\n");
|
|
|
|
if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
|
|
ipr[TheISA::IPR_ISR] = summary;
|
|
ipr[TheISA::IPR_INTID] = ipl;
|
|
xc->ev5_trap(Interrupt_Fault);
|
|
|
|
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
|
|
ipr[TheISA::IPR_IPLR], ipl, summary);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// maintain $r0 semantics
|
|
xc->regs.intRegFile[ZeroReg] = 0;
|
|
#ifdef TARGET_ALPHA
|
|
xc->regs.floatRegFile.d[ZeroReg] = 0.0;
|
|
#endif // TARGET_ALPHA
|
|
|
|
if (status() == IcacheMissComplete) {
|
|
// We've already fetched an instruction and were stalled on an
|
|
// I-cache miss. No need to fetch it again.
|
|
|
|
// Set status to running; tick event will get rescheduled if
|
|
// necessary at end of tick() function.
|
|
_status = Running;
|
|
}
|
|
else {
|
|
// Try to fetch an instruction
|
|
|
|
// set up memory request for instruction fetch
|
|
#ifdef FULL_SYSTEM
|
|
#define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
|
|
#else
|
|
#define IFETCH_FLAGS(pc) 0
|
|
#endif
|
|
|
|
memReq->cmd = Read;
|
|
memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
|
|
IFETCH_FLAGS(xc->regs.pc));
|
|
|
|
fault = xc->translateInstReq(memReq);
|
|
|
|
if (fault == No_Fault)
|
|
fault = xc->mem->read(memReq, inst);
|
|
|
|
if (icacheInterface && fault == No_Fault) {
|
|
memReq->completionEvent = NULL;
|
|
|
|
memReq->time = curTick;
|
|
MemAccessResult result = icacheInterface->access(memReq);
|
|
|
|
// Ugly hack to get an event scheduled *only* if the access is
|
|
// a miss. We really should add first-class support for this
|
|
// at some point.
|
|
if (result != MA_HIT && icacheInterface->doEvents()) {
|
|
memReq->completionEvent = &cacheCompletionEvent;
|
|
lastIcacheStall = curTick;
|
|
unscheduleTickEvent();
|
|
_status = IcacheMissStall;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we've got a valid instruction (i.e., no fault on instruction
|
|
// fetch), then execute it.
|
|
if (fault == No_Fault) {
|
|
|
|
// keep an instruction count
|
|
numInst++;
|
|
numInsts++;
|
|
|
|
// check for instruction-count-based events
|
|
comInstEventQueue[0]->serviceEvents(numInst);
|
|
|
|
// decode the instruction
|
|
inst = htoa(inst);
|
|
StaticInstPtr<TheISA> si(inst);
|
|
|
|
traceData = Trace::getInstRecord(curTick, xc, this, si,
|
|
xc->regs.pc);
|
|
|
|
#ifdef FULL_SYSTEM
|
|
xc->setInst(inst);
|
|
#endif // FULL_SYSTEM
|
|
|
|
xc->func_exe_inst++;
|
|
|
|
fault = si->execute(this, traceData);
|
|
|
|
#ifdef FULL_SYSTEM
|
|
if (xc->fnbin)
|
|
xc->execute(si.get());
|
|
#endif
|
|
|
|
if (si->isMemRef()) {
|
|
numMemRefs++;
|
|
}
|
|
|
|
if (si->isLoad()) {
|
|
++numLoad;
|
|
comLoadEventQueue[0]->serviceEvents(numLoad);
|
|
}
|
|
|
|
if (traceData)
|
|
traceData->finalize();
|
|
|
|
} // if (fault == No_Fault)
|
|
|
|
if (fault != No_Fault) {
|
|
#ifdef FULL_SYSTEM
|
|
xc->ev5_trap(fault);
|
|
#else // !FULL_SYSTEM
|
|
fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
|
|
#endif // FULL_SYSTEM
|
|
}
|
|
else {
|
|
// go to the next instruction
|
|
xc->regs.pc = xc->regs.npc;
|
|
xc->regs.npc += sizeof(MachInst);
|
|
}
|
|
|
|
#ifdef FULL_SYSTEM
|
|
Addr oldpc;
|
|
do {
|
|
oldpc = xc->regs.pc;
|
|
system->pcEventQueue.service(xc);
|
|
} while (oldpc != xc->regs.pc);
|
|
#endif
|
|
|
|
assert(status() == Running ||
|
|
status() == Idle ||
|
|
status() == DcacheMissStall);
|
|
|
|
if (status() == Running && !tickEvent.scheduled())
|
|
tickEvent.schedule(curTick + 1);
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// SimpleCPU Simulation Object
|
|
//
|
|
BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
|
|
|
|
Param<Counter> max_insts_any_thread;
|
|
Param<Counter> max_insts_all_threads;
|
|
Param<Counter> max_loads_any_thread;
|
|
Param<Counter> max_loads_all_threads;
|
|
|
|
#ifdef FULL_SYSTEM
|
|
SimObjectParam<AlphaITB *> itb;
|
|
SimObjectParam<AlphaDTB *> dtb;
|
|
SimObjectParam<FunctionalMemory *> mem;
|
|
SimObjectParam<System *> system;
|
|
Param<int> mult;
|
|
#else
|
|
SimObjectParam<Process *> workload;
|
|
#endif // FULL_SYSTEM
|
|
|
|
SimObjectParam<BaseMem *> icache;
|
|
SimObjectParam<BaseMem *> dcache;
|
|
|
|
Param<bool> defer_registration;
|
|
Param<int> multiplier;
|
|
|
|
END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
|
|
|
|
BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
|
|
|
|
INIT_PARAM_DFLT(max_insts_any_thread,
|
|
"terminate when any thread reaches this inst count",
|
|
0),
|
|
INIT_PARAM_DFLT(max_insts_all_threads,
|
|
"terminate when all threads have reached this inst count",
|
|
0),
|
|
INIT_PARAM_DFLT(max_loads_any_thread,
|
|
"terminate when any thread reaches this load count",
|
|
0),
|
|
INIT_PARAM_DFLT(max_loads_all_threads,
|
|
"terminate when all threads have reached this load count",
|
|
0),
|
|
|
|
#ifdef FULL_SYSTEM
|
|
INIT_PARAM(itb, "Instruction TLB"),
|
|
INIT_PARAM(dtb, "Data TLB"),
|
|
INIT_PARAM(mem, "memory"),
|
|
INIT_PARAM(system, "system object"),
|
|
INIT_PARAM_DFLT(mult, "system clock multiplier", 1),
|
|
#else
|
|
INIT_PARAM(workload, "processes to run"),
|
|
#endif // FULL_SYSTEM
|
|
|
|
INIT_PARAM_DFLT(icache, "L1 instruction cache object", NULL),
|
|
INIT_PARAM_DFLT(dcache, "L1 data cache object", NULL),
|
|
INIT_PARAM_DFLT(defer_registration, "defer registration with system "
|
|
"(for sampling)", false),
|
|
|
|
INIT_PARAM_DFLT(multiplier, "clock multiplier", 1)
|
|
|
|
END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
|
|
|
|
|
|
CREATE_SIM_OBJECT(SimpleCPU)
|
|
{
|
|
SimpleCPU *cpu;
|
|
#ifdef FULL_SYSTEM
|
|
if (mult != 1)
|
|
panic("processor clock multiplier must be 1\n");
|
|
|
|
cpu = new SimpleCPU(getInstanceName(), system,
|
|
max_insts_any_thread, max_insts_all_threads,
|
|
max_loads_any_thread, max_loads_all_threads,
|
|
itb, dtb, mem,
|
|
(icache) ? icache->getInterface() : NULL,
|
|
(dcache) ? dcache->getInterface() : NULL,
|
|
defer_registration,
|
|
ticksPerSecond * mult);
|
|
#else
|
|
|
|
cpu = new SimpleCPU(getInstanceName(), workload,
|
|
max_insts_any_thread, max_insts_all_threads,
|
|
max_loads_any_thread, max_loads_all_threads,
|
|
(icache) ? icache->getInterface() : NULL,
|
|
(dcache) ? dcache->getInterface() : NULL,
|
|
defer_registration);
|
|
|
|
#endif // FULL_SYSTEM
|
|
|
|
cpu->setTickMultiplier(multiplier);
|
|
|
|
return cpu;
|
|
}
|
|
|
|
REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)
|
|
|