gem5/cpu/exec_context.hh
Nathan Binkert 9023f5c96d - Clean up and factor out all of the binning code into a
single place so it's easier to work with.
-  Add support for binning kernel/user/idle time separately from
lisa's binning stuff, but make the two compatible.
-  KernelStats used to directly implement the pImpl idiom, but
it makes more sense to just remove the level of indirection and
make the exec context have a pointer to the stats.
-  Factor common code out of LinuxSystem and Tru64System and put
it into the System base class.  While doing that, make all
constructors take a pointer to a parameter struct instead of
naming the parameters individually to make it much easier to add
parameters to these classes.

SConscript:
    Move the function tracking and binning stuff around.
arch/alpha/ev5.cc:
    kernelStats is now a pointer
arch/alpha/pseudo_inst.cc:
    kernelStats is now a pointer
    the parameters to the system have been moved into their own
    struct
base/trace.hh:
    provide a little functor class for wrapping a string that
    can allow you to define name() in any scope very simply
    for use with DPRINTF
cpu/base_cpu.cc:
    New order of arguments for consistency.
cpu/exec_context.cc:
    kernelStats no longer has the level of indirection in it,
    execContext has the indirection now.  so, kernelStats is a pointer.
    We also need a pointer to the kernelBinning stuff from the system
    and we need to figure out if we want to do binning or not.
    Move a whole bunch of code into kern_binning.cc so it's all
    in the same place.
cpu/exec_context.hh:
    We want pointers to the kernel binning/stats stuff and we'll
    have the exec_context and system have the level of indirection
    instead of having the extra layer in the kernel stats class.
cpu/simple_cpu/simple_cpu.cc:
    call through the exec context to do the special binning
    stuff.
kern/kernel_stats.cc:
kern/kernel_stats.hh:
    Re-organize the stats stuff and remove the level of indirection
    (that was there to simplify building) and move the binning stuff
    into its own class/file.
kern/linux/linux_system.cc:
kern/linux/linux_system.hh:
kern/tru64/tru64_system.cc:
kern/tru64/tru64_system.hh:
sim/system.cc:
sim/system.hh:
    move lots of common system code into the base system class so
    that it can be shared between linux, tru64, and whatever else
    we decide to support in the future.

    Make the constructor take a pointer to a parameter struct so that
    it is easier to pass parameters to the parent.
kern/system_events.cc:
    move the majority of the binning code into the Kernel::Binning class
    in the kern_binning file
kern/system_events.hh:
    FnEvents only need to know the bin
    create the Idle start event to find the PCBB of the idle
    process when it starts.
kern/tru64/tru64_events.cc:
    memCtrl -> memctrl
sim/process.cc:
sim/process.hh:
    re-order args for consistency

--HG--
extra : convert_revision : 86cb39738c41fcd680f2aad125c9dde000227b2b
2004-08-20 11:35:31 -04:00

470 lines
13 KiB
C++

/*
* Copyright (c) 2001-2004 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __EXEC_CONTEXT_HH__
#define __EXEC_CONTEXT_HH__
#include "sim/host.hh"
#include "mem/mem_req.hh"
#include "mem/functional_mem/functional_memory.hh"
#include "sim/serialize.hh"
#include "targetarch/byte_swap.hh"
// forward declaration: see functional_memory.hh
class FunctionalMemory;
class PhysicalMemory;
class BaseCPU;
#ifdef FULL_SYSTEM
#include "sim/system.hh"
#include "targetarch/alpha_memory.hh"
class MemoryController;
class StaticInstBase;
namespace Kernel { class Binning; class Statistics; }
#else // !FULL_SYSTEM
#include "sim/process.hh"
#endif // FULL_SYSTEM
//
// The ExecContext object represents a functional context for
// instruction execution. It incorporates everything required for
// architecture-level functional simulation of a single thread.
//
class ExecContext
{
public:
enum Status
{
/// Initialized but not running yet. All CPUs start in
/// this state, but most transition to Active on cycle 1.
/// In MP or SMT systems, non-primary contexts will stay
/// in this state until a thread is assigned to them.
Unallocated,
/// Running. Instructions should be executed only when
/// the context is in this state.
Active,
/// Temporarily inactive. Entered while waiting for
/// synchronization, etc.
Suspended,
/// Permanently shut down. Entered when target executes
/// m5exit pseudo-instruction. When all contexts enter
/// this state, the simulation will terminate.
Halted
};
private:
Status _status;
public:
Status status() const { return _status; }
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
void activate(int delay = 1);
/// Set the status to Suspended.
void suspend();
/// Set the status to Unallocated.
void deallocate();
/// Set the status to Halted.
void halt();
public:
RegFile regs; // correct-path register context
// pointer to CPU associated with this context
BaseCPU *cpu;
// Current instruction
MachInst inst;
// Index of hardware thread context on the CPU that this represents.
int thread_num;
// ID of this context w.r.t. the System or Process object to which
// it belongs. For full-system mode, this is the system CPU ID.
int cpu_id;
#ifdef FULL_SYSTEM
FunctionalMemory *mem;
AlphaITB *itb;
AlphaDTB *dtb;
System *system;
// the following two fields are redundant, since we can always
// look them up through the system pointer, but we'll leave them
// here for now for convenience
MemoryController *memctrl;
PhysicalMemory *physmem;
Kernel::Binning *kernelBinning;
Kernel::Statistics *kernelStats;
bool bin;
bool fnbin;
void execute(const StaticInstBase *inst);
#else
Process *process;
FunctionalMemory *mem; // functional storage for process address space
// Address space ID. Note that this is used for TIMING cache
// simulation only; all functional memory accesses should use
// one of the FunctionalMemory pointers above.
short asid;
#endif
/**
* Temporary storage to pass the source address from copy_load to
* copy_store.
* @todo Remove this temporary when we have a better way to do it.
*/
Addr copySrcAddr;
/**
* Temp storage for the physical source address of a copy.
* @todo Remove this temporary when we have a better way to do it.
*/
Addr copySrcPhysAddr;
/*
* number of executed instructions, for matching with syscall trace
* points in EIO files.
*/
Counter func_exe_inst;
//
// Count failed store conditionals so we can warn of apparent
// application deadlock situations.
unsigned storeCondFailures;
// constructor: initialize context from given process structure
#ifdef FULL_SYSTEM
ExecContext(BaseCPU *_cpu, int _thread_num, System *_system,
AlphaITB *_itb, AlphaDTB *_dtb, FunctionalMemory *_dem);
#else
ExecContext(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid);
ExecContext(BaseCPU *_cpu, int _thread_num, FunctionalMemory *_mem,
int _asid);
#endif
virtual ~ExecContext();
virtual void takeOverFrom(ExecContext *oldContext);
void regStats(const std::string &name);
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
#ifdef FULL_SYSTEM
bool validInstAddr(Addr addr) { return true; }
bool validDataAddr(Addr addr) { return true; }
int getInstAsid() { return ITB_ASN_ASN(regs.ipr[TheISA::IPR_ITB_ASN]); }
int getDataAsid() { return DTB_ASN_ASN(regs.ipr[TheISA::IPR_DTB_ASN]); }
Fault translateInstReq(MemReqPtr &req)
{
return itb->translate(req);
}
Fault translateDataReadReq(MemReqPtr &req)
{
return dtb->translate(req, false);
}
Fault translateDataWriteReq(MemReqPtr &req)
{
return dtb->translate(req, true);
}
#else
bool validInstAddr(Addr addr)
{ return process->validInstAddr(addr); }
bool validDataAddr(Addr addr)
{ return process->validDataAddr(addr); }
int getInstAsid() { return asid; }
int getDataAsid() { return asid; }
Fault dummyTranslation(MemReqPtr &req)
{
#if 0
assert((req->vaddr >> 48 & 0xffff) == 0);
#endif
// put the asid in the upper 16 bits of the paddr
req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
return No_Fault;
}
Fault translateInstReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
Fault translateDataReadReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
Fault translateDataWriteReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
#endif
template <class T>
Fault read(MemReqPtr &req, T &data)
{
#if defined(TARGET_ALPHA) && defined(FULL_SYSTEM)
if (req->flags & LOCKED) {
MiscRegFile *cregs = &req->xc->regs.miscRegs;
cregs->lock_addr = req->paddr;
cregs->lock_flag = true;
}
#endif
Fault error;
error = mem->read(req, data);
data = htoa(data);
return error;
}
template <class T>
Fault write(MemReqPtr &req, T &data)
{
#if defined(TARGET_ALPHA) && defined(FULL_SYSTEM)
MiscRegFile *cregs;
// If this is a store conditional, act appropriately
if (req->flags & LOCKED) {
cregs = &req->xc->regs.miscRegs;
if (req->flags & UNCACHEABLE) {
// Don't update result register (see stq_c in isa_desc)
req->result = 2;
req->xc->storeCondFailures = 0;//Needed? [RGD]
} else {
req->result = cregs->lock_flag;
if (!cregs->lock_flag ||
((cregs->lock_addr & ~0xf) != (req->paddr & ~0xf))) {
cregs->lock_flag = false;
if (((++req->xc->storeCondFailures) % 100000) == 0) {
std::cerr << "Warning: "
<< req->xc->storeCondFailures
<< " consecutive store conditional failures "
<< "on cpu " << req->xc->cpu_id
<< std::endl;
}
return No_Fault;
}
else req->xc->storeCondFailures = 0;
}
}
// Need to clear any locked flags on other proccessors for
// this address. Only do this for succsful Store Conditionals
// and all other stores (WH64?). Unsuccessful Store
// Conditionals would have returned above, and wouldn't fall
// through.
for (int i = 0; i < system->execContexts.size(); i++){
cregs = &system->execContexts[i]->regs.miscRegs;
if ((cregs->lock_addr & ~0xf) == (req->paddr & ~0xf)) {
cregs->lock_flag = false;
}
}
#endif
return mem->write(req, (T)htoa(data));
}
virtual bool misspeculating();
MachInst getInst() { return inst; }
void setInst(MachInst new_inst)
{
inst = new_inst;
}
Fault instRead(MemReqPtr &req)
{
return mem->read(req, inst);
}
//
// New accessors for new decoder.
//
uint64_t readIntReg(int reg_idx)
{
return regs.intRegFile[reg_idx];
}
float readFloatRegSingle(int reg_idx)
{
return (float)regs.floatRegFile.d[reg_idx];
}
double readFloatRegDouble(int reg_idx)
{
return regs.floatRegFile.d[reg_idx];
}
uint64_t readFloatRegInt(int reg_idx)
{
return regs.floatRegFile.q[reg_idx];
}
void setIntReg(int reg_idx, uint64_t val)
{
regs.intRegFile[reg_idx] = val;
}
void setFloatRegSingle(int reg_idx, float val)
{
regs.floatRegFile.d[reg_idx] = (double)val;
}
void setFloatRegDouble(int reg_idx, double val)
{
regs.floatRegFile.d[reg_idx] = val;
}
void setFloatRegInt(int reg_idx, uint64_t val)
{
regs.floatRegFile.q[reg_idx] = val;
}
uint64_t readPC()
{
return regs.pc;
}
void setNextPC(uint64_t val)
{
regs.npc = val;
}
uint64_t readUniq()
{
return regs.miscRegs.uniq;
}
void setUniq(uint64_t val)
{
regs.miscRegs.uniq = val;
}
uint64_t readFpcr()
{
return regs.miscRegs.fpcr;
}
void setFpcr(uint64_t val)
{
regs.miscRegs.fpcr = val;
}
#ifdef FULL_SYSTEM
uint64_t readIpr(int idx, Fault &fault);
Fault setIpr(int idx, uint64_t val);
int readIntrFlag() { return regs.intrflag; }
void setIntrFlag(int val) { regs.intrflag = val; }
Fault hwrei();
bool inPalMode() { return PC_PAL(regs.pc); }
void ev5_trap(Fault fault);
bool simPalCheck(int palFunc);
#endif
/** Meant to be more generic trap function to be
* called when an instruction faults.
* @param fault The fault generated by executing the instruction.
* @todo How to do this properly so it's dependent upon ISA only?
*/
void trap(Fault fault);
#ifndef FULL_SYSTEM
IntReg getSyscallArg(int i)
{
return regs.intRegFile[ArgumentReg0 + i];
}
// used to shift args for indirect syscall
void setSyscallArg(int i, IntReg val)
{
regs.intRegFile[ArgumentReg0 + i] = val;
}
void setSyscallReturn(int64_t return_value)
{
// check for error condition. Alpha syscall convention is to
// indicate success/failure in reg a3 (r19) and put the
// return value itself in the standard return value reg (v0).
const int RegA3 = 19; // only place this is used
if (return_value >= 0) {
// no error
regs.intRegFile[RegA3] = 0;
regs.intRegFile[ReturnValueReg] = return_value;
} else {
// got an error, return details
regs.intRegFile[RegA3] = (IntReg) -1;
regs.intRegFile[ReturnValueReg] = -return_value;
}
}
void syscall()
{
process->syscall(this);
}
#endif
};
// for non-speculative execution context, spec_mode is always false
inline bool
ExecContext::misspeculating()
{
return false;
}
#endif // __EXEC_CONTEXT_HH__