gem5/src/dev/ide_ctrl.cc
Nathan Binkert abc76f20cb Major changes to how SimObjects are created and initialized. Almost all
creation and initialization now happens in python.  Parameter objects
are generated and initialized by python.  The .ini file is now solely for
debugging purposes and is not used in construction of the objects in any
way.

--HG--
extra : convert_revision : 7e722873e417cb3d696f2e34c35ff488b7bff4ed
2007-07-23 21:51:38 -07:00

753 lines
23 KiB
C++

/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Andrew Schultz
* Ali Saidi
* Miguel Serrano
*/
#include <cstddef>
#include <cstdlib>
#include <string>
#include <vector>
#include "base/trace.hh"
#include "cpu/intr_control.hh"
#include "dev/ide_ctrl.hh"
#include "dev/ide_disk.hh"
#include "dev/pciconfigall.hh"
#include "dev/pcireg.h"
#include "dev/platform.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "params/IdeController.hh"
#include "sim/sim_object.hh"
#include "sim/byteswap.hh"
using namespace std;
////
// Initialization and destruction
////
IdeController::IdeController(Params *p)
: PciDev(p)
{
// initialize the PIO interface addresses
pri_cmd_addr = 0;
pri_cmd_size = BARSize[0];
pri_ctrl_addr = 0;
pri_ctrl_size = BARSize[1];
sec_cmd_addr = 0;
sec_cmd_size = BARSize[2];
sec_ctrl_addr = 0;
sec_ctrl_size = BARSize[3];
// initialize the bus master interface (BMI) address to be configured
// via PCI
bmi_addr = 0;
bmi_size = BARSize[4];
// zero out all of the registers
memset(bmi_regs.data, 0, sizeof(bmi_regs));
memset(config_regs.data, 0, sizeof(config_regs.data));
// setup initial values
// enable both channels
config_regs.idetim0 = htole((uint16_t)IDETIM_DECODE_EN);
config_regs.idetim1 = htole((uint16_t)IDETIM_DECODE_EN);
bmi_regs.bmis0 = DMA1CAP | DMA0CAP;
bmi_regs.bmis1 = DMA1CAP | DMA0CAP;
// reset all internal variables
io_enabled = false;
bm_enabled = false;
memset(cmd_in_progress, 0, sizeof(cmd_in_progress));
// setup the disks attached to controller
memset(disks, 0, sizeof(disks));
dev[0] = 0;
dev[1] = 0;
if (params()->disks.size() > 3)
panic("IDE controllers support a maximum of 4 devices attached!\n");
for (int i = 0; i < params()->disks.size(); i++) {
disks[i] = params()->disks[i];
disks[i]->setController(this);
}
}
IdeController::~IdeController()
{
for (int i = 0; i < 4; i++)
if (disks[i])
delete disks[i];
}
////
// Utility functions
///
void
IdeController::parseAddr(const Addr &addr, Addr &offset, IdeChannel &channel,
IdeRegType &reg_type)
{
offset = addr;
if (addr >= pri_cmd_addr && addr < (pri_cmd_addr + pri_cmd_size)) {
offset -= pri_cmd_addr;
reg_type = COMMAND_BLOCK;
channel = PRIMARY;
} else if (addr >= pri_ctrl_addr &&
addr < (pri_ctrl_addr + pri_ctrl_size)) {
offset -= pri_ctrl_addr;
reg_type = CONTROL_BLOCK;
channel = PRIMARY;
} else if (addr >= sec_cmd_addr &&
addr < (sec_cmd_addr + sec_cmd_size)) {
offset -= sec_cmd_addr;
reg_type = COMMAND_BLOCK;
channel = SECONDARY;
} else if (addr >= sec_ctrl_addr &&
addr < (sec_ctrl_addr + sec_ctrl_size)) {
offset -= sec_ctrl_addr;
reg_type = CONTROL_BLOCK;
channel = SECONDARY;
} else if (addr >= bmi_addr && addr < (bmi_addr + bmi_size)) {
offset -= bmi_addr;
reg_type = BMI_BLOCK;
channel = (offset < BMIC1) ? PRIMARY : SECONDARY;
} else {
panic("IDE controller access to invalid address: %#x\n", addr);
}
}
int
IdeController::getDisk(IdeChannel channel)
{
int disk = 0;
uint8_t *devBit = &dev[0];
if (channel == SECONDARY) {
disk += 2;
devBit = &dev[1];
}
disk += *devBit;
assert(*devBit == 0 || *devBit == 1);
return disk;
}
int
IdeController::getDisk(IdeDisk *diskPtr)
{
for (int i = 0; i < 4; i++) {
if ((long)diskPtr == (long)disks[i])
return i;
}
return -1;
}
bool
IdeController::isDiskSelected(IdeDisk *diskPtr)
{
for (int i = 0; i < 4; i++) {
if ((long)diskPtr == (long)disks[i]) {
// is disk is on primary or secondary channel
int channel = i/2;
// is disk the master or slave
int devID = i%2;
return (dev[channel] == devID);
}
}
panic("Unable to find disk by pointer!!\n");
}
////
// Command completion
////
void
IdeController::setDmaComplete(IdeDisk *disk)
{
int diskNum = getDisk(disk);
if (diskNum < 0)
panic("Unable to find disk based on pointer %#x\n", disk);
if (diskNum < 2) {
// clear the start/stop bit in the command register
bmi_regs.bmic0 &= ~SSBM;
// clear the bus master active bit in the status register
bmi_regs.bmis0 &= ~BMIDEA;
// set the interrupt bit
bmi_regs.bmis0 |= IDEINTS;
} else {
// clear the start/stop bit in the command register
bmi_regs.bmic1 &= ~SSBM;
// clear the bus master active bit in the status register
bmi_regs.bmis1 &= ~BMIDEA;
// set the interrupt bit
bmi_regs.bmis1 |= IDEINTS;
}
}
////
// Read and write handling
////
Tick
IdeController::readConfig(PacketPtr pkt)
{
int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
if (offset < PCI_DEVICE_SPECIFIC)
return PciDev::readConfig(pkt);
assert(offset >= IDE_CTRL_CONF_START && (offset + 1) <= IDE_CTRL_CONF_END);
pkt->allocate();
switch (pkt->getSize()) {
case sizeof(uint8_t):
switch (offset) {
case IDE_CTRL_CONF_DEV_TIMING:
pkt->set<uint8_t>(config_regs.sidetim);
break;
case IDE_CTRL_CONF_UDMA_CNTRL:
pkt->set<uint8_t>(config_regs.udmactl);
break;
case IDE_CTRL_CONF_PRIM_TIMING+1:
pkt->set<uint8_t>(htole(config_regs.idetim0) >> 8);
break;
case IDE_CTRL_CONF_SEC_TIMING+1:
pkt->set<uint8_t>(htole(config_regs.idetim1) >> 8);
break;
case IDE_CTRL_CONF_IDE_CONFIG:
pkt->set<uint8_t>(htole(config_regs.ideconfig) & 0xFF);
break;
case IDE_CTRL_CONF_IDE_CONFIG+1:
pkt->set<uint8_t>(htole(config_regs.ideconfig) >> 8);
break;
default:
panic("Invalid PCI configuration read for size 1 at offset: %#x!\n",
offset);
}
DPRINTF(IdeCtrl, "PCI read offset: %#x size: 1 data: %#x\n", offset,
(uint32_t)pkt->get<uint8_t>());
break;
case sizeof(uint16_t):
switch (offset) {
case IDE_CTRL_CONF_PRIM_TIMING:
pkt->set<uint16_t>(config_regs.idetim0);
break;
case IDE_CTRL_CONF_SEC_TIMING:
pkt->set<uint16_t>(config_regs.idetim1);
break;
case IDE_CTRL_CONF_UDMA_TIMING:
pkt->set<uint16_t>(config_regs.udmatim);
break;
case IDE_CTRL_CONF_IDE_CONFIG:
pkt->set<uint16_t>(config_regs.ideconfig);
break;
default:
panic("Invalid PCI configuration read for size 2 offset: %#x!\n",
offset);
}
DPRINTF(IdeCtrl, "PCI read offset: %#x size: 2 data: %#x\n", offset,
(uint32_t)pkt->get<uint16_t>());
break;
case sizeof(uint32_t):
panic("No 32bit reads implemented for this device.");
DPRINTF(IdeCtrl, "PCI read offset: %#x size: 4 data: %#x\n", offset,
(uint32_t)pkt->get<uint32_t>());
break;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
pkt->result = Packet::Success;
return configDelay;
}
Tick
IdeController::writeConfig(PacketPtr pkt)
{
int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
if (offset < PCI_DEVICE_SPECIFIC) {
PciDev::writeConfig(pkt);
} else {
assert(offset >= IDE_CTRL_CONF_START && (offset + 1) <= IDE_CTRL_CONF_END);
switch (pkt->getSize()) {
case sizeof(uint8_t):
switch (offset) {
case IDE_CTRL_CONF_DEV_TIMING:
config_regs.sidetim = pkt->get<uint8_t>();
break;
case IDE_CTRL_CONF_UDMA_CNTRL:
config_regs.udmactl = pkt->get<uint8_t>();
break;
case IDE_CTRL_CONF_IDE_CONFIG:
config_regs.ideconfig = (config_regs.ideconfig & 0xFF00) |
(pkt->get<uint8_t>());
break;
case IDE_CTRL_CONF_IDE_CONFIG+1:
config_regs.ideconfig = (config_regs.ideconfig & 0x00FF) |
pkt->get<uint8_t>() << 8;
break;
default:
panic("Invalid PCI configuration write for size 1 offset: %#x!\n",
offset);
}
DPRINTF(IdeCtrl, "PCI write offset: %#x size: 1 data: %#x\n",
offset, (uint32_t)pkt->get<uint8_t>());
break;
case sizeof(uint16_t):
switch (offset) {
case IDE_CTRL_CONF_PRIM_TIMING:
config_regs.idetim0 = pkt->get<uint16_t>();
break;
case IDE_CTRL_CONF_SEC_TIMING:
config_regs.idetim1 = pkt->get<uint16_t>();
break;
case IDE_CTRL_CONF_UDMA_TIMING:
config_regs.udmatim = pkt->get<uint16_t>();
break;
case IDE_CTRL_CONF_IDE_CONFIG:
config_regs.ideconfig = pkt->get<uint16_t>();
break;
default:
panic("Invalid PCI configuration write for size 2 offset: %#x!\n",
offset);
}
DPRINTF(IdeCtrl, "PCI write offset: %#x size: 2 data: %#x\n",
offset, (uint32_t)pkt->get<uint16_t>());
break;
case sizeof(uint32_t):
panic("Write of unimplemented PCI config. register: %x\n", offset);
break;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
}
/* Trap command register writes and enable IO/BM as appropriate as well as
* BARs. */
switch(offset) {
case PCI0_BASE_ADDR0:
if (BARAddrs[0] != 0)
pri_cmd_addr = BARAddrs[0];
break;
case PCI0_BASE_ADDR1:
if (BARAddrs[1] != 0)
pri_ctrl_addr = BARAddrs[1];
break;
case PCI0_BASE_ADDR2:
if (BARAddrs[2] != 0)
sec_cmd_addr = BARAddrs[2];
break;
case PCI0_BASE_ADDR3:
if (BARAddrs[3] != 0)
sec_ctrl_addr = BARAddrs[3];
break;
case PCI0_BASE_ADDR4:
if (BARAddrs[4] != 0)
bmi_addr = BARAddrs[4];
break;
case PCI_COMMAND:
if (letoh(config.command) & PCI_CMD_IOSE)
io_enabled = true;
else
io_enabled = false;
if (letoh(config.command) & PCI_CMD_BME)
bm_enabled = true;
else
bm_enabled = false;
break;
}
pkt->result = Packet::Success;
return configDelay;
}
Tick
IdeController::read(PacketPtr pkt)
{
Addr offset;
IdeChannel channel;
IdeRegType reg_type;
int disk;
pkt->allocate();
if (pkt->getSize() != 1 && pkt->getSize() != 2 && pkt->getSize() !=4)
panic("Bad IDE read size: %d\n", pkt->getSize());
parseAddr(pkt->getAddr(), offset, channel, reg_type);
if (!io_enabled) {
pkt->result = Packet::Success;
return pioDelay;
}
switch (reg_type) {
case BMI_BLOCK:
switch (pkt->getSize()) {
case sizeof(uint8_t):
pkt->set(bmi_regs.data[offset]);
break;
case sizeof(uint16_t):
pkt->set(*(uint16_t*)&bmi_regs.data[offset]);
break;
case sizeof(uint32_t):
pkt->set(*(uint32_t*)&bmi_regs.data[offset]);
break;
default:
panic("IDE read of BMI reg invalid size: %#x\n", pkt->getSize());
}
break;
case COMMAND_BLOCK:
case CONTROL_BLOCK:
disk = getDisk(channel);
if (disks[disk] == NULL) {
pkt->set<uint8_t>(0);
break;
}
switch (offset) {
case DATA_OFFSET:
switch (pkt->getSize()) {
case sizeof(uint16_t):
disks[disk]->read(offset, reg_type, pkt->getPtr<uint8_t>());
break;
case sizeof(uint32_t):
disks[disk]->read(offset, reg_type, pkt->getPtr<uint8_t>());
disks[disk]->read(offset, reg_type,
pkt->getPtr<uint8_t>() + sizeof(uint16_t));
break;
default:
panic("IDE read of data reg invalid size: %#x\n", pkt->getSize());
}
break;
default:
if (pkt->getSize() == sizeof(uint8_t)) {
disks[disk]->read(offset, reg_type, pkt->getPtr<uint8_t>());
} else
panic("IDE read of command reg of invalid size: %#x\n", pkt->getSize());
}
break;
default:
panic("IDE controller read of unknown register block type!\n");
}
if (pkt->getSize() == 1)
DPRINTF(IdeCtrl, "read from offset: %#x size: %#x data: %#x\n",
offset, pkt->getSize(), (uint32_t)pkt->get<uint8_t>());
else if (pkt->getSize() == 2)
DPRINTF(IdeCtrl, "read from offset: %#x size: %#x data: %#x\n",
offset, pkt->getSize(), pkt->get<uint16_t>());
else
DPRINTF(IdeCtrl, "read from offset: %#x size: %#x data: %#x\n",
offset, pkt->getSize(), pkt->get<uint32_t>());
pkt->result = Packet::Success;
return pioDelay;
}
Tick
IdeController::write(PacketPtr pkt)
{
Addr offset;
IdeChannel channel;
IdeRegType reg_type;
int disk;
uint8_t oldVal, newVal;
parseAddr(pkt->getAddr(), offset, channel, reg_type);
if (!io_enabled) {
pkt->result = Packet::Success;
DPRINTF(IdeCtrl, "io not enabled\n");
return pioDelay;
}
switch (reg_type) {
case BMI_BLOCK:
if (!bm_enabled) {
pkt->result = Packet::Success;
return pioDelay;
}
switch (offset) {
// Bus master IDE command register
case BMIC1:
case BMIC0:
if (pkt->getSize() != sizeof(uint8_t))
panic("Invalid BMIC write size: %x\n", pkt->getSize());
// select the current disk based on DEV bit
disk = getDisk(channel);
oldVal = bmi_regs.chan[channel].bmic;
newVal = pkt->get<uint8_t>();
// if a DMA transfer is in progress, R/W control cannot change
if (oldVal & SSBM) {
if ((oldVal & RWCON) ^ (newVal & RWCON)) {
(oldVal & RWCON) ? newVal |= RWCON : newVal &= ~RWCON;
}
}
// see if the start/stop bit is being changed
if ((oldVal & SSBM) ^ (newVal & SSBM)) {
if (oldVal & SSBM) {
// stopping DMA transfer
DPRINTF(IdeCtrl, "Stopping DMA transfer\n");
// clear the BMIDEA bit
bmi_regs.chan[channel].bmis =
bmi_regs.chan[channel].bmis & ~BMIDEA;
if (disks[disk] == NULL)
panic("DMA stop for disk %d which does not exist\n",
disk);
// inform the disk of the DMA transfer abort
disks[disk]->abortDma();
} else {
// starting DMA transfer
DPRINTF(IdeCtrl, "Starting DMA transfer\n");
// set the BMIDEA bit
bmi_regs.chan[channel].bmis =
bmi_regs.chan[channel].bmis | BMIDEA;
if (disks[disk] == NULL)
panic("DMA start for disk %d which does not exist\n",
disk);
// inform the disk of the DMA transfer start
disks[disk]->startDma(letoh(bmi_regs.chan[channel].bmidtp));
}
}
// update the register value
bmi_regs.chan[channel].bmic = newVal;
break;
// Bus master IDE status register
case BMIS0:
case BMIS1:
if (pkt->getSize() != sizeof(uint8_t))
panic("Invalid BMIS write size: %x\n", pkt->getSize());
oldVal = bmi_regs.chan[channel].bmis;
newVal = pkt->get<uint8_t>();
// the BMIDEA bit is RO
newVal |= (oldVal & BMIDEA);
// to reset (set 0) IDEINTS and IDEDMAE, write 1 to each
if ((oldVal & IDEINTS) && (newVal & IDEINTS))
newVal &= ~IDEINTS; // clear the interrupt?
else
(oldVal & IDEINTS) ? newVal |= IDEINTS : newVal &= ~IDEINTS;
if ((oldVal & IDEDMAE) && (newVal & IDEDMAE))
newVal &= ~IDEDMAE;
else
(oldVal & IDEDMAE) ? newVal |= IDEDMAE : newVal &= ~IDEDMAE;
bmi_regs.chan[channel].bmis = newVal;
break;
// Bus master IDE descriptor table pointer register
case BMIDTP0:
case BMIDTP1:
{
if (pkt->getSize() != sizeof(uint32_t))
panic("Invalid BMIDTP write size: %x\n", pkt->getSize());
bmi_regs.chan[channel].bmidtp = htole(pkt->get<uint32_t>() & ~0x3);
}
break;
default:
if (pkt->getSize() != sizeof(uint8_t) &&
pkt->getSize() != sizeof(uint16_t) &&
pkt->getSize() != sizeof(uint32_t))
panic("IDE controller write of invalid write size: %x\n",
pkt->getSize());
// do a default copy of data into the registers
memcpy(&bmi_regs.data[offset], pkt->getPtr<uint8_t>(), pkt->getSize());
}
break;
case COMMAND_BLOCK:
if (offset == IDE_SELECT_OFFSET) {
uint8_t *devBit = &dev[channel];
*devBit = (letoh(pkt->get<uint8_t>()) & IDE_SELECT_DEV_BIT) ? 1 : 0;
}
// fall-through ok!
case CONTROL_BLOCK:
disk = getDisk(channel);
if (disks[disk] == NULL)
break;
switch (offset) {
case DATA_OFFSET:
switch (pkt->getSize()) {
case sizeof(uint16_t):
disks[disk]->write(offset, reg_type, pkt->getPtr<uint8_t>());
break;
case sizeof(uint32_t):
disks[disk]->write(offset, reg_type, pkt->getPtr<uint8_t>());
disks[disk]->write(offset, reg_type, pkt->getPtr<uint8_t>() +
sizeof(uint16_t));
break;
default:
panic("IDE write of data reg invalid size: %#x\n", pkt->getSize());
}
break;
default:
if (pkt->getSize() == sizeof(uint8_t)) {
disks[disk]->write(offset, reg_type, pkt->getPtr<uint8_t>());
} else
panic("IDE write of command reg of invalid size: %#x\n", pkt->getSize());
}
break;
default:
panic("IDE controller write of unknown register block type!\n");
}
if (pkt->getSize() == 1)
DPRINTF(IdeCtrl, "write to offset: %#x size: %#x data: %#x\n",
offset, pkt->getSize(), (uint32_t)pkt->get<uint8_t>());
else if (pkt->getSize() == 2)
DPRINTF(IdeCtrl, "write to offset: %#x size: %#x data: %#x\n",
offset, pkt->getSize(), pkt->get<uint16_t>());
else
DPRINTF(IdeCtrl, "write to offset: %#x size: %#x data: %#x\n",
offset, pkt->getSize(), pkt->get<uint32_t>());
pkt->result = Packet::Success;
return pioDelay;
}
////
// Serialization
////
void
IdeController::serialize(std::ostream &os)
{
// Serialize the PciDev base class
PciDev::serialize(os);
// Serialize register addresses and sizes
SERIALIZE_SCALAR(pri_cmd_addr);
SERIALIZE_SCALAR(pri_cmd_size);
SERIALIZE_SCALAR(pri_ctrl_addr);
SERIALIZE_SCALAR(pri_ctrl_size);
SERIALIZE_SCALAR(sec_cmd_addr);
SERIALIZE_SCALAR(sec_cmd_size);
SERIALIZE_SCALAR(sec_ctrl_addr);
SERIALIZE_SCALAR(sec_ctrl_size);
SERIALIZE_SCALAR(bmi_addr);
SERIALIZE_SCALAR(bmi_size);
// Serialize registers
SERIALIZE_ARRAY(bmi_regs.data,
sizeof(bmi_regs.data) / sizeof(bmi_regs.data[0]));
SERIALIZE_ARRAY(dev, sizeof(dev) / sizeof(dev[0]));
SERIALIZE_ARRAY(config_regs.data,
sizeof(config_regs.data) / sizeof(config_regs.data[0]));
// Serialize internal state
SERIALIZE_SCALAR(io_enabled);
SERIALIZE_SCALAR(bm_enabled);
SERIALIZE_ARRAY(cmd_in_progress,
sizeof(cmd_in_progress) / sizeof(cmd_in_progress[0]));
}
void
IdeController::unserialize(Checkpoint *cp, const std::string &section)
{
// Unserialize the PciDev base class
PciDev::unserialize(cp, section);
// Unserialize register addresses and sizes
UNSERIALIZE_SCALAR(pri_cmd_addr);
UNSERIALIZE_SCALAR(pri_cmd_size);
UNSERIALIZE_SCALAR(pri_ctrl_addr);
UNSERIALIZE_SCALAR(pri_ctrl_size);
UNSERIALIZE_SCALAR(sec_cmd_addr);
UNSERIALIZE_SCALAR(sec_cmd_size);
UNSERIALIZE_SCALAR(sec_ctrl_addr);
UNSERIALIZE_SCALAR(sec_ctrl_size);
UNSERIALIZE_SCALAR(bmi_addr);
UNSERIALIZE_SCALAR(bmi_size);
// Unserialize registers
UNSERIALIZE_ARRAY(bmi_regs.data,
sizeof(bmi_regs.data) / sizeof(bmi_regs.data[0]));
UNSERIALIZE_ARRAY(dev, sizeof(dev) / sizeof(dev[0]));
UNSERIALIZE_ARRAY(config_regs.data,
sizeof(config_regs.data) / sizeof(config_regs.data[0]));
// Unserialize internal state
UNSERIALIZE_SCALAR(io_enabled);
UNSERIALIZE_SCALAR(bm_enabled);
UNSERIALIZE_ARRAY(cmd_in_progress,
sizeof(cmd_in_progress) / sizeof(cmd_in_progress[0]));
}
IdeController *
IdeControllerParams::create()
{
return new IdeController(this);
}