gem5/src/cpu/simple/atomic.cc
Nathan Binkert abc76f20cb Major changes to how SimObjects are created and initialized. Almost all
creation and initialization now happens in python.  Parameter objects
are generated and initialized by python.  The .ini file is now solely for
debugging purposes and is not used in construction of the objects in any
way.

--HG--
extra : convert_revision : 7e722873e417cb3d696f2e34c35ff488b7bff4ed
2007-07-23 21:51:38 -07:00

610 lines
16 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
*/
#include "arch/locked_mem.hh"
#include "arch/mmaped_ipr.hh"
#include "arch/utility.hh"
#include "base/bigint.hh"
#include "cpu/exetrace.hh"
#include "cpu/simple/atomic.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "params/AtomicSimpleCPU.hh"
#include "sim/system.hh"
using namespace std;
using namespace TheISA;
AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
: Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
{
}
void
AtomicSimpleCPU::TickEvent::process()
{
cpu->tick();
}
const char *
AtomicSimpleCPU::TickEvent::description()
{
return "AtomicSimpleCPU tick event";
}
Port *
AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
{
if (if_name == "dcache_port")
return &dcachePort;
else if (if_name == "icache_port")
return &icachePort;
else
panic("No Such Port\n");
}
void
AtomicSimpleCPU::init()
{
BaseCPU::init();
#if FULL_SYSTEM
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *tc = threadContexts[i];
// initialize CPU, including PC
TheISA::initCPU(tc, tc->readCpuId());
}
#endif
}
bool
AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
{
panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
return true;
}
Tick
AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
{
//Snooping a coherence request, just return
return 0;
}
void
AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
{
//No internal storage to update, just return
return;
}
void
AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
{
if (status == RangeChange) {
if (!snoopRangeSent) {
snoopRangeSent = true;
sendStatusChange(Port::RangeChange);
}
return;
}
panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
}
void
AtomicSimpleCPU::CpuPort::recvRetry()
{
panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
}
void
AtomicSimpleCPU::DcachePort::setPeer(Port *port)
{
Port::setPeer(port);
#if FULL_SYSTEM
// Update the ThreadContext's memory ports (Functional/Virtual
// Ports)
cpu->tcBase()->connectMemPorts();
#endif
}
AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
: BaseSimpleCPU(p), tickEvent(this),
width(p->width), simulate_stalls(p->simulate_stalls),
icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this)
{
_status = Idle;
icachePort.snoopRangeSent = false;
dcachePort.snoopRangeSent = false;
ifetch_req = new Request();
ifetch_req->setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT
ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
ifetch_pkt->dataStatic(&inst);
data_read_req = new Request();
data_read_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
data_read_pkt = new Packet(data_read_req, MemCmd::ReadReq,
Packet::Broadcast);
data_read_pkt->dataStatic(&dataReg);
data_write_req = new Request();
data_write_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
data_write_pkt = new Packet(data_write_req, MemCmd::WriteReq,
Packet::Broadcast);
data_swap_pkt = new Packet(data_write_req, MemCmd::SwapReq,
Packet::Broadcast);
}
AtomicSimpleCPU::~AtomicSimpleCPU()
{
}
void
AtomicSimpleCPU::serialize(ostream &os)
{
SimObject::State so_state = SimObject::getState();
SERIALIZE_ENUM(so_state);
Status _status = status();
SERIALIZE_ENUM(_status);
BaseSimpleCPU::serialize(os);
nameOut(os, csprintf("%s.tickEvent", name()));
tickEvent.serialize(os);
}
void
AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
SimObject::State so_state;
UNSERIALIZE_ENUM(so_state);
UNSERIALIZE_ENUM(_status);
BaseSimpleCPU::unserialize(cp, section);
tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
}
void
AtomicSimpleCPU::resume()
{
if (_status != SwitchedOut && _status != Idle) {
assert(system->getMemoryMode() == Enums::atomic);
changeState(SimObject::Running);
if (thread->status() == ThreadContext::Active) {
if (!tickEvent.scheduled()) {
tickEvent.schedule(nextCycle());
}
}
}
}
void
AtomicSimpleCPU::switchOut()
{
assert(status() == Running || status() == Idle);
_status = SwitchedOut;
tickEvent.squash();
}
void
AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
assert(!tickEvent.scheduled());
// if any of this CPU's ThreadContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *tc = threadContexts[i];
if (tc->status() == ThreadContext::Active && _status != Running) {
_status = Running;
tickEvent.schedule(nextCycle());
break;
}
}
if (_status != Running) {
_status = Idle;
}
}
void
AtomicSimpleCPU::activateContext(int thread_num, int delay)
{
assert(thread_num == 0);
assert(thread);
assert(_status == Idle);
assert(!tickEvent.scheduled());
notIdleFraction++;
//Make sure ticks are still on multiples of cycles
tickEvent.schedule(nextCycle(curTick + cycles(delay)));
_status = Running;
}
void
AtomicSimpleCPU::suspendContext(int thread_num)
{
assert(thread_num == 0);
assert(thread);
assert(_status == Running);
// tick event may not be scheduled if this gets called from inside
// an instruction's execution, e.g. "quiesce"
if (tickEvent.scheduled())
tickEvent.deschedule();
notIdleFraction--;
_status = Idle;
}
template <class T>
Fault
AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
{
// use the CPU's statically allocated read request and packet objects
Request *req = data_read_req;
PacketPtr pkt = data_read_pkt;
req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
if (traceData) {
traceData->setAddr(addr);
}
// translate to physical address
Fault fault = thread->translateDataReadReq(req);
// Now do the access.
if (fault == NoFault) {
pkt->reinitFromRequest();
if (req->isMmapedIpr())
dcache_latency = TheISA::handleIprRead(thread->getTC(),pkt);
else
dcache_latency = dcachePort.sendAtomic(pkt);
dcache_access = true;
#if !defined(NDEBUG)
if (pkt->result != Packet::Success)
panic("Unable to find responder for address pa = %#X va = %#X\n",
pkt->req->getPaddr(), pkt->req->getVaddr());
#endif
data = pkt->get<T>();
if (req->isLocked()) {
TheISA::handleLockedRead(thread, req);
}
}
// This will need a new way to tell if it has a dcache attached.
if (req->isUncacheable())
recordEvent("Uncached Read");
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
// use the CPU's statically allocated write request and packet objects
Request *req = data_write_req;
PacketPtr pkt;
req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
if (req->isSwap())
pkt = data_swap_pkt;
else
pkt = data_write_pkt;
if (traceData) {
traceData->setAddr(addr);
}
// translate to physical address
Fault fault = thread->translateDataWriteReq(req);
// Now do the access.
if (fault == NoFault) {
bool do_access = true; // flag to suppress cache access
if (req->isLocked()) {
do_access = TheISA::handleLockedWrite(thread, req);
}
if (req->isCondSwap()) {
assert(res);
req->setExtraData(*res);
}
if (do_access) {
pkt->reinitFromRequest();
pkt->dataStatic(&data);
if (req->isMmapedIpr()) {
dcache_latency = TheISA::handleIprWrite(thread->getTC(), pkt);
} else {
data = htog(data);
dcache_latency = dcachePort.sendAtomic(pkt);
}
dcache_access = true;
#if !defined(NDEBUG)
if (pkt->result != Packet::Success)
panic("Unable to find responder for address pa = %#X va = %#X\n",
pkt->req->getPaddr(), pkt->req->getVaddr());
#endif
}
if (req->isSwap()) {
assert(res);
*res = pkt->get<T>();
} else if (res) {
*res = req->getExtraData();
}
}
// This will need a new way to tell if it's hooked up to a cache or not.
if (req->isUncacheable())
recordEvent("Uncached Write");
// If the write needs to have a fault on the access, consider calling
// changeStatus() and changing it to "bad addr write" or something.
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
AtomicSimpleCPU::write(Twin32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(Twin64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint16_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint8_t data, Addr addr,
unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
void
AtomicSimpleCPU::tick()
{
Tick latency = cycles(1); // instruction takes one cycle by default
for (int i = 0; i < width; ++i) {
numCycles++;
if (!curStaticInst || !curStaticInst->isDelayedCommit())
checkForInterrupts();
Fault fault = setupFetchRequest(ifetch_req);
if (fault == NoFault) {
Tick icache_latency = 0;
bool icache_access = false;
dcache_access = false; // assume no dcache access
//Fetch more instruction memory if necessary
//if(predecoder.needMoreBytes())
//{
icache_access = true;
ifetch_pkt->reinitFromRequest();
icache_latency = icachePort.sendAtomic(ifetch_pkt);
// ifetch_req is initialized to read the instruction directly
// into the CPU object's inst field.
//}
preExecute();
if(curStaticInst)
{
fault = curStaticInst->execute(this, traceData);
postExecute();
}
// @todo remove me after debugging with legion done
if (curStaticInst && (!curStaticInst->isMicroop() ||
curStaticInst->isFirstMicroop()))
instCnt++;
if (simulate_stalls) {
Tick icache_stall =
icache_access ? icache_latency - cycles(1) : 0;
Tick dcache_stall =
dcache_access ? dcache_latency - cycles(1) : 0;
Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1);
if (cycles(stall_cycles) < (icache_stall + dcache_stall))
latency += cycles(stall_cycles+1);
else
latency += cycles(stall_cycles);
}
}
if(fault != NoFault || !stayAtPC)
advancePC(fault);
}
if (_status != Idle)
tickEvent.schedule(curTick + latency);
}
////////////////////////////////////////////////////////////////////////
//
// AtomicSimpleCPU Simulation Object
//
AtomicSimpleCPU *
AtomicSimpleCPUParams::create()
{
AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
params->name = name;
params->numberOfThreads = 1;
params->max_insts_any_thread = max_insts_any_thread;
params->max_insts_all_threads = max_insts_all_threads;
params->max_loads_any_thread = max_loads_any_thread;
params->max_loads_all_threads = max_loads_all_threads;
params->progress_interval = progress_interval;
params->deferRegistration = defer_registration;
params->phase = phase;
params->clock = clock;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
params->width = width;
params->simulate_stalls = simulate_stalls;
params->system = system;
params->cpu_id = cpu_id;
#if FULL_SYSTEM
params->itb = itb;
params->dtb = dtb;
params->profile = profile;
params->do_quiesce = do_quiesce;
params->do_checkpoint_insts = do_checkpoint_insts;
params->do_statistics_insts = do_statistics_insts;
#else
if (workload.size() != 1)
panic("only one workload allowed");
params->process = workload[0];
#endif
AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
return cpu;
}