gem5/src/cpu/o3/cpu.cc
Nathan Binkert abc76f20cb Major changes to how SimObjects are created and initialized. Almost all
creation and initialization now happens in python.  Parameter objects
are generated and initialized by python.  The .ini file is now solely for
debugging purposes and is not used in construction of the objects in any
way.

--HG--
extra : convert_revision : 7e722873e417cb3d696f2e34c35ff488b7bff4ed
2007-07-23 21:51:38 -07:00

1471 lines
37 KiB
C++

/*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
* Korey Sewell
*/
#include "config/full_system.hh"
#include "config/use_checker.hh"
#include "cpu/activity.hh"
#include "cpu/simple_thread.hh"
#include "cpu/thread_context.hh"
#include "cpu/o3/isa_specific.hh"
#include "cpu/o3/cpu.hh"
#include "enums/MemoryMode.hh"
#include "sim/core.hh"
#include "sim/stat_control.hh"
#if FULL_SYSTEM
#include "cpu/quiesce_event.hh"
#include "sim/system.hh"
#else
#include "sim/process.hh"
#endif
#if USE_CHECKER
#include "cpu/checker/cpu.hh"
#endif
using namespace std;
using namespace TheISA;
BaseO3CPU::BaseO3CPU(Params *params)
: BaseCPU(params), cpu_id(0)
{
}
void
BaseO3CPU::regStats()
{
BaseCPU::regStats();
}
template <class Impl>
FullO3CPU<Impl>::TickEvent::TickEvent(FullO3CPU<Impl> *c)
: Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
{
}
template <class Impl>
void
FullO3CPU<Impl>::TickEvent::process()
{
cpu->tick();
}
template <class Impl>
const char *
FullO3CPU<Impl>::TickEvent::description()
{
return "FullO3CPU tick event";
}
template <class Impl>
FullO3CPU<Impl>::ActivateThreadEvent::ActivateThreadEvent()
: Event(&mainEventQueue, CPU_Switch_Pri)
{
}
template <class Impl>
void
FullO3CPU<Impl>::ActivateThreadEvent::init(int thread_num,
FullO3CPU<Impl> *thread_cpu)
{
tid = thread_num;
cpu = thread_cpu;
}
template <class Impl>
void
FullO3CPU<Impl>::ActivateThreadEvent::process()
{
cpu->activateThread(tid);
}
template <class Impl>
const char *
FullO3CPU<Impl>::ActivateThreadEvent::description()
{
return "FullO3CPU \"Activate Thread\" event";
}
template <class Impl>
FullO3CPU<Impl>::DeallocateContextEvent::DeallocateContextEvent()
: Event(&mainEventQueue, CPU_Tick_Pri), tid(0), remove(false), cpu(NULL)
{
}
template <class Impl>
void
FullO3CPU<Impl>::DeallocateContextEvent::init(int thread_num,
FullO3CPU<Impl> *thread_cpu)
{
tid = thread_num;
cpu = thread_cpu;
remove = false;
}
template <class Impl>
void
FullO3CPU<Impl>::DeallocateContextEvent::process()
{
cpu->deactivateThread(tid);
if (remove)
cpu->removeThread(tid);
}
template <class Impl>
const char *
FullO3CPU<Impl>::DeallocateContextEvent::description()
{
return "FullO3CPU \"Deallocate Context\" event";
}
template <class Impl>
FullO3CPU<Impl>::FullO3CPU(O3CPU *o3_cpu, Params *params)
: BaseO3CPU(params),
#if FULL_SYSTEM
itb(params->itb),
dtb(params->dtb),
#endif
tickEvent(this),
removeInstsThisCycle(false),
fetch(o3_cpu, params),
decode(o3_cpu, params),
rename(o3_cpu, params),
iew(o3_cpu, params),
commit(o3_cpu, params),
regFile(o3_cpu, params->numPhysIntRegs,
params->numPhysFloatRegs),
freeList(params->numberOfThreads,
TheISA::NumIntRegs, params->numPhysIntRegs,
TheISA::NumFloatRegs, params->numPhysFloatRegs),
rob(o3_cpu,
params->numROBEntries, params->squashWidth,
params->smtROBPolicy, params->smtROBThreshold,
params->numberOfThreads),
scoreboard(params->numberOfThreads,
TheISA::NumIntRegs, params->numPhysIntRegs,
TheISA::NumFloatRegs, params->numPhysFloatRegs,
TheISA::NumMiscRegs * number_of_threads,
TheISA::ZeroReg),
timeBuffer(params->backComSize, params->forwardComSize),
fetchQueue(params->backComSize, params->forwardComSize),
decodeQueue(params->backComSize, params->forwardComSize),
renameQueue(params->backComSize, params->forwardComSize),
iewQueue(params->backComSize, params->forwardComSize),
activityRec(NumStages,
params->backComSize + params->forwardComSize,
params->activity),
globalSeqNum(1),
#if FULL_SYSTEM
system(params->system),
physmem(system->physmem),
#endif // FULL_SYSTEM
drainCount(0),
deferRegistration(params->deferRegistration),
numThreads(number_of_threads)
{
if (!deferRegistration) {
_status = Running;
} else {
_status = Idle;
}
#if USE_CHECKER
if (params->checker) {
BaseCPU *temp_checker = params->checker;
checker = dynamic_cast<Checker<DynInstPtr> *>(temp_checker);
#if FULL_SYSTEM
checker->setSystem(params->system);
#endif
} else {
checker = NULL;
}
#endif // USE_CHECKER
#if !FULL_SYSTEM
thread.resize(number_of_threads);
tids.resize(number_of_threads);
#endif
// The stages also need their CPU pointer setup. However this
// must be done at the upper level CPU because they have pointers
// to the upper level CPU, and not this FullO3CPU.
// Set up Pointers to the activeThreads list for each stage
fetch.setActiveThreads(&activeThreads);
decode.setActiveThreads(&activeThreads);
rename.setActiveThreads(&activeThreads);
iew.setActiveThreads(&activeThreads);
commit.setActiveThreads(&activeThreads);
// Give each of the stages the time buffer they will use.
fetch.setTimeBuffer(&timeBuffer);
decode.setTimeBuffer(&timeBuffer);
rename.setTimeBuffer(&timeBuffer);
iew.setTimeBuffer(&timeBuffer);
commit.setTimeBuffer(&timeBuffer);
// Also setup each of the stages' queues.
fetch.setFetchQueue(&fetchQueue);
decode.setFetchQueue(&fetchQueue);
commit.setFetchQueue(&fetchQueue);
decode.setDecodeQueue(&decodeQueue);
rename.setDecodeQueue(&decodeQueue);
rename.setRenameQueue(&renameQueue);
iew.setRenameQueue(&renameQueue);
iew.setIEWQueue(&iewQueue);
commit.setIEWQueue(&iewQueue);
commit.setRenameQueue(&renameQueue);
commit.setIEWStage(&iew);
rename.setIEWStage(&iew);
rename.setCommitStage(&commit);
#if !FULL_SYSTEM
int active_threads = params->workload.size();
if (active_threads > Impl::MaxThreads) {
panic("Workload Size too large. Increase the 'MaxThreads'"
"constant in your O3CPU impl. file (e.g. o3/alpha/impl.hh) or "
"edit your workload size.");
}
#else
int active_threads = 1;
#endif
//Make Sure That this a Valid Architeture
assert(params->numPhysIntRegs >= numThreads * TheISA::NumIntRegs);
assert(params->numPhysFloatRegs >= numThreads * TheISA::NumFloatRegs);
rename.setScoreboard(&scoreboard);
iew.setScoreboard(&scoreboard);
// Setup the rename map for whichever stages need it.
PhysRegIndex lreg_idx = 0;
PhysRegIndex freg_idx = params->numPhysIntRegs; //Index to 1 after int regs
for (int tid=0; tid < numThreads; tid++) {
bool bindRegs = (tid <= active_threads - 1);
commitRenameMap[tid].init(TheISA::NumIntRegs,
params->numPhysIntRegs,
lreg_idx, //Index for Logical. Regs
TheISA::NumFloatRegs,
params->numPhysFloatRegs,
freg_idx, //Index for Float Regs
TheISA::NumMiscRegs,
TheISA::ZeroReg,
TheISA::ZeroReg,
tid,
false);
renameMap[tid].init(TheISA::NumIntRegs,
params->numPhysIntRegs,
lreg_idx, //Index for Logical. Regs
TheISA::NumFloatRegs,
params->numPhysFloatRegs,
freg_idx, //Index for Float Regs
TheISA::NumMiscRegs,
TheISA::ZeroReg,
TheISA::ZeroReg,
tid,
bindRegs);
activateThreadEvent[tid].init(tid, this);
deallocateContextEvent[tid].init(tid, this);
}
rename.setRenameMap(renameMap);
commit.setRenameMap(commitRenameMap);
// Give renameMap & rename stage access to the freeList;
for (int i=0; i < numThreads; i++) {
renameMap[i].setFreeList(&freeList);
}
rename.setFreeList(&freeList);
// Setup the ROB for whichever stages need it.
commit.setROB(&rob);
lastRunningCycle = curTick;
lastActivatedCycle = -1;
// Give renameMap & rename stage access to the freeList;
//for (int i=0; i < numThreads; i++) {
//globalSeqNum[i] = 1;
//}
contextSwitch = false;
}
template <class Impl>
FullO3CPU<Impl>::~FullO3CPU()
{
}
template <class Impl>
void
FullO3CPU<Impl>::fullCPURegStats()
{
BaseO3CPU::regStats();
// Register any of the O3CPU's stats here.
timesIdled
.name(name() + ".timesIdled")
.desc("Number of times that the entire CPU went into an idle state and"
" unscheduled itself")
.prereq(timesIdled);
idleCycles
.name(name() + ".idleCycles")
.desc("Total number of cycles that the CPU has spent unscheduled due "
"to idling")
.prereq(idleCycles);
// Number of Instructions simulated
// --------------------------------
// Should probably be in Base CPU but need templated
// MaxThreads so put in here instead
committedInsts
.init(numThreads)
.name(name() + ".committedInsts")
.desc("Number of Instructions Simulated");
totalCommittedInsts
.name(name() + ".committedInsts_total")
.desc("Number of Instructions Simulated");
cpi
.name(name() + ".cpi")
.desc("CPI: Cycles Per Instruction")
.precision(6);
cpi = numCycles / committedInsts;
totalCpi
.name(name() + ".cpi_total")
.desc("CPI: Total CPI of All Threads")
.precision(6);
totalCpi = numCycles / totalCommittedInsts;
ipc
.name(name() + ".ipc")
.desc("IPC: Instructions Per Cycle")
.precision(6);
ipc = committedInsts / numCycles;
totalIpc
.name(name() + ".ipc_total")
.desc("IPC: Total IPC of All Threads")
.precision(6);
totalIpc = totalCommittedInsts / numCycles;
}
template <class Impl>
Port *
FullO3CPU<Impl>::getPort(const std::string &if_name, int idx)
{
if (if_name == "dcache_port")
return iew.getDcachePort();
else if (if_name == "icache_port")
return fetch.getIcachePort();
else
panic("No Such Port\n");
}
template <class Impl>
void
FullO3CPU<Impl>::tick()
{
DPRINTF(O3CPU, "\n\nFullO3CPU: Ticking main, FullO3CPU.\n");
++numCycles;
// activity = false;
//Tick each of the stages
fetch.tick();
decode.tick();
rename.tick();
iew.tick();
commit.tick();
#if !FULL_SYSTEM
doContextSwitch();
#endif
// Now advance the time buffers
timeBuffer.advance();
fetchQueue.advance();
decodeQueue.advance();
renameQueue.advance();
iewQueue.advance();
activityRec.advance();
if (removeInstsThisCycle) {
cleanUpRemovedInsts();
}
if (!tickEvent.scheduled()) {
if (_status == SwitchedOut ||
getState() == SimObject::Drained) {
DPRINTF(O3CPU, "Switched out!\n");
// increment stat
lastRunningCycle = curTick;
} else if (!activityRec.active() || _status == Idle) {
DPRINTF(O3CPU, "Idle!\n");
lastRunningCycle = curTick;
timesIdled++;
} else {
tickEvent.schedule(nextCycle(curTick + cycles(1)));
DPRINTF(O3CPU, "Scheduling next tick!\n");
}
}
#if !FULL_SYSTEM
updateThreadPriority();
#endif
}
template <class Impl>
void
FullO3CPU<Impl>::init()
{
if (!deferRegistration) {
registerThreadContexts();
}
// Set inSyscall so that the CPU doesn't squash when initially
// setting up registers.
for (int i = 0; i < number_of_threads; ++i)
thread[i]->inSyscall = true;
for (int tid=0; tid < number_of_threads; tid++) {
#if FULL_SYSTEM
ThreadContext *src_tc = threadContexts[tid];
#else
ThreadContext *src_tc = thread[tid]->getTC();
#endif
// Threads start in the Suspended State
if (src_tc->status() != ThreadContext::Suspended) {
continue;
}
#if FULL_SYSTEM
TheISA::initCPU(src_tc, src_tc->readCpuId());
#endif
}
// Clear inSyscall.
for (int i = 0; i < number_of_threads; ++i)
thread[i]->inSyscall = false;
// Initialize stages.
fetch.initStage();
iew.initStage();
rename.initStage();
commit.initStage();
commit.setThreads(thread);
}
template <class Impl>
void
FullO3CPU<Impl>::activateThread(unsigned tid)
{
list<unsigned>::iterator isActive = find(
activeThreads.begin(), activeThreads.end(), tid);
DPRINTF(O3CPU, "[tid:%i]: Calling activate thread.\n", tid);
if (isActive == activeThreads.end()) {
DPRINTF(O3CPU, "[tid:%i]: Adding to active threads list\n",
tid);
activeThreads.push_back(tid);
}
}
template <class Impl>
void
FullO3CPU<Impl>::deactivateThread(unsigned tid)
{
//Remove From Active List, if Active
list<unsigned>::iterator thread_it =
find(activeThreads.begin(), activeThreads.end(), tid);
DPRINTF(O3CPU, "[tid:%i]: Calling deactivate thread.\n", tid);
if (thread_it != activeThreads.end()) {
DPRINTF(O3CPU,"[tid:%i]: Removing from active threads list\n",
tid);
activeThreads.erase(thread_it);
}
}
template <class Impl>
void
FullO3CPU<Impl>::activateContext(int tid, int delay)
{
// Needs to set each stage to running as well.
if (delay){
DPRINTF(O3CPU, "[tid:%i]: Scheduling thread context to activate "
"on cycle %d\n", tid, curTick + cycles(delay));
scheduleActivateThreadEvent(tid, delay);
} else {
activateThread(tid);
}
if (lastActivatedCycle < curTick) {
scheduleTickEvent(delay);
// Be sure to signal that there's some activity so the CPU doesn't
// deschedule itself.
activityRec.activity();
fetch.wakeFromQuiesce();
lastActivatedCycle = curTick;
_status = Running;
}
}
template <class Impl>
bool
FullO3CPU<Impl>::deallocateContext(int tid, bool remove, int delay)
{
// Schedule removal of thread data from CPU
if (delay){
DPRINTF(O3CPU, "[tid:%i]: Scheduling thread context to deallocate "
"on cycle %d\n", tid, curTick + cycles(delay));
scheduleDeallocateContextEvent(tid, remove, delay);
return false;
} else {
deactivateThread(tid);
if (remove)
removeThread(tid);
return true;
}
}
template <class Impl>
void
FullO3CPU<Impl>::suspendContext(int tid)
{
DPRINTF(O3CPU,"[tid: %i]: Suspending Thread Context.\n", tid);
bool deallocated = deallocateContext(tid, false, 1);
// If this was the last thread then unschedule the tick event.
if (activeThreads.size() == 1 && !deallocated ||
activeThreads.size() == 0)
unscheduleTickEvent();
_status = Idle;
}
template <class Impl>
void
FullO3CPU<Impl>::haltContext(int tid)
{
//For now, this is the same as deallocate
DPRINTF(O3CPU,"[tid:%i]: Halt Context called. Deallocating", tid);
deallocateContext(tid, true, 1);
}
template <class Impl>
void
FullO3CPU<Impl>::insertThread(unsigned tid)
{
DPRINTF(O3CPU,"[tid:%i] Initializing thread into CPU");
// Will change now that the PC and thread state is internal to the CPU
// and not in the ThreadContext.
#if FULL_SYSTEM
ThreadContext *src_tc = system->threadContexts[tid];
#else
ThreadContext *src_tc = tcBase(tid);
#endif
//Bind Int Regs to Rename Map
for (int ireg = 0; ireg < TheISA::NumIntRegs; ireg++) {
PhysRegIndex phys_reg = freeList.getIntReg();
renameMap[tid].setEntry(ireg,phys_reg);
scoreboard.setReg(phys_reg);
}
//Bind Float Regs to Rename Map
for (int freg = 0; freg < TheISA::NumFloatRegs; freg++) {
PhysRegIndex phys_reg = freeList.getFloatReg();
renameMap[tid].setEntry(freg,phys_reg);
scoreboard.setReg(phys_reg);
}
//Copy Thread Data Into RegFile
//this->copyFromTC(tid);
//Set PC/NPC/NNPC
setPC(src_tc->readPC(), tid);
setNextPC(src_tc->readNextPC(), tid);
setNextNPC(src_tc->readNextNPC(), tid);
src_tc->setStatus(ThreadContext::Active);
activateContext(tid,1);
//Reset ROB/IQ/LSQ Entries
commit.rob->resetEntries();
iew.resetEntries();
}
template <class Impl>
void
FullO3CPU<Impl>::removeThread(unsigned tid)
{
DPRINTF(O3CPU,"[tid:%i] Removing thread context from CPU.\n", tid);
// Copy Thread Data From RegFile
// If thread is suspended, it might be re-allocated
//this->copyToTC(tid);
// Unbind Int Regs from Rename Map
for (int ireg = 0; ireg < TheISA::NumIntRegs; ireg++) {
PhysRegIndex phys_reg = renameMap[tid].lookup(ireg);
scoreboard.unsetReg(phys_reg);
freeList.addReg(phys_reg);
}
// Unbind Float Regs from Rename Map
for (int freg = 0; freg < TheISA::NumFloatRegs; freg++) {
PhysRegIndex phys_reg = renameMap[tid].lookup(freg);
scoreboard.unsetReg(phys_reg);
freeList.addReg(phys_reg);
}
// Squash Throughout Pipeline
InstSeqNum squash_seq_num = commit.rob->readHeadInst(tid)->seqNum;
fetch.squash(0, sizeof(TheISA::MachInst), 0, squash_seq_num, tid);
decode.squash(tid);
rename.squash(squash_seq_num, tid);
iew.squash(tid);
commit.rob->squash(squash_seq_num, tid);
assert(iew.ldstQueue.getCount(tid) == 0);
// Reset ROB/IQ/LSQ Entries
// Commented out for now. This should be possible to do by
// telling all the pipeline stages to drain first, and then
// checking until the drain completes. Once the pipeline is
// drained, call resetEntries(). - 10-09-06 ktlim
/*
if (activeThreads.size() >= 1) {
commit.rob->resetEntries();
iew.resetEntries();
}
*/
}
template <class Impl>
void
FullO3CPU<Impl>::activateWhenReady(int tid)
{
DPRINTF(O3CPU,"[tid:%i]: Checking if resources are available for incoming"
"(e.g. PhysRegs/ROB/IQ/LSQ) \n",
tid);
bool ready = true;
if (freeList.numFreeIntRegs() >= TheISA::NumIntRegs) {
DPRINTF(O3CPU,"[tid:%i] Suspending thread due to not enough "
"Phys. Int. Regs.\n",
tid);
ready = false;
} else if (freeList.numFreeFloatRegs() >= TheISA::NumFloatRegs) {
DPRINTF(O3CPU,"[tid:%i] Suspending thread due to not enough "
"Phys. Float. Regs.\n",
tid);
ready = false;
} else if (commit.rob->numFreeEntries() >=
commit.rob->entryAmount(activeThreads.size() + 1)) {
DPRINTF(O3CPU,"[tid:%i] Suspending thread due to not enough "
"ROB entries.\n",
tid);
ready = false;
} else if (iew.instQueue.numFreeEntries() >=
iew.instQueue.entryAmount(activeThreads.size() + 1)) {
DPRINTF(O3CPU,"[tid:%i] Suspending thread due to not enough "
"IQ entries.\n",
tid);
ready = false;
} else if (iew.ldstQueue.numFreeEntries() >=
iew.ldstQueue.entryAmount(activeThreads.size() + 1)) {
DPRINTF(O3CPU,"[tid:%i] Suspending thread due to not enough "
"LSQ entries.\n",
tid);
ready = false;
}
if (ready) {
insertThread(tid);
contextSwitch = false;
cpuWaitList.remove(tid);
} else {
suspendContext(tid);
//blocks fetch
contextSwitch = true;
//@todo: dont always add to waitlist
//do waitlist
cpuWaitList.push_back(tid);
}
}
#if FULL_SYSTEM
template <class Impl>
void
FullO3CPU<Impl>::updateMemPorts()
{
// Update all ThreadContext's memory ports (Functional/Virtual
// Ports)
for (int i = 0; i < thread.size(); ++i)
thread[i]->connectMemPorts();
}
#endif
template <class Impl>
void
FullO3CPU<Impl>::serialize(std::ostream &os)
{
SimObject::State so_state = SimObject::getState();
SERIALIZE_ENUM(so_state);
BaseCPU::serialize(os);
nameOut(os, csprintf("%s.tickEvent", name()));
tickEvent.serialize(os);
// Use SimpleThread's ability to checkpoint to make it easier to
// write out the registers. Also make this static so it doesn't
// get instantiated multiple times (causes a panic in statistics).
static SimpleThread temp;
for (int i = 0; i < thread.size(); i++) {
nameOut(os, csprintf("%s.xc.%i", name(), i));
temp.copyTC(thread[i]->getTC());
temp.serialize(os);
}
}
template <class Impl>
void
FullO3CPU<Impl>::unserialize(Checkpoint *cp, const std::string &section)
{
SimObject::State so_state;
UNSERIALIZE_ENUM(so_state);
BaseCPU::unserialize(cp, section);
tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
// Use SimpleThread's ability to checkpoint to make it easier to
// read in the registers. Also make this static so it doesn't
// get instantiated multiple times (causes a panic in statistics).
static SimpleThread temp;
for (int i = 0; i < thread.size(); i++) {
temp.copyTC(thread[i]->getTC());
temp.unserialize(cp, csprintf("%s.xc.%i", section, i));
thread[i]->getTC()->copyArchRegs(temp.getTC());
}
}
template <class Impl>
unsigned int
FullO3CPU<Impl>::drain(Event *drain_event)
{
DPRINTF(O3CPU, "Switching out\n");
// If the CPU isn't doing anything, then return immediately.
if (_status == Idle || _status == SwitchedOut) {
return 0;
}
drainCount = 0;
fetch.drain();
decode.drain();
rename.drain();
iew.drain();
commit.drain();
// Wake the CPU and record activity so everything can drain out if
// the CPU was not able to immediately drain.
if (getState() != SimObject::Drained) {
// A bit of a hack...set the drainEvent after all the drain()
// calls have been made, that way if all of the stages drain
// immediately, the signalDrained() function knows not to call
// process on the drain event.
drainEvent = drain_event;
wakeCPU();
activityRec.activity();
return 1;
} else {
return 0;
}
}
template <class Impl>
void
FullO3CPU<Impl>::resume()
{
fetch.resume();
decode.resume();
rename.resume();
iew.resume();
commit.resume();
changeState(SimObject::Running);
if (_status == SwitchedOut || _status == Idle)
return;
#if FULL_SYSTEM
assert(system->getMemoryMode() == Enums::timing);
#endif
if (!tickEvent.scheduled())
tickEvent.schedule(nextCycle());
_status = Running;
}
template <class Impl>
void
FullO3CPU<Impl>::signalDrained()
{
if (++drainCount == NumStages) {
if (tickEvent.scheduled())
tickEvent.squash();
changeState(SimObject::Drained);
BaseCPU::switchOut();
if (drainEvent) {
drainEvent->process();
drainEvent = NULL;
}
}
assert(drainCount <= 5);
}
template <class Impl>
void
FullO3CPU<Impl>::switchOut()
{
fetch.switchOut();
rename.switchOut();
iew.switchOut();
commit.switchOut();
instList.clear();
while (!removeList.empty()) {
removeList.pop();
}
_status = SwitchedOut;
#if USE_CHECKER
if (checker)
checker->switchOut();
#endif
if (tickEvent.scheduled())
tickEvent.squash();
}
template <class Impl>
void
FullO3CPU<Impl>::takeOverFrom(BaseCPU *oldCPU)
{
// Flush out any old data from the time buffers.
for (int i = 0; i < timeBuffer.getSize(); ++i) {
timeBuffer.advance();
fetchQueue.advance();
decodeQueue.advance();
renameQueue.advance();
iewQueue.advance();
}
activityRec.reset();
BaseCPU::takeOverFrom(oldCPU, fetch.getIcachePort(), iew.getDcachePort());
fetch.takeOverFrom();
decode.takeOverFrom();
rename.takeOverFrom();
iew.takeOverFrom();
commit.takeOverFrom();
assert(!tickEvent.scheduled());
// @todo: Figure out how to properly select the tid to put onto
// the active threads list.
int tid = 0;
list<unsigned>::iterator isActive = find(
activeThreads.begin(), activeThreads.end(), tid);
if (isActive == activeThreads.end()) {
//May Need to Re-code this if the delay variable is the delay
//needed for thread to activate
DPRINTF(O3CPU, "Adding Thread %i to active threads list\n",
tid);
activeThreads.push_back(tid);
}
// Set all statuses to active, schedule the CPU's tick event.
// @todo: Fix up statuses so this is handled properly
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *tc = threadContexts[i];
if (tc->status() == ThreadContext::Active && _status != Running) {
_status = Running;
tickEvent.schedule(nextCycle());
}
}
if (!tickEvent.scheduled())
tickEvent.schedule(nextCycle());
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readIntReg(int reg_idx)
{
return regFile.readIntReg(reg_idx);
}
template <class Impl>
FloatReg
FullO3CPU<Impl>::readFloatReg(int reg_idx, int width)
{
return regFile.readFloatReg(reg_idx, width);
}
template <class Impl>
FloatReg
FullO3CPU<Impl>::readFloatReg(int reg_idx)
{
return regFile.readFloatReg(reg_idx);
}
template <class Impl>
FloatRegBits
FullO3CPU<Impl>::readFloatRegBits(int reg_idx, int width)
{
return regFile.readFloatRegBits(reg_idx, width);
}
template <class Impl>
FloatRegBits
FullO3CPU<Impl>::readFloatRegBits(int reg_idx)
{
return regFile.readFloatRegBits(reg_idx);
}
template <class Impl>
void
FullO3CPU<Impl>::setIntReg(int reg_idx, uint64_t val)
{
regFile.setIntReg(reg_idx, val);
}
template <class Impl>
void
FullO3CPU<Impl>::setFloatReg(int reg_idx, FloatReg val, int width)
{
regFile.setFloatReg(reg_idx, val, width);
}
template <class Impl>
void
FullO3CPU<Impl>::setFloatReg(int reg_idx, FloatReg val)
{
regFile.setFloatReg(reg_idx, val);
}
template <class Impl>
void
FullO3CPU<Impl>::setFloatRegBits(int reg_idx, FloatRegBits val, int width)
{
regFile.setFloatRegBits(reg_idx, val, width);
}
template <class Impl>
void
FullO3CPU<Impl>::setFloatRegBits(int reg_idx, FloatRegBits val)
{
regFile.setFloatRegBits(reg_idx, val);
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readArchIntReg(int reg_idx, unsigned tid)
{
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(reg_idx);
return regFile.readIntReg(phys_reg);
}
template <class Impl>
float
FullO3CPU<Impl>::readArchFloatRegSingle(int reg_idx, unsigned tid)
{
int idx = reg_idx + TheISA::FP_Base_DepTag;
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(idx);
return regFile.readFloatReg(phys_reg);
}
template <class Impl>
double
FullO3CPU<Impl>::readArchFloatRegDouble(int reg_idx, unsigned tid)
{
int idx = reg_idx + TheISA::FP_Base_DepTag;
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(idx);
return regFile.readFloatReg(phys_reg, 64);
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readArchFloatRegInt(int reg_idx, unsigned tid)
{
int idx = reg_idx + TheISA::FP_Base_DepTag;
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(idx);
return regFile.readFloatRegBits(phys_reg);
}
template <class Impl>
void
FullO3CPU<Impl>::setArchIntReg(int reg_idx, uint64_t val, unsigned tid)
{
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(reg_idx);
regFile.setIntReg(phys_reg, val);
}
template <class Impl>
void
FullO3CPU<Impl>::setArchFloatRegSingle(int reg_idx, float val, unsigned tid)
{
int idx = reg_idx + TheISA::FP_Base_DepTag;
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(idx);
regFile.setFloatReg(phys_reg, val);
}
template <class Impl>
void
FullO3CPU<Impl>::setArchFloatRegDouble(int reg_idx, double val, unsigned tid)
{
int idx = reg_idx + TheISA::FP_Base_DepTag;
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(idx);
regFile.setFloatReg(phys_reg, val, 64);
}
template <class Impl>
void
FullO3CPU<Impl>::setArchFloatRegInt(int reg_idx, uint64_t val, unsigned tid)
{
int idx = reg_idx + TheISA::FP_Base_DepTag;
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(idx);
regFile.setFloatRegBits(phys_reg, val);
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readPC(unsigned tid)
{
return commit.readPC(tid);
}
template <class Impl>
void
FullO3CPU<Impl>::setPC(Addr new_PC,unsigned tid)
{
commit.setPC(new_PC, tid);
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readMicroPC(unsigned tid)
{
return commit.readMicroPC(tid);
}
template <class Impl>
void
FullO3CPU<Impl>::setMicroPC(Addr new_PC,unsigned tid)
{
commit.setMicroPC(new_PC, tid);
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readNextPC(unsigned tid)
{
return commit.readNextPC(tid);
}
template <class Impl>
void
FullO3CPU<Impl>::setNextPC(uint64_t val,unsigned tid)
{
commit.setNextPC(val, tid);
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readNextNPC(unsigned tid)
{
return commit.readNextNPC(tid);
}
template <class Impl>
void
FullO3CPU<Impl>::setNextNPC(uint64_t val,unsigned tid)
{
commit.setNextNPC(val, tid);
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readNextMicroPC(unsigned tid)
{
return commit.readNextMicroPC(tid);
}
template <class Impl>
void
FullO3CPU<Impl>::setNextMicroPC(Addr new_PC,unsigned tid)
{
commit.setNextMicroPC(new_PC, tid);
}
template <class Impl>
typename FullO3CPU<Impl>::ListIt
FullO3CPU<Impl>::addInst(DynInstPtr &inst)
{
instList.push_back(inst);
return --(instList.end());
}
template <class Impl>
void
FullO3CPU<Impl>::instDone(unsigned tid)
{
// Keep an instruction count.
thread[tid]->numInst++;
thread[tid]->numInsts++;
committedInsts[tid]++;
totalCommittedInsts++;
// Check for instruction-count-based events.
comInstEventQueue[tid]->serviceEvents(thread[tid]->numInst);
}
template <class Impl>
void
FullO3CPU<Impl>::addToRemoveList(DynInstPtr &inst)
{
removeInstsThisCycle = true;
removeList.push(inst->getInstListIt());
}
template <class Impl>
void
FullO3CPU<Impl>::removeFrontInst(DynInstPtr &inst)
{
DPRINTF(O3CPU, "Removing committed instruction [tid:%i] PC %#x "
"[sn:%lli]\n",
inst->threadNumber, inst->readPC(), inst->seqNum);
removeInstsThisCycle = true;
// Remove the front instruction.
removeList.push(inst->getInstListIt());
}
template <class Impl>
void
FullO3CPU<Impl>::removeInstsNotInROB(unsigned tid)
{
DPRINTF(O3CPU, "Thread %i: Deleting instructions from instruction"
" list.\n", tid);
ListIt end_it;
bool rob_empty = false;
if (instList.empty()) {
return;
} else if (rob.isEmpty(/*tid*/)) {
DPRINTF(O3CPU, "ROB is empty, squashing all insts.\n");
end_it = instList.begin();
rob_empty = true;
} else {
end_it = (rob.readTailInst(tid))->getInstListIt();
DPRINTF(O3CPU, "ROB is not empty, squashing insts not in ROB.\n");
}
removeInstsThisCycle = true;
ListIt inst_it = instList.end();
inst_it--;
// Walk through the instruction list, removing any instructions
// that were inserted after the given instruction iterator, end_it.
while (inst_it != end_it) {
assert(!instList.empty());
squashInstIt(inst_it, tid);
inst_it--;
}
// If the ROB was empty, then we actually need to remove the first
// instruction as well.
if (rob_empty) {
squashInstIt(inst_it, tid);
}
}
template <class Impl>
void
FullO3CPU<Impl>::removeInstsUntil(const InstSeqNum &seq_num,
unsigned tid)
{
assert(!instList.empty());
removeInstsThisCycle = true;
ListIt inst_iter = instList.end();
inst_iter--;
DPRINTF(O3CPU, "Deleting instructions from instruction "
"list that are from [tid:%i] and above [sn:%lli] (end=%lli).\n",
tid, seq_num, (*inst_iter)->seqNum);
while ((*inst_iter)->seqNum > seq_num) {
bool break_loop = (inst_iter == instList.begin());
squashInstIt(inst_iter, tid);
inst_iter--;
if (break_loop)
break;
}
}
template <class Impl>
inline void
FullO3CPU<Impl>::squashInstIt(const ListIt &instIt, const unsigned &tid)
{
if ((*instIt)->threadNumber == tid) {
DPRINTF(O3CPU, "Squashing instruction, "
"[tid:%i] [sn:%lli] PC %#x\n",
(*instIt)->threadNumber,
(*instIt)->seqNum,
(*instIt)->readPC());
// Mark it as squashed.
(*instIt)->setSquashed();
// @todo: Formulate a consistent method for deleting
// instructions from the instruction list
// Remove the instruction from the list.
removeList.push(instIt);
}
}
template <class Impl>
void
FullO3CPU<Impl>::cleanUpRemovedInsts()
{
while (!removeList.empty()) {
DPRINTF(O3CPU, "Removing instruction, "
"[tid:%i] [sn:%lli] PC %#x\n",
(*removeList.front())->threadNumber,
(*removeList.front())->seqNum,
(*removeList.front())->readPC());
instList.erase(removeList.front());
removeList.pop();
}
removeInstsThisCycle = false;
}
/*
template <class Impl>
void
FullO3CPU<Impl>::removeAllInsts()
{
instList.clear();
}
*/
template <class Impl>
void
FullO3CPU<Impl>::dumpInsts()
{
int num = 0;
ListIt inst_list_it = instList.begin();
cprintf("Dumping Instruction List\n");
while (inst_list_it != instList.end()) {
cprintf("Instruction:%i\nPC:%#x\n[tid:%i]\n[sn:%lli]\nIssued:%i\n"
"Squashed:%i\n\n",
num, (*inst_list_it)->readPC(), (*inst_list_it)->threadNumber,
(*inst_list_it)->seqNum, (*inst_list_it)->isIssued(),
(*inst_list_it)->isSquashed());
inst_list_it++;
++num;
}
}
/*
template <class Impl>
void
FullO3CPU<Impl>::wakeDependents(DynInstPtr &inst)
{
iew.wakeDependents(inst);
}
*/
template <class Impl>
void
FullO3CPU<Impl>::wakeCPU()
{
if (activityRec.active() || tickEvent.scheduled()) {
DPRINTF(Activity, "CPU already running.\n");
return;
}
DPRINTF(Activity, "Waking up CPU\n");
idleCycles += (curTick - 1) - lastRunningCycle;
tickEvent.schedule(nextCycle());
}
template <class Impl>
int
FullO3CPU<Impl>::getFreeTid()
{
for (int i=0; i < numThreads; i++) {
if (!tids[i]) {
tids[i] = true;
return i;
}
}
return -1;
}
template <class Impl>
void
FullO3CPU<Impl>::doContextSwitch()
{
if (contextSwitch) {
//ADD CODE TO DEACTIVE THREAD HERE (???)
for (int tid=0; tid < cpuWaitList.size(); tid++) {
activateWhenReady(tid);
}
if (cpuWaitList.size() == 0)
contextSwitch = true;
}
}
template <class Impl>
void
FullO3CPU<Impl>::updateThreadPriority()
{
if (activeThreads.size() > 1)
{
//DEFAULT TO ROUND ROBIN SCHEME
//e.g. Move highest priority to end of thread list
list<unsigned>::iterator list_begin = activeThreads.begin();
list<unsigned>::iterator list_end = activeThreads.end();
unsigned high_thread = *list_begin;
activeThreads.erase(list_begin);
activeThreads.push_back(high_thread);
}
}
// Forward declaration of FullO3CPU.
template class FullO3CPU<O3CPUImpl>;