gem5/src/arch/power/process.cc
Brandon Potter a928a438b8 style: [patch 3/22] reduce include dependencies in some headers
Used cppclean to help identify useless includes and removed them. This
involved erroneously included headers, but also cases where forward
declarations could have been used rather than a full include.
2016-11-09 14:27:40 -06:00

295 lines
11 KiB
C++

/*
* Copyright (c) 2007-2008 The Florida State University
* Copyright (c) 2009 The University of Edinburgh
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Stephen Hines
* Timothy M. Jones
*/
#include "arch/power/process.hh"
#include "arch/power/isa_traits.hh"
#include "arch/power/types.hh"
#include "base/loader/elf_object.hh"
#include "base/loader/object_file.hh"
#include "base/misc.hh"
#include "cpu/thread_context.hh"
#include "debug/Stack.hh"
#include "mem/page_table.hh"
#include "sim/process_impl.hh"
#include "sim/syscall_return.hh"
#include "sim/system.hh"
using namespace std;
using namespace PowerISA;
PowerLiveProcess::PowerLiveProcess(LiveProcessParams *params,
ObjectFile *objFile)
: LiveProcess(params, objFile)
{
stack_base = 0xbf000000L;
// Set pointer for next thread stack. Reserve 8M for main stack.
next_thread_stack_base = stack_base - (8 * 1024 * 1024);
// Set up break point (Top of Heap)
brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
brk_point = roundUp(brk_point, PageBytes);
// Set up region for mmaps. For now, start at bottom of kuseg space.
mmap_end = 0x70000000L;
}
void
PowerLiveProcess::initState()
{
Process::initState();
argsInit(MachineBytes, PageBytes);
}
void
PowerLiveProcess::argsInit(int intSize, int pageSize)
{
typedef AuxVector<uint32_t> auxv_t;
std::vector<auxv_t> auxv;
string filename;
if (argv.size() < 1)
filename = "";
else
filename = argv[0];
//We want 16 byte alignment
uint64_t align = 16;
// Patch the ld_bias for dynamic executables.
updateBias();
// load object file into target memory
objFile->loadSections(initVirtMem);
//Setup the auxilliary vectors. These will already have endian conversion.
//Auxilliary vectors are loaded only for elf formatted executables.
ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
if (elfObject) {
uint32_t features = 0;
//Bits which describe the system hardware capabilities
//XXX Figure out what these should be
auxv.push_back(auxv_t(M5_AT_HWCAP, features));
//The system page size
auxv.push_back(auxv_t(M5_AT_PAGESZ, PowerISA::PageBytes));
//Frequency at which times() increments
auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
// For statically linked executables, this is the virtual address of the
// program header tables if they appear in the executable image
auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
// This is the size of a program header entry from the elf file.
auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
// This is the number of program headers from the original elf file.
auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
// This is the base address of the ELF interpreter; it should be
// zero for static executables or contain the base address for
// dynamic executables.
auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
//XXX Figure out what this should be.
auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
//The entry point to the program
auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
//Different user and group IDs
auxv.push_back(auxv_t(M5_AT_UID, uid()));
auxv.push_back(auxv_t(M5_AT_EUID, euid()));
auxv.push_back(auxv_t(M5_AT_GID, gid()));
auxv.push_back(auxv_t(M5_AT_EGID, egid()));
//Whether to enable "secure mode" in the executable
auxv.push_back(auxv_t(M5_AT_SECURE, 0));
//The filename of the program
auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
//The string "v51" with unknown meaning
auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
}
//Figure out how big the initial stack nedes to be
// A sentry NULL void pointer at the top of the stack.
int sentry_size = intSize;
string platform = "v51";
int platform_size = platform.size() + 1;
// The aux vectors are put on the stack in two groups. The first group are
// the vectors that are generated as the elf is loaded. The second group
// are the ones that were computed ahead of time and include the platform
// string.
int aux_data_size = filename.size() + 1;
int env_data_size = 0;
for (int i = 0; i < envp.size(); ++i) {
env_data_size += envp[i].size() + 1;
}
int arg_data_size = 0;
for (int i = 0; i < argv.size(); ++i) {
arg_data_size += argv[i].size() + 1;
}
int info_block_size =
sentry_size + env_data_size + arg_data_size +
aux_data_size + platform_size;
//Each auxilliary vector is two 4 byte words
int aux_array_size = intSize * 2 * (auxv.size() + 1);
int envp_array_size = intSize * (envp.size() + 1);
int argv_array_size = intSize * (argv.size() + 1);
int argc_size = intSize;
//Figure out the size of the contents of the actual initial frame
int frame_size =
info_block_size +
aux_array_size +
envp_array_size +
argv_array_size +
argc_size;
//There needs to be padding after the auxiliary vector data so that the
//very bottom of the stack is aligned properly.
int partial_size = frame_size;
int aligned_partial_size = roundUp(partial_size, align);
int aux_padding = aligned_partial_size - partial_size;
int space_needed = frame_size + aux_padding;
stack_min = stack_base - space_needed;
stack_min = roundDown(stack_min, align);
stack_size = stack_base - stack_min;
// map memory
allocateMem(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize));
// map out initial stack contents
uint32_t sentry_base = stack_base - sentry_size;
uint32_t aux_data_base = sentry_base - aux_data_size;
uint32_t env_data_base = aux_data_base - env_data_size;
uint32_t arg_data_base = env_data_base - arg_data_size;
uint32_t platform_base = arg_data_base - platform_size;
uint32_t auxv_array_base = platform_base - aux_array_size - aux_padding;
uint32_t envp_array_base = auxv_array_base - envp_array_size;
uint32_t argv_array_base = envp_array_base - argv_array_size;
uint32_t argc_base = argv_array_base - argc_size;
DPRINTF(Stack, "The addresses of items on the initial stack:\n");
DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
DPRINTF(Stack, "0x%x - env data\n", env_data_base);
DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
DPRINTF(Stack, "0x%x - platform base\n", platform_base);
DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
DPRINTF(Stack, "0x%x - argc \n", argc_base);
DPRINTF(Stack, "0x%x - stack min\n", stack_min);
// write contents to stack
// figure out argc
uint32_t argc = argv.size();
uint32_t guestArgc = PowerISA::htog(argc);
//Write out the sentry void *
uint32_t sentry_NULL = 0;
initVirtMem.writeBlob(sentry_base,
(uint8_t*)&sentry_NULL, sentry_size);
//Fix up the aux vectors which point to other data
for (int i = auxv.size() - 1; i >= 0; i--) {
if (auxv[i].a_type == M5_AT_PLATFORM) {
auxv[i].a_val = platform_base;
initVirtMem.writeString(platform_base, platform.c_str());
} else if (auxv[i].a_type == M5_AT_EXECFN) {
auxv[i].a_val = aux_data_base;
initVirtMem.writeString(aux_data_base, filename.c_str());
}
}
//Copy the aux stuff
for (int x = 0; x < auxv.size(); x++)
{
initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
(uint8_t*)&(auxv[x].a_type), intSize);
initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
(uint8_t*)&(auxv[x].a_val), intSize);
}
//Write out the terminating zeroed auxilliary vector
const uint64_t zero = 0;
initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
(uint8_t*)&zero, 2 * intSize);
copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
ThreadContext *tc = system->getThreadContext(contextIds[0]);
//Set the stack pointer register
tc->setIntReg(StackPointerReg, stack_min);
tc->pcState(getStartPC());
//Align the "stack_min" to a page boundary.
stack_min = roundDown(stack_min, pageSize);
}
PowerISA::IntReg
PowerLiveProcess::getSyscallArg(ThreadContext *tc, int &i)
{
assert(i < 5);
return tc->readIntReg(ArgumentReg0 + i++);
}
void
PowerLiveProcess::setSyscallArg(ThreadContext *tc,
int i, PowerISA::IntReg val)
{
assert(i < 5);
tc->setIntReg(ArgumentReg0 + i, val);
}
void
PowerLiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
{
Cr cr = tc->readIntReg(INTREG_CR);
if (sysret.successful()) {
cr.cr0.so = 0;
} else {
cr.cr0.so = 1;
}
tc->setIntReg(INTREG_CR, cr);
tc->setIntReg(ReturnValueReg, sysret.encodedValue());
}