a8b03e4d01
arch/alpha/isa/decoder.isa: Make IPR accessing instructions serializing so they are not issued incorrectly in the O3 model. arch/alpha/isa/pal.isa: Allow IPR instructions to have flags. base/traceflags.py: Include new trace flags from the two new CPU models. cpu/SConscript: Create the templates for the split mem accessor methods. Also include the new files from the new models (the Ozone model will be checked in next). cpu/base_dyn_inst.cc: cpu/base_dyn_inst.hh: Update to the BaseDynInst for the new models. --HG-- extra : convert_revision : cc82db9c72ec3e29cea4c3fdff74a3843e287a35
819 lines
33 KiB
C++
819 lines
33 KiB
C++
// -*- mode:c++ -*-
|
|
|
|
// Copyright (c) 2003-2006 The Regents of The University of Michigan
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met: redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer;
|
|
// redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution;
|
|
// neither the name of the copyright holders nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
decode OPCODE default Unknown::unknown() {
|
|
|
|
format LoadAddress {
|
|
0x08: lda({{ Ra = Rb + disp; }});
|
|
0x09: ldah({{ Ra = Rb + (disp << 16); }});
|
|
}
|
|
|
|
format LoadOrNop {
|
|
0x0a: ldbu({{ Ra.uq = Mem.ub; }});
|
|
0x0c: ldwu({{ Ra.uq = Mem.uw; }});
|
|
0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }});
|
|
0x23: ldt({{ Fa = Mem.df; }});
|
|
0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED);
|
|
0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED);
|
|
0x20: MiscPrefetch::copy_load({{ EA = Ra; }},
|
|
{{ fault = xc->copySrcTranslate(EA); }},
|
|
inst_flags = [IsMemRef, IsLoad, IsCopy]);
|
|
}
|
|
|
|
format LoadOrPrefetch {
|
|
0x28: ldl({{ Ra.sl = Mem.sl; }});
|
|
0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT);
|
|
// IsFloating flag on lds gets the prefetch to disassemble
|
|
// using f31 instead of r31... funcitonally it's unnecessary
|
|
0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }},
|
|
pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating);
|
|
}
|
|
|
|
format Store {
|
|
0x0e: stb({{ Mem.ub = Ra<7:0>; }});
|
|
0x0d: stw({{ Mem.uw = Ra<15:0>; }});
|
|
0x2c: stl({{ Mem.ul = Ra<31:0>; }});
|
|
0x2d: stq({{ Mem.uq = Ra.uq; }});
|
|
0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }});
|
|
0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }});
|
|
0x27: stt({{ Mem.df = Fa; }});
|
|
0x24: MiscPrefetch::copy_store({{ EA = Rb; }},
|
|
{{ fault = xc->copy(EA); }},
|
|
inst_flags = [IsMemRef, IsStore, IsCopy]);
|
|
}
|
|
|
|
format StoreCond {
|
|
0x2e: stl_c({{ Mem.ul = Ra<31:0>; }},
|
|
{{
|
|
uint64_t tmp = write_result;
|
|
// see stq_c
|
|
Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
|
|
}}, mem_flags = LOCKED, inst_flags = IsNonSpeculative);
|
|
0x2f: stq_c({{ Mem.uq = Ra; }},
|
|
{{
|
|
uint64_t tmp = write_result;
|
|
// If the write operation returns 0 or 1, then
|
|
// this was a conventional store conditional,
|
|
// and the value indicates the success/failure
|
|
// of the operation. If another value is
|
|
// returned, then this was a Turbolaser
|
|
// mailbox access, and we don't update the
|
|
// result register at all.
|
|
Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
|
|
}}, mem_flags = LOCKED, inst_flags = IsNonSpeculative);
|
|
}
|
|
|
|
format IntegerOperate {
|
|
|
|
0x10: decode INTFUNC { // integer arithmetic operations
|
|
|
|
0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
|
|
0x40: addlv({{
|
|
uint32_t tmp = Ra.sl + Rb_or_imm.sl;
|
|
// signed overflow occurs when operands have same sign
|
|
// and sign of result does not match.
|
|
if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
|
|
fault = new IntegerOverflowFault;
|
|
Rc.sl = tmp;
|
|
}});
|
|
0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
|
|
0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
|
|
|
|
0x20: addq({{ Rc = Ra + Rb_or_imm; }});
|
|
0x60: addqv({{
|
|
uint64_t tmp = Ra + Rb_or_imm;
|
|
// signed overflow occurs when operands have same sign
|
|
// and sign of result does not match.
|
|
if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
|
|
fault = new IntegerOverflowFault;
|
|
Rc = tmp;
|
|
}});
|
|
0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
|
|
0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
|
|
|
|
0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
|
|
0x49: sublv({{
|
|
uint32_t tmp = Ra.sl - Rb_or_imm.sl;
|
|
// signed overflow detection is same as for add,
|
|
// except we need to look at the *complemented*
|
|
// sign bit of the subtrahend (Rb), i.e., if the initial
|
|
// signs are the *same* then no overflow can occur
|
|
if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
|
|
fault = new IntegerOverflowFault;
|
|
Rc.sl = tmp;
|
|
}});
|
|
0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
|
|
0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
|
|
|
|
0x29: subq({{ Rc = Ra - Rb_or_imm; }});
|
|
0x69: subqv({{
|
|
uint64_t tmp = Ra - Rb_or_imm;
|
|
// signed overflow detection is same as for add,
|
|
// except we need to look at the *complemented*
|
|
// sign bit of the subtrahend (Rb), i.e., if the initial
|
|
// signs are the *same* then no overflow can occur
|
|
if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
|
|
fault = new IntegerOverflowFault;
|
|
Rc = tmp;
|
|
}});
|
|
0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
|
|
0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
|
|
|
|
0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
|
|
0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
|
|
0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
|
|
0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
|
|
0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
|
|
|
|
0x0f: cmpbge({{
|
|
int hi = 7;
|
|
int lo = 0;
|
|
uint64_t tmp = 0;
|
|
for (int i = 0; i < 8; ++i) {
|
|
tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
|
|
hi += 8;
|
|
lo += 8;
|
|
}
|
|
Rc = tmp;
|
|
}});
|
|
}
|
|
|
|
0x11: decode INTFUNC { // integer logical operations
|
|
|
|
0x00: and({{ Rc = Ra & Rb_or_imm; }});
|
|
0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
|
|
0x20: bis({{ Rc = Ra | Rb_or_imm; }});
|
|
0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
|
|
0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
|
|
0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
|
|
|
|
// conditional moves
|
|
0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
|
|
0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
|
|
0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
|
|
0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
|
|
0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
|
|
0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
|
|
0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
|
|
0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
|
|
|
|
// For AMASK, RA must be R31.
|
|
0x61: decode RA {
|
|
31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
|
|
}
|
|
|
|
// For IMPLVER, RA must be R31 and the B operand
|
|
// must be the immediate value 1.
|
|
0x6c: decode RA {
|
|
31: decode IMM {
|
|
1: decode INTIMM {
|
|
// return EV5 for FULL_SYSTEM and EV6 otherwise
|
|
1: implver({{
|
|
#if FULL_SYSTEM
|
|
Rc = 1;
|
|
#else
|
|
Rc = 2;
|
|
#endif
|
|
}});
|
|
}
|
|
}
|
|
}
|
|
|
|
#if FULL_SYSTEM
|
|
// The mysterious 11.25...
|
|
0x25: WarnUnimpl::eleven25();
|
|
#endif
|
|
}
|
|
|
|
0x12: decode INTFUNC {
|
|
0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
|
|
0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
|
|
0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
|
|
|
|
0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
|
|
0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
|
|
0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
|
|
0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
|
|
|
|
0x52: mskwh({{
|
|
int bv = Rb_or_imm<2:0>;
|
|
Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
|
|
}});
|
|
0x62: msklh({{
|
|
int bv = Rb_or_imm<2:0>;
|
|
Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
|
|
}});
|
|
0x72: mskqh({{
|
|
int bv = Rb_or_imm<2:0>;
|
|
Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
|
|
}});
|
|
|
|
0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
|
|
0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
|
|
0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
|
|
0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
|
|
|
|
0x5a: extwh({{
|
|
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
|
|
0x6a: extlh({{
|
|
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
|
|
0x7a: extqh({{
|
|
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
|
|
|
|
0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
|
|
0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
|
|
0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
|
|
0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
|
|
|
|
0x57: inswh({{
|
|
int bv = Rb_or_imm<2:0>;
|
|
Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
|
|
}});
|
|
0x67: inslh({{
|
|
int bv = Rb_or_imm<2:0>;
|
|
Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
|
|
}});
|
|
0x77: insqh({{
|
|
int bv = Rb_or_imm<2:0>;
|
|
Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
|
|
}});
|
|
|
|
0x30: zap({{
|
|
uint64_t zapmask = 0;
|
|
for (int i = 0; i < 8; ++i) {
|
|
if (Rb_or_imm<i:>)
|
|
zapmask |= (mask(8) << (i * 8));
|
|
}
|
|
Rc = Ra & ~zapmask;
|
|
}});
|
|
0x31: zapnot({{
|
|
uint64_t zapmask = 0;
|
|
for (int i = 0; i < 8; ++i) {
|
|
if (!Rb_or_imm<i:>)
|
|
zapmask |= (mask(8) << (i * 8));
|
|
}
|
|
Rc = Ra & ~zapmask;
|
|
}});
|
|
}
|
|
|
|
0x13: decode INTFUNC { // integer multiplies
|
|
0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
|
|
0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
|
|
0x30: umulh({{
|
|
uint64_t hi, lo;
|
|
mul128(Ra, Rb_or_imm, hi, lo);
|
|
Rc = hi;
|
|
}}, IntMultOp);
|
|
0x40: mullv({{
|
|
// 32-bit multiply with trap on overflow
|
|
int64_t Rax = Ra.sl; // sign extended version of Ra.sl
|
|
int64_t Rbx = Rb_or_imm.sl;
|
|
int64_t tmp = Rax * Rbx;
|
|
// To avoid overflow, all the upper 32 bits must match
|
|
// the sign bit of the lower 32. We code this as
|
|
// checking the upper 33 bits for all 0s or all 1s.
|
|
uint64_t sign_bits = tmp<63:31>;
|
|
if (sign_bits != 0 && sign_bits != mask(33))
|
|
fault = new IntegerOverflowFault;
|
|
Rc.sl = tmp<31:0>;
|
|
}}, IntMultOp);
|
|
0x60: mulqv({{
|
|
// 64-bit multiply with trap on overflow
|
|
uint64_t hi, lo;
|
|
mul128(Ra, Rb_or_imm, hi, lo);
|
|
// all the upper 64 bits must match the sign bit of
|
|
// the lower 64
|
|
if (!((hi == 0 && lo<63:> == 0) ||
|
|
(hi == mask(64) && lo<63:> == 1)))
|
|
fault = new IntegerOverflowFault;
|
|
Rc = lo;
|
|
}}, IntMultOp);
|
|
}
|
|
|
|
0x1c: decode INTFUNC {
|
|
0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
|
|
0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
|
|
0x32: ctlz({{
|
|
uint64_t count = 0;
|
|
uint64_t temp = Rb;
|
|
if (temp<63:32>) temp >>= 32; else count += 32;
|
|
if (temp<31:16>) temp >>= 16; else count += 16;
|
|
if (temp<15:8>) temp >>= 8; else count += 8;
|
|
if (temp<7:4>) temp >>= 4; else count += 4;
|
|
if (temp<3:2>) temp >>= 2; else count += 2;
|
|
if (temp<1:1>) temp >>= 1; else count += 1;
|
|
if ((temp<0:0>) != 0x1) count += 1;
|
|
Rc = count;
|
|
}}, IntAluOp);
|
|
|
|
0x33: cttz({{
|
|
uint64_t count = 0;
|
|
uint64_t temp = Rb;
|
|
if (!(temp<31:0>)) { temp >>= 32; count += 32; }
|
|
if (!(temp<15:0>)) { temp >>= 16; count += 16; }
|
|
if (!(temp<7:0>)) { temp >>= 8; count += 8; }
|
|
if (!(temp<3:0>)) { temp >>= 4; count += 4; }
|
|
if (!(temp<1:0>)) { temp >>= 2; count += 2; }
|
|
if (!(temp<0:0> & ULL(0x1))) count += 1;
|
|
Rc = count;
|
|
}}, IntAluOp);
|
|
|
|
format FailUnimpl {
|
|
0x30: ctpop();
|
|
0x31: perr();
|
|
0x34: unpkbw();
|
|
0x35: unpkbl();
|
|
0x36: pkwb();
|
|
0x37: pklb();
|
|
0x38: minsb8();
|
|
0x39: minsw4();
|
|
0x3a: minub8();
|
|
0x3b: minuw4();
|
|
0x3c: maxub8();
|
|
0x3d: maxuw4();
|
|
0x3e: maxsb8();
|
|
0x3f: maxsw4();
|
|
}
|
|
|
|
format BasicOperateWithNopCheck {
|
|
0x70: decode RB {
|
|
31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
|
|
}
|
|
0x78: decode RB {
|
|
31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
|
|
FloatCvtOp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Conditional branches.
|
|
format CondBranch {
|
|
0x39: beq({{ cond = (Ra == 0); }});
|
|
0x3d: bne({{ cond = (Ra != 0); }});
|
|
0x3e: bge({{ cond = (Ra.sq >= 0); }});
|
|
0x3f: bgt({{ cond = (Ra.sq > 0); }});
|
|
0x3b: ble({{ cond = (Ra.sq <= 0); }});
|
|
0x3a: blt({{ cond = (Ra.sq < 0); }});
|
|
0x38: blbc({{ cond = ((Ra & 1) == 0); }});
|
|
0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
|
|
|
|
0x31: fbeq({{ cond = (Fa == 0); }});
|
|
0x35: fbne({{ cond = (Fa != 0); }});
|
|
0x36: fbge({{ cond = (Fa >= 0); }});
|
|
0x37: fbgt({{ cond = (Fa > 0); }});
|
|
0x33: fble({{ cond = (Fa <= 0); }});
|
|
0x32: fblt({{ cond = (Fa < 0); }});
|
|
}
|
|
|
|
// unconditional branches
|
|
format UncondBranch {
|
|
0x30: br();
|
|
0x34: bsr(IsCall);
|
|
}
|
|
|
|
// indirect branches
|
|
0x1a: decode JMPFUNC {
|
|
format Jump {
|
|
0: jmp();
|
|
1: jsr(IsCall);
|
|
2: ret(IsReturn);
|
|
3: jsr_coroutine(IsCall, IsReturn);
|
|
}
|
|
}
|
|
|
|
// Square root and integer-to-FP moves
|
|
0x14: decode FP_SHORTFUNC {
|
|
// Integer to FP register moves must have RB == 31
|
|
0x4: decode RB {
|
|
31: decode FP_FULLFUNC {
|
|
format BasicOperateWithNopCheck {
|
|
0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
|
|
0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
|
|
0x014: FailUnimpl::itoff(); // VAX-format conversion
|
|
}
|
|
}
|
|
}
|
|
|
|
// Square root instructions must have FA == 31
|
|
0xb: decode FA {
|
|
31: decode FP_TYPEFUNC {
|
|
format FloatingPointOperate {
|
|
#if SS_COMPATIBLE_FP
|
|
0x0b: sqrts({{
|
|
if (Fb < 0.0)
|
|
fault = new ArithmeticFault;
|
|
Fc = sqrt(Fb);
|
|
}}, FloatSqrtOp);
|
|
#else
|
|
0x0b: sqrts({{
|
|
if (Fb.sf < 0.0)
|
|
fault = new ArithmeticFault;
|
|
Fc.sf = sqrt(Fb.sf);
|
|
}}, FloatSqrtOp);
|
|
#endif
|
|
0x2b: sqrtt({{
|
|
if (Fb < 0.0)
|
|
fault = new ArithmeticFault;
|
|
Fc = sqrt(Fb);
|
|
}}, FloatSqrtOp);
|
|
}
|
|
}
|
|
}
|
|
|
|
// VAX-format sqrtf and sqrtg are not implemented
|
|
0xa: FailUnimpl::sqrtfg();
|
|
}
|
|
|
|
// IEEE floating point
|
|
0x16: decode FP_SHORTFUNC_TOP2 {
|
|
// The top two bits of the short function code break this
|
|
// space into four groups: binary ops, compares, reserved, and
|
|
// conversions. See Table 4-12 of AHB. There are different
|
|
// special cases in these different groups, so we decode on
|
|
// these top two bits first just to select a decode strategy.
|
|
// Most of these instructions may have various trapping and
|
|
// rounding mode flags set; these are decoded in the
|
|
// FloatingPointDecode template used by the
|
|
// FloatingPointOperate format.
|
|
|
|
// add/sub/mul/div: just decode on the short function code
|
|
// and source type. All valid trapping and rounding modes apply.
|
|
0: decode FP_TRAPMODE {
|
|
// check for valid trapping modes here
|
|
0,1,5,7: decode FP_TYPEFUNC {
|
|
format FloatingPointOperate {
|
|
#if SS_COMPATIBLE_FP
|
|
0x00: adds({{ Fc = Fa + Fb; }});
|
|
0x01: subs({{ Fc = Fa - Fb; }});
|
|
0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
|
|
0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
|
|
#else
|
|
0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
|
|
0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
|
|
0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
|
|
0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
|
|
#endif
|
|
|
|
0x20: addt({{ Fc = Fa + Fb; }});
|
|
0x21: subt({{ Fc = Fa - Fb; }});
|
|
0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
|
|
0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Floating-point compare instructions must have the default
|
|
// rounding mode, and may use the default trapping mode or
|
|
// /SU. Both trapping modes are treated the same by M5; the
|
|
// only difference on the real hardware (as far a I can tell)
|
|
// is that without /SU you'd get an imprecise trap if you
|
|
// tried to compare a NaN with something else (instead of an
|
|
// "unordered" result).
|
|
1: decode FP_FULLFUNC {
|
|
format BasicOperateWithNopCheck {
|
|
0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
|
|
FloatCmpOp);
|
|
0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
|
|
FloatCmpOp);
|
|
0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
|
|
FloatCmpOp);
|
|
0x0a4, 0x5a4: cmptun({{ // unordered
|
|
Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
|
|
}}, FloatCmpOp);
|
|
}
|
|
}
|
|
|
|
// The FP-to-integer and integer-to-FP conversion insts
|
|
// require that FA be 31.
|
|
3: decode FA {
|
|
31: decode FP_TYPEFUNC {
|
|
format FloatingPointOperate {
|
|
0x2f: decode FP_ROUNDMODE {
|
|
format FPFixedRounding {
|
|
// "chopped" i.e. round toward zero
|
|
0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
|
|
Chopped);
|
|
// round to minus infinity
|
|
1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
|
|
MinusInfinity);
|
|
}
|
|
default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
|
|
}
|
|
|
|
// The cvtts opcode is overloaded to be cvtst if the trap
|
|
// mode is 2 or 6 (which are not valid otherwise)
|
|
0x2c: decode FP_FULLFUNC {
|
|
format BasicOperateWithNopCheck {
|
|
// trap on denorm version "cvtst/s" is
|
|
// simulated same as cvtst
|
|
0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
|
|
}
|
|
default: cvtts({{ Fc.sf = Fb; }});
|
|
}
|
|
|
|
// The trapping mode for integer-to-FP conversions
|
|
// must be /SUI or nothing; /U and /SU are not
|
|
// allowed. The full set of rounding modes are
|
|
// supported though.
|
|
0x3c: decode FP_TRAPMODE {
|
|
0,7: cvtqs({{ Fc.sf = Fb.sq; }});
|
|
}
|
|
0x3e: decode FP_TRAPMODE {
|
|
0,7: cvtqt({{ Fc = Fb.sq; }});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// misc FP operate
|
|
0x17: decode FP_FULLFUNC {
|
|
format BasicOperateWithNopCheck {
|
|
0x010: cvtlq({{
|
|
Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
|
|
}});
|
|
0x030: cvtql({{
|
|
Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
|
|
}});
|
|
|
|
// We treat the precise & imprecise trapping versions of
|
|
// cvtql identically.
|
|
0x130, 0x530: cvtqlv({{
|
|
// To avoid overflow, all the upper 32 bits must match
|
|
// the sign bit of the lower 32. We code this as
|
|
// checking the upper 33 bits for all 0s or all 1s.
|
|
uint64_t sign_bits = Fb.uq<63:31>;
|
|
if (sign_bits != 0 && sign_bits != mask(33))
|
|
fault = new IntegerOverflowFault;
|
|
Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
|
|
}});
|
|
|
|
0x020: cpys({{ // copy sign
|
|
Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
|
|
}});
|
|
0x021: cpysn({{ // copy sign negated
|
|
Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
|
|
}});
|
|
0x022: cpyse({{ // copy sign and exponent
|
|
Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
|
|
}});
|
|
|
|
0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
|
|
0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
|
|
0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
|
|
0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
|
|
0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
|
|
0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
|
|
|
|
0x024: mt_fpcr({{ FPCR = Fa.uq; }}, IsSerializing, IsSerializeBefore);
|
|
0x025: mf_fpcr({{ Fa.uq = FPCR; }}, IsSerializing, IsSerializeBefore);
|
|
}
|
|
}
|
|
|
|
// miscellaneous mem-format ops
|
|
0x18: decode MEMFUNC {
|
|
format WarnUnimpl {
|
|
0x8000: fetch();
|
|
0xa000: fetch_m();
|
|
0xe800: ecb();
|
|
}
|
|
|
|
format MiscPrefetch {
|
|
0xf800: wh64({{ EA = Rb & ~ULL(63); }},
|
|
{{ xc->writeHint(EA, 64, memAccessFlags); }},
|
|
mem_flags = NO_FAULT,
|
|
inst_flags = [IsMemRef, IsDataPrefetch,
|
|
IsStore, MemWriteOp]);
|
|
}
|
|
|
|
format BasicOperate {
|
|
0xc000: rpcc({{
|
|
#if FULL_SYSTEM
|
|
/* Rb is a fake dependency so here is a fun way to get
|
|
* the parser to understand that.
|
|
*/
|
|
Ra = xc->readMiscRegWithEffect(AlphaISA::IPR_CC, fault) + (Rb & 0);
|
|
|
|
#else
|
|
Ra = curTick;
|
|
#endif
|
|
}}, IsNonSpeculative);
|
|
|
|
// All of the barrier instructions below do nothing in
|
|
// their execute() methods (hence the empty code blocks).
|
|
// All of their functionality is hard-coded in the
|
|
// pipeline based on the flags IsSerializing,
|
|
// IsMemBarrier, and IsWriteBarrier. In the current
|
|
// detailed CPU model, the execute() function only gets
|
|
// called at fetch, so there's no way to generate pipeline
|
|
// behavior at any other stage. Once we go to an
|
|
// exec-in-exec CPU model we should be able to get rid of
|
|
// these flags and implement this behavior via the
|
|
// execute() methods.
|
|
|
|
// trapb is just a barrier on integer traps, where excb is
|
|
// a barrier on integer and FP traps. "EXCB is thus a
|
|
// superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
|
|
// them the same though.
|
|
0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
|
|
0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
|
|
0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
|
|
0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
|
|
}
|
|
|
|
#if FULL_SYSTEM
|
|
format BasicOperate {
|
|
0xe000: rc({{
|
|
Ra = xc->readIntrFlag();
|
|
xc->setIntrFlag(0);
|
|
}}, IsNonSpeculative);
|
|
0xf000: rs({{
|
|
Ra = xc->readIntrFlag();
|
|
xc->setIntrFlag(1);
|
|
}}, IsNonSpeculative);
|
|
}
|
|
#else
|
|
format FailUnimpl {
|
|
0xe000: rc();
|
|
0xf000: rs();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if FULL_SYSTEM
|
|
0x00: CallPal::call_pal({{
|
|
if (!palValid ||
|
|
(palPriv
|
|
&& xc->readMiscRegWithEffect(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) {
|
|
// invalid pal function code, or attempt to do privileged
|
|
// PAL call in non-kernel mode
|
|
fault = new UnimplementedOpcodeFault;
|
|
}
|
|
else {
|
|
// check to see if simulator wants to do something special
|
|
// on this PAL call (including maybe suppress it)
|
|
bool dopal = xc->simPalCheck(palFunc);
|
|
|
|
if (dopal) {
|
|
xc->setMiscRegWithEffect(AlphaISA::IPR_EXC_ADDR, NPC);
|
|
NPC = xc->readMiscRegWithEffect(AlphaISA::IPR_PAL_BASE, fault) + palOffset;
|
|
}
|
|
}
|
|
}}, IsNonSpeculative);
|
|
#else
|
|
0x00: decode PALFUNC {
|
|
format EmulatedCallPal {
|
|
0x00: halt ({{
|
|
SimExit(curTick, "halt instruction encountered");
|
|
}}, IsNonSpeculative);
|
|
0x83: callsys({{
|
|
xc->syscall();
|
|
}}, IsNonSpeculative, IsSerializeAfter);
|
|
// Read uniq reg into ABI return value register (r0)
|
|
0x9e: rduniq({{ R0 = Runiq; }}, IsSerializing, IsSerializeBefore);
|
|
// Write uniq reg with value from ABI arg register (r16)
|
|
0x9f: wruniq({{ Runiq = R16; }}, IsSerializing, IsSerializeBefore);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if FULL_SYSTEM
|
|
0x1b: decode PALMODE {
|
|
0: OpcdecFault::hw_st_quad();
|
|
1: decode HW_LDST_QUAD {
|
|
format HwLoad {
|
|
0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
|
|
1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
|
|
}
|
|
}
|
|
}
|
|
|
|
0x1f: decode PALMODE {
|
|
0: OpcdecFault::hw_st_cond();
|
|
format HwStore {
|
|
1: decode HW_LDST_COND {
|
|
0: decode HW_LDST_QUAD {
|
|
0: hw_st({{ EA = (Rb + disp) & ~3; }},
|
|
{{ Mem.ul = Ra<31:0>; }}, L);
|
|
1: hw_st({{ EA = (Rb + disp) & ~7; }},
|
|
{{ Mem.uq = Ra.uq; }}, Q);
|
|
}
|
|
|
|
1: FailUnimpl::hw_st_cond();
|
|
}
|
|
}
|
|
}
|
|
|
|
0x19: decode PALMODE {
|
|
0: OpcdecFault::hw_mfpr();
|
|
format HwMoveIPR {
|
|
1: hw_mfpr({{
|
|
Ra = xc->readMiscRegWithEffect(ipr_index, fault);
|
|
}}, IsSerializing, IsSerializeBefore);
|
|
}
|
|
}
|
|
|
|
0x1d: decode PALMODE {
|
|
0: OpcdecFault::hw_mtpr();
|
|
format HwMoveIPR {
|
|
1: hw_mtpr({{
|
|
xc->setMiscRegWithEffect(ipr_index, Ra);
|
|
if (traceData) { traceData->setData(Ra); }
|
|
}}, IsSerializing, IsSerializeBefore);
|
|
}
|
|
}
|
|
|
|
format BasicOperate {
|
|
0x1e: decode PALMODE {
|
|
0: OpcdecFault::hw_rei();
|
|
1:hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore);
|
|
}
|
|
|
|
// M5 special opcodes use the reserved 0x01 opcode space
|
|
0x01: decode M5FUNC {
|
|
0x00: arm({{
|
|
AlphaPseudo::arm(xc->xcBase());
|
|
}}, IsNonSpeculative);
|
|
0x01: quiesce({{
|
|
AlphaPseudo::quiesce(xc->xcBase());
|
|
}}, IsNonSpeculative, IsQuiesce);
|
|
0x02: quiesceNs({{
|
|
AlphaPseudo::quiesceNs(xc->xcBase(), R16);
|
|
}}, IsNonSpeculative, IsQuiesce);
|
|
0x03: quiesceCycles({{
|
|
AlphaPseudo::quiesceCycles(xc->xcBase(), R16);
|
|
}}, IsNonSpeculative, IsQuiesce);
|
|
0x04: quiesceTime({{
|
|
R0 = AlphaPseudo::quiesceTime(xc->xcBase());
|
|
}}, IsNonSpeculative);
|
|
0x10: ivlb({{
|
|
AlphaPseudo::ivlb(xc->xcBase());
|
|
}}, No_OpClass, IsNonSpeculative);
|
|
0x11: ivle({{
|
|
AlphaPseudo::ivle(xc->xcBase());
|
|
}}, No_OpClass, IsNonSpeculative);
|
|
0x20: m5exit_old({{
|
|
AlphaPseudo::m5exit_old(xc->xcBase());
|
|
}}, No_OpClass, IsNonSpeculative);
|
|
0x21: m5exit({{
|
|
AlphaPseudo::m5exit(xc->xcBase(), R16);
|
|
}}, No_OpClass, IsNonSpeculative);
|
|
0x30: initparam({{ Ra = xc->xcBase()->getCpuPtr()->system->init_param; }});
|
|
0x40: resetstats({{
|
|
AlphaPseudo::resetstats(xc->xcBase(), R16, R17);
|
|
}}, IsNonSpeculative);
|
|
0x41: dumpstats({{
|
|
AlphaPseudo::dumpstats(xc->xcBase(), R16, R17);
|
|
}}, IsNonSpeculative);
|
|
0x42: dumpresetstats({{
|
|
AlphaPseudo::dumpresetstats(xc->xcBase(), R16, R17);
|
|
}}, IsNonSpeculative);
|
|
0x43: m5checkpoint({{
|
|
AlphaPseudo::m5checkpoint(xc->xcBase(), R16, R17);
|
|
}}, IsNonSpeculative);
|
|
0x50: m5readfile({{
|
|
R0 = AlphaPseudo::readfile(xc->xcBase(), R16, R17, R18);
|
|
}}, IsNonSpeculative);
|
|
0x51: m5break({{
|
|
AlphaPseudo::debugbreak(xc->xcBase());
|
|
}}, IsNonSpeculative);
|
|
0x52: m5switchcpu({{
|
|
AlphaPseudo::switchcpu(xc->xcBase());
|
|
}}, IsNonSpeculative);
|
|
0x53: m5addsymbol({{
|
|
AlphaPseudo::addsymbol(xc->xcBase(), R16, R17);
|
|
}}, IsNonSpeculative);
|
|
0x54: m5panic({{
|
|
panic("M5 panic instruction called.");
|
|
}}, IsNonSpeculative);
|
|
|
|
}
|
|
}
|
|
#endif
|
|
}
|