gem5/src/cpu/simple_thread.hh
Ali Saidi 689cab36c9 *MiscReg->*MiscRegNoEffect, *MiscRegWithEffect->*MiscReg
--HG--
extra : convert_revision : f799b65f1b2a6bf43605e6870b0f39b473dc492b
2007-03-07 15:04:31 -05:00

418 lines
11 KiB
C++

/*
* Copyright (c) 2001-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Nathan Binkert
*/
#ifndef __CPU_SIMPLE_THREAD_HH__
#define __CPU_SIMPLE_THREAD_HH__
#include "arch/isa_traits.hh"
#include "arch/regfile.hh"
#include "arch/syscallreturn.hh"
#include "config/full_system.hh"
#include "cpu/thread_context.hh"
#include "cpu/thread_state.hh"
#include "mem/physical.hh"
#include "mem/request.hh"
#include "sim/byteswap.hh"
#include "sim/eventq.hh"
#include "sim/host.hh"
#include "sim/serialize.hh"
class BaseCPU;
#if FULL_SYSTEM
#include "sim/system.hh"
#include "arch/tlb.hh"
class FunctionProfile;
class ProfileNode;
class FunctionalPort;
class PhysicalPort;
namespace TheISA {
namespace Kernel {
class Statistics;
};
};
#else // !FULL_SYSTEM
#include "sim/process.hh"
#include "mem/page_table.hh"
class TranslatingPort;
#endif // FULL_SYSTEM
/**
* The SimpleThread object provides a combination of the ThreadState
* object and the ThreadContext interface. It implements the
* ThreadContext interface so that a ProxyThreadContext class can be
* made using SimpleThread as the template parameter (see
* thread_context.hh). It adds to the ThreadState object by adding all
* the objects needed for simple functional execution, including a
* simple architectural register file, and pointers to the ITB and DTB
* in full system mode. For CPU models that do not need more advanced
* ways to hold state (i.e. a separate physical register file, or
* separate fetch and commit PC's), this SimpleThread class provides
* all the necessary state for full architecture-level functional
* simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
* examples.
*/
class SimpleThread : public ThreadState
{
protected:
typedef TheISA::RegFile RegFile;
typedef TheISA::MachInst MachInst;
typedef TheISA::MiscRegFile MiscRegFile;
typedef TheISA::MiscReg MiscReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
public:
typedef ThreadContext::Status Status;
protected:
RegFile regs; // correct-path register context
public:
// pointer to CPU associated with this SimpleThread
BaseCPU *cpu;
ProxyThreadContext<SimpleThread> *tc;
System *system;
#if FULL_SYSTEM
TheISA::ITB *itb;
TheISA::DTB *dtb;
#endif
// constructor: initialize SimpleThread from given process structure
#if FULL_SYSTEM
SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
TheISA::ITB *_itb, TheISA::DTB *_dtb,
bool use_kernel_stats = true);
#else
SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid);
#endif
SimpleThread();
virtual ~SimpleThread();
virtual void takeOverFrom(ThreadContext *oldContext);
void regStats(const std::string &name);
void copyTC(ThreadContext *context);
void copyState(ThreadContext *oldContext);
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
/***************************************************************
* SimpleThread functions to provide CPU with access to various
* state, and to provide address translation methods.
**************************************************************/
/** Returns the pointer to this SimpleThread's ThreadContext. Used
* when a ThreadContext must be passed to objects outside of the
* CPU.
*/
ThreadContext *getTC() { return tc; }
#if FULL_SYSTEM
int getInstAsid() { return regs.instAsid(); }
int getDataAsid() { return regs.dataAsid(); }
Fault translateInstReq(RequestPtr &req)
{
return itb->translate(req, tc);
}
Fault translateDataReadReq(RequestPtr &req)
{
return dtb->translate(req, tc, false);
}
Fault translateDataWriteReq(RequestPtr &req)
{
return dtb->translate(req, tc, true);
}
void dumpFuncProfile();
Fault hwrei();
bool simPalCheck(int palFunc);
#else
Fault translateInstReq(RequestPtr &req)
{
return process->pTable->translate(req);
}
Fault translateDataReadReq(RequestPtr &req)
{
return process->pTable->translate(req);
}
Fault translateDataWriteReq(RequestPtr &req)
{
return process->pTable->translate(req);
}
#endif
/*******************************************
* ThreadContext interface functions.
******************************************/
BaseCPU *getCpuPtr() { return cpu; }
int getThreadNum() { return tid; }
#if FULL_SYSTEM
System *getSystemPtr() { return system; }
TheISA::ITB *getITBPtr() { return itb; }
TheISA::DTB *getDTBPtr() { return dtb; }
FunctionalPort *getPhysPort() { return physPort; }
/** Return a virtual port. If no thread context is specified then a static
* port is returned. Otherwise a port is created and returned. It must be
* deleted by deleteVirtPort(). */
VirtualPort *getVirtPort(ThreadContext *tc);
void delVirtPort(VirtualPort *vp);
#endif
Status status() const { return _status; }
void setStatus(Status newStatus) { _status = newStatus; }
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
void activate(int delay = 1);
/// Set the status to Suspended.
void suspend();
/// Set the status to Unallocated.
void deallocate();
/// Set the status to Halted.
void halt();
virtual bool misspeculating();
Fault instRead(RequestPtr &req)
{
panic("instRead not implemented");
// return funcPhysMem->read(req, inst);
return NoFault;
}
void copyArchRegs(ThreadContext *tc);
void clearArchRegs() { regs.clear(); }
//
// New accessors for new decoder.
//
uint64_t readIntReg(int reg_idx)
{
return regs.readIntReg(TheISA::flattenIntIndex(getTC(), reg_idx));
}
FloatReg readFloatReg(int reg_idx, int width)
{
return regs.readFloatReg(reg_idx, width);
}
FloatReg readFloatReg(int reg_idx)
{
return regs.readFloatReg(reg_idx);
}
FloatRegBits readFloatRegBits(int reg_idx, int width)
{
return regs.readFloatRegBits(reg_idx, width);
}
FloatRegBits readFloatRegBits(int reg_idx)
{
return regs.readFloatRegBits(reg_idx);
}
void setIntReg(int reg_idx, uint64_t val)
{
regs.setIntReg(TheISA::flattenIntIndex(getTC(), reg_idx), val);
}
void setFloatReg(int reg_idx, FloatReg val, int width)
{
regs.setFloatReg(reg_idx, val, width);
}
void setFloatReg(int reg_idx, FloatReg val)
{
regs.setFloatReg(reg_idx, val);
}
void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
{
regs.setFloatRegBits(reg_idx, val, width);
}
void setFloatRegBits(int reg_idx, FloatRegBits val)
{
regs.setFloatRegBits(reg_idx, val);
}
uint64_t readPC()
{
return regs.readPC();
}
void setPC(uint64_t val)
{
regs.setPC(val);
}
uint64_t readMicroPC()
{
return microPC;
}
void setMicroPC(uint64_t val)
{
microPC = val;
}
uint64_t readNextPC()
{
return regs.readNextPC();
}
void setNextPC(uint64_t val)
{
regs.setNextPC(val);
}
uint64_t readNextMicroPC()
{
return nextMicroPC;
}
void setNextMicroPC(uint64_t val)
{
nextMicroPC = val;
}
uint64_t readNextNPC()
{
return regs.readNextNPC();
}
void setNextNPC(uint64_t val)
{
regs.setNextNPC(val);
}
MiscReg readMiscRegNoEffect(int misc_reg)
{
return regs.readMiscRegNoEffect(misc_reg);
}
MiscReg readMiscReg(int misc_reg)
{
return regs.readMiscReg(misc_reg, tc);
}
void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
{
return regs.setMiscRegNoEffect(misc_reg, val);
}
void setMiscReg(int misc_reg, const MiscReg &val)
{
return regs.setMiscReg(misc_reg, val, tc);
}
unsigned readStCondFailures() { return storeCondFailures; }
void setStCondFailures(unsigned sc_failures)
{ storeCondFailures = sc_failures; }
#if !FULL_SYSTEM
TheISA::IntReg getSyscallArg(int i)
{
return regs.readIntReg(TheISA::flattenIntIndex(getTC(),
TheISA::ArgumentReg0 + i));
}
// used to shift args for indirect syscall
void setSyscallArg(int i, TheISA::IntReg val)
{
regs.setIntReg(TheISA::flattenIntIndex(getTC(),
TheISA::ArgumentReg0 + i), val);
}
void setSyscallReturn(SyscallReturn return_value)
{
TheISA::setSyscallReturn(return_value, getTC());
}
void syscall(int64_t callnum)
{
process->syscall(callnum, tc);
}
#endif
void changeRegFileContext(TheISA::RegContextParam param,
TheISA::RegContextVal val)
{
regs.changeContext(param, val);
}
};
// for non-speculative execution context, spec_mode is always false
inline bool
SimpleThread::misspeculating()
{
return false;
}
#endif // __CPU_CPU_EXEC_CONTEXT_HH__