gem5/src/cpu/simple/exec_context.hh
Brandon Potter a5802c823f syscall_emul: [patch 13/22] add system call retry capability
This changeset adds functionality that allows system calls to retry without
affecting thread context state such as the program counter or register values
for the associated thread context (when system calls return with a retry
fault).

This functionality is needed to solve problems with blocking system calls
in multi-process or multi-threaded simulations where information is passed
between processes/threads. Blocking system calls can cause deadlock because
the simulator itself is single threaded. There is only a single thread
servicing the event queue which can cause deadlock if the thread hits a
blocking system call instruction.

To illustrate the problem, consider two processes using the producer/consumer
sharing model. The processes can use file descriptors and the read and write
calls to pass information to one another. If the consumer calls the blocking
read system call before the producer has produced anything, the call will
block the event queue (while executing the system call instruction) and
deadlock the simulation.

The solution implemented in this changeset is to recognize that the system
calls will block and then generate a special retry fault. The fault will
be sent back up through the function call chain until it is exposed to the
cpu model's pipeline where the fault becomes visible. The fault will trigger
the cpu model to replay the instruction at a future tick where the call has
a chance to succeed without actually going into a blocking state.

In subsequent patches, we recognize that a syscall will block by calling a
non-blocking poll (from inside the system call implementation) and checking
for events. When events show up during the poll, it signifies that the call
would not have blocked and the syscall is allowed to proceed (calling an
underlying host system call if necessary). If no events are returned from the
poll, we generate the fault and try the instruction for the thread context
at a distant tick. Note that retrying every tick is not efficient.

As an aside, the simulator has some multi-threading support for the event
queue, but it is not used by default and needs work. Even if the event queue
was completely multi-threaded, meaning that there is a hardware thread on
the host servicing a single simulator thread contexts with a 1:1 mapping
between them, it's still possible to run into deadlock due to the event queue
barriers on quantum boundaries. The solution of replaying at a later tick
is the simplest solution and solves the problem generally.
2015-07-20 09:15:21 -05:00

420 lines
12 KiB
C++

/*
* Copyright (c) 2014-2015 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
* Andreas Sandberg
* Mitch Hayenga
*/
#ifndef __CPU_SIMPLE_EXEC_CONTEXT_HH__
#define __CPU_SIMPLE_EXEC_CONTEXT_HH__
#include "arch/registers.hh"
#include "base/types.hh"
#include "config/the_isa.hh"
#include "cpu/base.hh"
#include "cpu/exec_context.hh"
#include "cpu/simple/base.hh"
#include "cpu/static_inst_fwd.hh"
#include "cpu/translation.hh"
#include "mem/request.hh"
class BaseSimpleCPU;
class SimpleExecContext : public ExecContext {
protected:
typedef TheISA::MiscReg MiscReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
typedef TheISA::CCReg CCReg;
public:
BaseSimpleCPU *cpu;
SimpleThread* thread;
// This is the offset from the current pc that fetch should be performed
Addr fetchOffset;
// This flag says to stay at the current pc. This is useful for
// instructions which go beyond MachInst boundaries.
bool stayAtPC;
// Branch prediction
TheISA::PCState predPC;
/** PER-THREAD STATS */
// Number of simulated instructions
Counter numInst;
Stats::Scalar numInsts;
Counter numOp;
Stats::Scalar numOps;
// Number of integer alu accesses
Stats::Scalar numIntAluAccesses;
// Number of float alu accesses
Stats::Scalar numFpAluAccesses;
// Number of function calls/returns
Stats::Scalar numCallsReturns;
// Conditional control instructions;
Stats::Scalar numCondCtrlInsts;
// Number of int instructions
Stats::Scalar numIntInsts;
// Number of float instructions
Stats::Scalar numFpInsts;
// Number of integer register file accesses
Stats::Scalar numIntRegReads;
Stats::Scalar numIntRegWrites;
// Number of float register file accesses
Stats::Scalar numFpRegReads;
Stats::Scalar numFpRegWrites;
// Number of condition code register file accesses
Stats::Scalar numCCRegReads;
Stats::Scalar numCCRegWrites;
// Number of simulated memory references
Stats::Scalar numMemRefs;
Stats::Scalar numLoadInsts;
Stats::Scalar numStoreInsts;
// Number of idle cycles
Stats::Formula numIdleCycles;
// Number of busy cycles
Stats::Formula numBusyCycles;
// Number of simulated loads
Counter numLoad;
// Number of idle cycles
Stats::Average notIdleFraction;
Stats::Formula idleFraction;
// Number of cycles stalled for I-cache responses
Stats::Scalar icacheStallCycles;
Counter lastIcacheStall;
// Number of cycles stalled for D-cache responses
Stats::Scalar dcacheStallCycles;
Counter lastDcacheStall;
/// @{
/// Total number of branches fetched
Stats::Scalar numBranches;
/// Number of branches predicted as taken
Stats::Scalar numPredictedBranches;
/// Number of misprediced branches
Stats::Scalar numBranchMispred;
/// @}
// Instruction mix histogram by OpClass
Stats::Vector statExecutedInstType;
public:
/** Constructor */
SimpleExecContext(BaseSimpleCPU* _cpu, SimpleThread* _thread)
: cpu(_cpu), thread(_thread), fetchOffset(0), stayAtPC(false),
numInst(0), numOp(0), numLoad(0), lastIcacheStall(0), lastDcacheStall(0)
{ }
/** Reads an integer register. */
IntReg readIntRegOperand(const StaticInst *si, int idx) override
{
numIntRegReads++;
return thread->readIntReg(si->srcRegIdx(idx));
}
/** Sets an integer register to a value. */
void setIntRegOperand(const StaticInst *si, int idx, IntReg val) override
{
numIntRegWrites++;
thread->setIntReg(si->destRegIdx(idx), val);
}
/** Reads a floating point register of single register width. */
FloatReg readFloatRegOperand(const StaticInst *si, int idx) override
{
numFpRegReads++;
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Reg_Base;
return thread->readFloatReg(reg_idx);
}
/** Reads a floating point register in its binary format, instead
* of by value. */
FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx) override
{
numFpRegReads++;
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Reg_Base;
return thread->readFloatRegBits(reg_idx);
}
/** Sets a floating point register of single width to a value. */
void setFloatRegOperand(const StaticInst *si, int idx,
FloatReg val) override
{
numFpRegWrites++;
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Reg_Base;
thread->setFloatReg(reg_idx, val);
}
/** Sets the bits of a floating point register of single width
* to a binary value. */
void setFloatRegOperandBits(const StaticInst *si, int idx,
FloatRegBits val) override
{
numFpRegWrites++;
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Reg_Base;
thread->setFloatRegBits(reg_idx, val);
}
CCReg readCCRegOperand(const StaticInst *si, int idx) override
{
numCCRegReads++;
int reg_idx = si->srcRegIdx(idx) - TheISA::CC_Reg_Base;
return thread->readCCReg(reg_idx);
}
void setCCRegOperand(const StaticInst *si, int idx, CCReg val) override
{
numCCRegWrites++;
int reg_idx = si->destRegIdx(idx) - TheISA::CC_Reg_Base;
thread->setCCReg(reg_idx, val);
}
MiscReg readMiscRegOperand(const StaticInst *si, int idx) override
{
numIntRegReads++;
int reg_idx = si->srcRegIdx(idx) - TheISA::Misc_Reg_Base;
return thread->readMiscReg(reg_idx);
}
void setMiscRegOperand(const StaticInst *si, int idx,
const MiscReg &val) override
{
numIntRegWrites++;
int reg_idx = si->destRegIdx(idx) - TheISA::Misc_Reg_Base;
thread->setMiscReg(reg_idx, val);
}
/**
* Reads a miscellaneous register, handling any architectural
* side effects due to reading that register.
*/
MiscReg readMiscReg(int misc_reg) override
{
numIntRegReads++;
return thread->readMiscReg(misc_reg);
}
/**
* Sets a miscellaneous register, handling any architectural
* side effects due to writing that register.
*/
void setMiscReg(int misc_reg, const MiscReg &val) override
{
numIntRegWrites++;
thread->setMiscReg(misc_reg, val);
}
PCState pcState() const override
{
return thread->pcState();
}
void pcState(const PCState &val) override
{
thread->pcState(val);
}
/**
* Record the effective address of the instruction.
*
* @note Only valid for memory ops.
*/
void setEA(Addr EA) override
{ panic("BaseSimpleCPU::setEA() not implemented\n"); }
/**
* Get the effective address of the instruction.
*
* @note Only valid for memory ops.
*/
Addr getEA() const override
{ panic("BaseSimpleCPU::getEA() not implemented\n"); }
Fault readMem(Addr addr, uint8_t *data, unsigned int size,
Request::Flags flags) override
{
return cpu->readMem(addr, data, size, flags);
}
Fault initiateMemRead(Addr addr, unsigned int size,
Request::Flags flags) override
{
return cpu->initiateMemRead(addr, size, flags);
}
Fault writeMem(uint8_t *data, unsigned int size, Addr addr,
Request::Flags flags, uint64_t *res) override
{
return cpu->writeMem(data, size, addr, flags, res);
}
/**
* Sets the number of consecutive store conditional failures.
*/
void setStCondFailures(unsigned int sc_failures) override
{
thread->setStCondFailures(sc_failures);
}
/**
* Returns the number of consecutive store conditional failures.
*/
unsigned int readStCondFailures() const override
{
return thread->readStCondFailures();
}
/**
* Executes a syscall specified by the callnum.
*/
void syscall(int64_t callnum, Fault *fault) override
{
if (FullSystem)
panic("Syscall emulation isn't available in FS mode.");
thread->syscall(callnum, fault);
}
/** Returns a pointer to the ThreadContext. */
ThreadContext *tcBase() override
{
return thread->getTC();
}
/**
* Somewhat Alpha-specific function that handles returning from an
* error or interrupt.
*/
Fault hwrei() override
{
return thread->hwrei();
}
/**
* Check for special simulator handling of specific PAL calls. If
* return value is false, actual PAL call will be suppressed.
*/
bool simPalCheck(int palFunc) override
{
return thread->simPalCheck(palFunc);
}
bool readPredicate() override
{
return thread->readPredicate();
}
void setPredicate(bool val) override
{
thread->setPredicate(val);
if (cpu->traceData) {
cpu->traceData->setPredicate(val);
}
}
/**
* Invalidate a page in the DTLB <i>and</i> ITLB.
*/
void demapPage(Addr vaddr, uint64_t asn) override
{
thread->demapPage(vaddr, asn);
}
void armMonitor(Addr address) override
{
cpu->armMonitor(thread->threadId(), address);
}
bool mwait(PacketPtr pkt) override
{
return cpu->mwait(thread->threadId(), pkt);
}
void mwaitAtomic(ThreadContext *tc) override
{
cpu->mwaitAtomic(thread->threadId(), tc, thread->dtb);
}
AddressMonitor *getAddrMonitor() override
{
return cpu->getCpuAddrMonitor(thread->threadId());
}
#if THE_ISA == MIPS_ISA
MiscReg readRegOtherThread(int regIdx, ThreadID tid = InvalidThreadID)
override
{
panic("Simple CPU models do not support multithreaded "
"register access.");
}
void setRegOtherThread(int regIdx, MiscReg val,
ThreadID tid = InvalidThreadID) override
{
panic("Simple CPU models do not support multithreaded "
"register access.");
}
#endif
};
#endif // __CPU_EXEC_CONTEXT_HH__