gem5/src/cpu/o3/dyn_inst.hh
Brandon Potter a5802c823f syscall_emul: [patch 13/22] add system call retry capability
This changeset adds functionality that allows system calls to retry without
affecting thread context state such as the program counter or register values
for the associated thread context (when system calls return with a retry
fault).

This functionality is needed to solve problems with blocking system calls
in multi-process or multi-threaded simulations where information is passed
between processes/threads. Blocking system calls can cause deadlock because
the simulator itself is single threaded. There is only a single thread
servicing the event queue which can cause deadlock if the thread hits a
blocking system call instruction.

To illustrate the problem, consider two processes using the producer/consumer
sharing model. The processes can use file descriptors and the read and write
calls to pass information to one another. If the consumer calls the blocking
read system call before the producer has produced anything, the call will
block the event queue (while executing the system call instruction) and
deadlock the simulation.

The solution implemented in this changeset is to recognize that the system
calls will block and then generate a special retry fault. The fault will
be sent back up through the function call chain until it is exposed to the
cpu model's pipeline where the fault becomes visible. The fault will trigger
the cpu model to replay the instruction at a future tick where the call has
a chance to succeed without actually going into a blocking state.

In subsequent patches, we recognize that a syscall will block by calling a
non-blocking poll (from inside the system call implementation) and checking
for events. When events show up during the poll, it signifies that the call
would not have blocked and the syscall is allowed to proceed (calling an
underlying host system call if necessary). If no events are returned from the
poll, we generate the fault and try the instruction for the thread context
at a distant tick. Note that retrying every tick is not efficient.

As an aside, the simulator has some multi-threading support for the event
queue, but it is not used by default and needs work. Even if the event queue
was completely multi-threaded, meaning that there is a hardware thread on
the host servicing a single simulator thread contexts with a 1:1 mapping
between them, it's still possible to run into deadlock due to the event queue
barriers on quantum boundaries. The solution of replaying at a later tick
is the simplest solution and solves the problem generally.
2015-07-20 09:15:21 -05:00

338 lines
12 KiB
C++

/*
* Copyright (c) 2010 ARM Limited
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#ifndef __CPU_O3_DYN_INST_HH__
#define __CPU_O3_DYN_INST_HH__
#include <array>
#include "arch/isa_traits.hh"
#include "config/the_isa.hh"
#include "cpu/o3/cpu.hh"
#include "cpu/o3/isa_specific.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/inst_seq.hh"
#include "cpu/reg_class.hh"
class Packet;
template <class Impl>
class BaseO3DynInst : public BaseDynInst<Impl>
{
public:
/** Typedef for the CPU. */
typedef typename Impl::O3CPU O3CPU;
/** Binary machine instruction type. */
typedef TheISA::MachInst MachInst;
/** Extended machine instruction type. */
typedef TheISA::ExtMachInst ExtMachInst;
/** Logical register index type. */
typedef TheISA::RegIndex RegIndex;
/** Integer register index type. */
typedef TheISA::IntReg IntReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
typedef TheISA::CCReg CCReg;
/** Misc register index type. */
typedef TheISA::MiscReg MiscReg;
enum {
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
MaxInstDestRegs = TheISA::MaxInstDestRegs //< Max dest regs
};
public:
/** BaseDynInst constructor given a binary instruction. */
BaseO3DynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop,
TheISA::PCState pc, TheISA::PCState predPC,
InstSeqNum seq_num, O3CPU *cpu);
/** BaseDynInst constructor given a static inst pointer. */
BaseO3DynInst(const StaticInstPtr &_staticInst,
const StaticInstPtr &_macroop);
~BaseO3DynInst();
/** Executes the instruction.*/
Fault execute();
/** Initiates the access. Only valid for memory operations. */
Fault initiateAcc();
/** Completes the access. Only valid for memory operations. */
Fault completeAcc(PacketPtr pkt);
private:
/** Initializes variables. */
void initVars();
protected:
/** Values to be written to the destination misc. registers. */
std::array<MiscReg, TheISA::MaxMiscDestRegs> _destMiscRegVal;
/** Indexes of the destination misc. registers. They are needed to defer
* the write accesses to the misc. registers until the commit stage, when
* the instruction is out of its speculative state.
*/
std::array<short, TheISA::MaxMiscDestRegs> _destMiscRegIdx;
/** Number of destination misc. registers. */
uint8_t _numDestMiscRegs;
public:
#if TRACING_ON
/** Tick records used for the pipeline activity viewer. */
Tick fetchTick; // instruction fetch is completed.
int32_t decodeTick; // instruction enters decode phase
int32_t renameTick; // instruction enters rename phase
int32_t dispatchTick;
int32_t issueTick;
int32_t completeTick;
int32_t commitTick;
int32_t storeTick;
#endif
/** Reads a misc. register, including any side-effects the read
* might have as defined by the architecture.
*/
MiscReg readMiscReg(int misc_reg)
{
return this->cpu->readMiscReg(misc_reg, this->threadNumber);
}
/** Sets a misc. register, including any side-effects the write
* might have as defined by the architecture.
*/
void setMiscReg(int misc_reg, const MiscReg &val)
{
/** Writes to misc. registers are recorded and deferred until the
* commit stage, when updateMiscRegs() is called. First, check if
* the misc reg has been written before and update its value to be
* committed instead of making a new entry. If not, make a new
* entry and record the write.
*/
for (int idx = 0; idx < _numDestMiscRegs; idx++) {
if (_destMiscRegIdx[idx] == misc_reg) {
_destMiscRegVal[idx] = val;
return;
}
}
assert(_numDestMiscRegs < TheISA::MaxMiscDestRegs);
_destMiscRegIdx[_numDestMiscRegs] = misc_reg;
_destMiscRegVal[_numDestMiscRegs] = val;
_numDestMiscRegs++;
}
/** Reads a misc. register, including any side-effects the read
* might have as defined by the architecture.
*/
TheISA::MiscReg readMiscRegOperand(const StaticInst *si, int idx)
{
return this->cpu->readMiscReg(
si->srcRegIdx(idx) - TheISA::Misc_Reg_Base,
this->threadNumber);
}
/** Sets a misc. register, including any side-effects the write
* might have as defined by the architecture.
*/
void setMiscRegOperand(const StaticInst *si, int idx,
const MiscReg &val)
{
int misc_reg = si->destRegIdx(idx) - TheISA::Misc_Reg_Base;
setMiscReg(misc_reg, val);
}
/** Called at the commit stage to update the misc. registers. */
void updateMiscRegs()
{
// @todo: Pretty convoluted way to avoid squashing from happening when
// using the TC during an instruction's execution (specifically for
// instructions that have side-effects that use the TC). Fix this.
// See cpu/o3/dyn_inst_impl.hh.
bool no_squash_from_TC = this->thread->noSquashFromTC;
this->thread->noSquashFromTC = true;
for (int i = 0; i < _numDestMiscRegs; i++)
this->cpu->setMiscReg(
_destMiscRegIdx[i], _destMiscRegVal[i], this->threadNumber);
this->thread->noSquashFromTC = no_squash_from_TC;
}
void forwardOldRegs()
{
for (int idx = 0; idx < this->numDestRegs(); idx++) {
PhysRegIndex prev_phys_reg = this->prevDestRegIdx(idx);
TheISA::RegIndex original_dest_reg =
this->staticInst->destRegIdx(idx);
switch (regIdxToClass(original_dest_reg)) {
case IntRegClass:
this->setIntRegOperand(this->staticInst.get(), idx,
this->cpu->readIntReg(prev_phys_reg));
break;
case FloatRegClass:
this->setFloatRegOperandBits(this->staticInst.get(), idx,
this->cpu->readFloatRegBits(prev_phys_reg));
break;
case CCRegClass:
this->setCCRegOperand(this->staticInst.get(), idx,
this->cpu->readCCReg(prev_phys_reg));
break;
case MiscRegClass:
// no need to forward misc reg values
break;
}
}
}
/** Calls hardware return from error interrupt. */
Fault hwrei();
/** Traps to handle specified fault. */
void trap(const Fault &fault);
bool simPalCheck(int palFunc);
/** Emulates a syscall. */
void syscall(int64_t callnum, Fault *fault);
public:
// The register accessor methods provide the index of the
// instruction's operand (e.g., 0 or 1), not the architectural
// register index, to simplify the implementation of register
// renaming. We find the architectural register index by indexing
// into the instruction's own operand index table. Note that a
// raw pointer to the StaticInst is provided instead of a
// ref-counted StaticInstPtr to redice overhead. This is fine as
// long as these methods don't copy the pointer into any long-term
// storage (which is pretty hard to imagine they would have reason
// to do).
IntReg readIntRegOperand(const StaticInst *si, int idx)
{
return this->cpu->readIntReg(this->_srcRegIdx[idx]);
}
FloatReg readFloatRegOperand(const StaticInst *si, int idx)
{
return this->cpu->readFloatReg(this->_srcRegIdx[idx]);
}
FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
{
return this->cpu->readFloatRegBits(this->_srcRegIdx[idx]);
}
CCReg readCCRegOperand(const StaticInst *si, int idx)
{
return this->cpu->readCCReg(this->_srcRegIdx[idx]);
}
/** @todo: Make results into arrays so they can handle multiple dest
* registers.
*/
void setIntRegOperand(const StaticInst *si, int idx, IntReg val)
{
this->cpu->setIntReg(this->_destRegIdx[idx], val);
BaseDynInst<Impl>::setIntRegOperand(si, idx, val);
}
void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
{
this->cpu->setFloatReg(this->_destRegIdx[idx], val);
BaseDynInst<Impl>::setFloatRegOperand(si, idx, val);
}
void setFloatRegOperandBits(const StaticInst *si, int idx,
FloatRegBits val)
{
this->cpu->setFloatRegBits(this->_destRegIdx[idx], val);
BaseDynInst<Impl>::setFloatRegOperandBits(si, idx, val);
}
void setCCRegOperand(const StaticInst *si, int idx, CCReg val)
{
this->cpu->setCCReg(this->_destRegIdx[idx], val);
BaseDynInst<Impl>::setCCRegOperand(si, idx, val);
}
#if THE_ISA == MIPS_ISA
MiscReg readRegOtherThread(int misc_reg, ThreadID tid)
{
panic("MIPS MT not defined for O3 CPU.\n");
return 0;
}
void setRegOtherThread(int misc_reg, MiscReg val, ThreadID tid)
{
panic("MIPS MT not defined for O3 CPU.\n");
}
#endif
public:
/** Calculates EA part of a memory instruction. Currently unused,
* though it may be useful in the future if we want to split
* memory operations into EA calculation and memory access parts.
*/
Fault calcEA()
{
return this->staticInst->eaCompInst()->execute(this, this->traceData);
}
/** Does the memory access part of a memory instruction. Currently unused,
* though it may be useful in the future if we want to split
* memory operations into EA calculation and memory access parts.
*/
Fault memAccess()
{
return this->staticInst->memAccInst()->execute(this, this->traceData);
}
};
#endif // __CPU_O3_ALPHA_DYN_INST_HH__