gem5/src/cpu/base.cc
Brandon Potter a5802c823f syscall_emul: [patch 13/22] add system call retry capability
This changeset adds functionality that allows system calls to retry without
affecting thread context state such as the program counter or register values
for the associated thread context (when system calls return with a retry
fault).

This functionality is needed to solve problems with blocking system calls
in multi-process or multi-threaded simulations where information is passed
between processes/threads. Blocking system calls can cause deadlock because
the simulator itself is single threaded. There is only a single thread
servicing the event queue which can cause deadlock if the thread hits a
blocking system call instruction.

To illustrate the problem, consider two processes using the producer/consumer
sharing model. The processes can use file descriptors and the read and write
calls to pass information to one another. If the consumer calls the blocking
read system call before the producer has produced anything, the call will
block the event queue (while executing the system call instruction) and
deadlock the simulation.

The solution implemented in this changeset is to recognize that the system
calls will block and then generate a special retry fault. The fault will
be sent back up through the function call chain until it is exposed to the
cpu model's pipeline where the fault becomes visible. The fault will trigger
the cpu model to replay the instruction at a future tick where the call has
a chance to succeed without actually going into a blocking state.

In subsequent patches, we recognize that a syscall will block by calling a
non-blocking poll (from inside the system call implementation) and checking
for events. When events show up during the poll, it signifies that the call
would not have blocked and the syscall is allowed to proceed (calling an
underlying host system call if necessary). If no events are returned from the
poll, we generate the fault and try the instruction for the thread context
at a distant tick. Note that retrying every tick is not efficient.

As an aside, the simulator has some multi-threading support for the event
queue, but it is not used by default and needs work. Even if the event queue
was completely multi-threaded, meaning that there is a hardware thread on
the host servicing a single simulator thread contexts with a 1:1 mapping
between them, it's still possible to run into deadlock due to the event queue
barriers on quantum boundaries. The solution of replaying at a later tick
is the simplest solution and solves the problem generally.
2015-07-20 09:15:21 -05:00

786 lines
24 KiB
C++

/*
* Copyright (c) 2011-2012,2016 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* Copyright (c) 2011 Regents of the University of California
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* Copyright (c) 2013 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Nathan Binkert
* Rick Strong
*/
#include "cpu/base.hh"
#include <iostream>
#include <sstream>
#include <string>
#include "arch/tlb.hh"
#include "base/cprintf.hh"
#include "base/loader/symtab.hh"
#include "base/misc.hh"
#include "base/output.hh"
#include "base/trace.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/cpuevent.hh"
#include "cpu/profile.hh"
#include "cpu/thread_context.hh"
#include "debug/Mwait.hh"
#include "debug/SyscallVerbose.hh"
#include "mem/page_table.hh"
#include "params/BaseCPU.hh"
#include "sim/clocked_object.hh"
#include "sim/full_system.hh"
#include "sim/process.hh"
#include "sim/sim_events.hh"
#include "sim/sim_exit.hh"
#include "sim/system.hh"
// Hack
#include "sim/stat_control.hh"
using namespace std;
vector<BaseCPU *> BaseCPU::cpuList;
// This variable reflects the max number of threads in any CPU. Be
// careful to only use it once all the CPUs that you care about have
// been initialized
int maxThreadsPerCPU = 1;
CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
: Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
cpu(_cpu), _repeatEvent(true)
{
if (_interval)
cpu->schedule(this, curTick() + _interval);
}
void
CPUProgressEvent::process()
{
Counter temp = cpu->totalOps();
if (_repeatEvent)
cpu->schedule(this, curTick() + _interval);
if (cpu->switchedOut()) {
return;
}
#ifndef NDEBUG
double ipc = double(temp - lastNumInst) / (_interval / cpu->clockPeriod());
DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
"%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
ipc);
ipc = 0.0;
#else
cprintf("%lli: %s progress event, total committed:%i, progress insts "
"committed: %lli\n", curTick(), cpu->name(), temp,
temp - lastNumInst);
#endif
lastNumInst = temp;
}
const char *
CPUProgressEvent::description() const
{
return "CPU Progress";
}
BaseCPU::BaseCPU(Params *p, bool is_checker)
: MemObject(p), instCnt(0), _cpuId(p->cpu_id), _socketId(p->socket_id),
_instMasterId(p->system->getMasterId(name() + ".inst")),
_dataMasterId(p->system->getMasterId(name() + ".data")),
_taskId(ContextSwitchTaskId::Unknown), _pid(invldPid),
_switchedOut(p->switched_out), _cacheLineSize(p->system->cacheLineSize()),
interrupts(p->interrupts), profileEvent(NULL),
numThreads(p->numThreads), system(p->system),
functionTraceStream(nullptr), currentFunctionStart(0),
currentFunctionEnd(0), functionEntryTick(0),
addressMonitor(p->numThreads),
syscallRetryLatency(p->syscallRetryLatency)
{
// if Python did not provide a valid ID, do it here
if (_cpuId == -1 ) {
_cpuId = cpuList.size();
}
// add self to global list of CPUs
cpuList.push_back(this);
DPRINTF(SyscallVerbose, "Constructing CPU with id %d, socket id %d\n",
_cpuId, _socketId);
if (numThreads > maxThreadsPerCPU)
maxThreadsPerCPU = numThreads;
// allocate per-thread instruction-based event queues
comInstEventQueue = new EventQueue *[numThreads];
for (ThreadID tid = 0; tid < numThreads; ++tid)
comInstEventQueue[tid] =
new EventQueue("instruction-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_insts_any_thread != 0) {
const char *cause = "a thread reached the max instruction count";
for (ThreadID tid = 0; tid < numThreads; ++tid)
scheduleInstStop(tid, p->max_insts_any_thread, cause);
}
// Set up instruction-count-based termination events for SimPoints
// Typically, there are more than one action points.
// Simulation.py is responsible to take the necessary actions upon
// exitting the simulation loop.
if (!p->simpoint_start_insts.empty()) {
const char *cause = "simpoint starting point found";
for (size_t i = 0; i < p->simpoint_start_insts.size(); ++i)
scheduleInstStop(0, p->simpoint_start_insts[i], cause);
}
if (p->max_insts_all_threads != 0) {
const char *cause = "all threads reached the max instruction count";
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = numThreads;
for (ThreadID tid = 0; tid < numThreads; ++tid) {
Event *event = new CountedExitEvent(cause, *counter);
comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
}
}
// allocate per-thread load-based event queues
comLoadEventQueue = new EventQueue *[numThreads];
for (ThreadID tid = 0; tid < numThreads; ++tid)
comLoadEventQueue[tid] = new EventQueue("load-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_loads_any_thread != 0) {
const char *cause = "a thread reached the max load count";
for (ThreadID tid = 0; tid < numThreads; ++tid)
scheduleLoadStop(tid, p->max_loads_any_thread, cause);
}
if (p->max_loads_all_threads != 0) {
const char *cause = "all threads reached the max load count";
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = numThreads;
for (ThreadID tid = 0; tid < numThreads; ++tid) {
Event *event = new CountedExitEvent(cause, *counter);
comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
}
}
functionTracingEnabled = false;
if (p->function_trace) {
const string fname = csprintf("ftrace.%s", name());
functionTraceStream = simout.findOrCreate(fname)->stream();
currentFunctionStart = currentFunctionEnd = 0;
functionEntryTick = p->function_trace_start;
if (p->function_trace_start == 0) {
functionTracingEnabled = true;
} else {
typedef EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace> wrap;
Event *event = new wrap(this, true);
schedule(event, p->function_trace_start);
}
}
// The interrupts should always be present unless this CPU is
// switched in later or in case it is a checker CPU
if (!params()->switched_out && !is_checker) {
fatal_if(interrupts.size() != numThreads,
"CPU %s has %i interrupt controllers, but is expecting one "
"per thread (%i)\n",
name(), interrupts.size(), numThreads);
for (ThreadID tid = 0; tid < numThreads; tid++)
interrupts[tid]->setCPU(this);
}
if (FullSystem) {
if (params()->profile)
profileEvent = new ProfileEvent(this, params()->profile);
}
tracer = params()->tracer;
if (params()->isa.size() != numThreads) {
fatal("Number of ISAs (%i) assigned to the CPU does not equal number "
"of threads (%i).\n", params()->isa.size(), numThreads);
}
}
void
BaseCPU::enableFunctionTrace()
{
functionTracingEnabled = true;
}
BaseCPU::~BaseCPU()
{
delete profileEvent;
delete[] comLoadEventQueue;
delete[] comInstEventQueue;
}
void
BaseCPU::armMonitor(ThreadID tid, Addr address)
{
assert(tid < numThreads);
AddressMonitor &monitor = addressMonitor[tid];
monitor.armed = true;
monitor.vAddr = address;
monitor.pAddr = 0x0;
DPRINTF(Mwait,"[tid:%d] Armed monitor (vAddr=0x%lx)\n", tid, address);
}
bool
BaseCPU::mwait(ThreadID tid, PacketPtr pkt)
{
assert(tid < numThreads);
AddressMonitor &monitor = addressMonitor[tid];
if (!monitor.gotWakeup) {
int block_size = cacheLineSize();
uint64_t mask = ~((uint64_t)(block_size - 1));
assert(pkt->req->hasPaddr());
monitor.pAddr = pkt->getAddr() & mask;
monitor.waiting = true;
DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, "
"line's paddr=0x%lx)\n", tid, monitor.vAddr, monitor.pAddr);
return true;
} else {
monitor.gotWakeup = false;
return false;
}
}
void
BaseCPU::mwaitAtomic(ThreadID tid, ThreadContext *tc, TheISA::TLB *dtb)
{
assert(tid < numThreads);
AddressMonitor &monitor = addressMonitor[tid];
Request req;
Addr addr = monitor.vAddr;
int block_size = cacheLineSize();
uint64_t mask = ~((uint64_t)(block_size - 1));
int size = block_size;
//The address of the next line if it crosses a cache line boundary.
Addr secondAddr = roundDown(addr + size - 1, block_size);
if (secondAddr > addr)
size = secondAddr - addr;
req.setVirt(0, addr, size, 0x0, dataMasterId(), tc->instAddr());
// translate to physical address
Fault fault = dtb->translateAtomic(&req, tc, BaseTLB::Read);
assert(fault == NoFault);
monitor.pAddr = req.getPaddr() & mask;
monitor.waiting = true;
DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, line's paddr=0x%lx)\n",
tid, monitor.vAddr, monitor.pAddr);
}
void
BaseCPU::init()
{
if (!params()->switched_out) {
registerThreadContexts();
verifyMemoryMode();
}
}
void
BaseCPU::startup()
{
if (FullSystem) {
if (!params()->switched_out && profileEvent)
schedule(profileEvent, curTick());
}
if (params()->progress_interval) {
new CPUProgressEvent(this, params()->progress_interval);
}
// Assumption CPU start to operate instantaneously without any latency
if (ClockedObject::pwrState() == Enums::PwrState::UNDEFINED)
ClockedObject::pwrState(Enums::PwrState::ON);
}
ProbePoints::PMUUPtr
BaseCPU::pmuProbePoint(const char *name)
{
ProbePoints::PMUUPtr ptr;
ptr.reset(new ProbePoints::PMU(getProbeManager(), name));
return ptr;
}
void
BaseCPU::regProbePoints()
{
ppCycles = pmuProbePoint("Cycles");
ppRetiredInsts = pmuProbePoint("RetiredInsts");
ppRetiredLoads = pmuProbePoint("RetiredLoads");
ppRetiredStores = pmuProbePoint("RetiredStores");
ppRetiredBranches = pmuProbePoint("RetiredBranches");
}
void
BaseCPU::probeInstCommit(const StaticInstPtr &inst)
{
if (!inst->isMicroop() || inst->isLastMicroop())
ppRetiredInsts->notify(1);
if (inst->isLoad())
ppRetiredLoads->notify(1);
if (inst->isStore())
ppRetiredStores->notify(1);
if (inst->isControl())
ppRetiredBranches->notify(1);
}
void
BaseCPU::regStats()
{
MemObject::regStats();
using namespace Stats;
numCycles
.name(name() + ".numCycles")
.desc("number of cpu cycles simulated")
;
numWorkItemsStarted
.name(name() + ".numWorkItemsStarted")
.desc("number of work items this cpu started")
;
numWorkItemsCompleted
.name(name() + ".numWorkItemsCompleted")
.desc("number of work items this cpu completed")
;
int size = threadContexts.size();
if (size > 1) {
for (int i = 0; i < size; ++i) {
stringstream namestr;
ccprintf(namestr, "%s.ctx%d", name(), i);
threadContexts[i]->regStats(namestr.str());
}
} else if (size == 1)
threadContexts[0]->regStats(name());
}
BaseMasterPort &
BaseCPU::getMasterPort(const string &if_name, PortID idx)
{
// Get the right port based on name. This applies to all the
// subclasses of the base CPU and relies on their implementation
// of getDataPort and getInstPort. In all cases there methods
// return a MasterPort pointer.
if (if_name == "dcache_port")
return getDataPort();
else if (if_name == "icache_port")
return getInstPort();
else
return MemObject::getMasterPort(if_name, idx);
}
void
BaseCPU::registerThreadContexts()
{
assert(system->multiThread || numThreads == 1);
ThreadID size = threadContexts.size();
for (ThreadID tid = 0; tid < size; ++tid) {
ThreadContext *tc = threadContexts[tid];
if (system->multiThread) {
tc->setContextId(system->registerThreadContext(tc));
} else {
tc->setContextId(system->registerThreadContext(tc, _cpuId));
}
if (!FullSystem)
tc->getProcessPtr()->assignThreadContext(tc->contextId());
}
}
int
BaseCPU::findContext(ThreadContext *tc)
{
ThreadID size = threadContexts.size();
for (ThreadID tid = 0; tid < size; ++tid) {
if (tc == threadContexts[tid])
return tid;
}
return 0;
}
void
BaseCPU::activateContext(ThreadID thread_num)
{
// For any active thread running, update CPU power state to active (ON)
ClockedObject::pwrState(Enums::PwrState::ON);
}
void
BaseCPU::suspendContext(ThreadID thread_num)
{
// Check if all threads are suspended
for (auto t : threadContexts) {
if (t->status() != ThreadContext::Suspended) {
return;
}
}
// All CPU threads suspended, enter lower power state for the CPU
ClockedObject::pwrState(Enums::PwrState::CLK_GATED);
}
void
BaseCPU::switchOut()
{
assert(!_switchedOut);
_switchedOut = true;
if (profileEvent && profileEvent->scheduled())
deschedule(profileEvent);
// Flush all TLBs in the CPU to avoid having stale translations if
// it gets switched in later.
flushTLBs();
}
void
BaseCPU::takeOverFrom(BaseCPU *oldCPU)
{
assert(threadContexts.size() == oldCPU->threadContexts.size());
assert(_cpuId == oldCPU->cpuId());
assert(_switchedOut);
assert(oldCPU != this);
_pid = oldCPU->getPid();
_taskId = oldCPU->taskId();
_switchedOut = false;
ThreadID size = threadContexts.size();
for (ThreadID i = 0; i < size; ++i) {
ThreadContext *newTC = threadContexts[i];
ThreadContext *oldTC = oldCPU->threadContexts[i];
newTC->takeOverFrom(oldTC);
CpuEvent::replaceThreadContext(oldTC, newTC);
assert(newTC->contextId() == oldTC->contextId());
assert(newTC->threadId() == oldTC->threadId());
system->replaceThreadContext(newTC, newTC->contextId());
/* This code no longer works since the zero register (e.g.,
* r31 on Alpha) doesn't necessarily contain zero at this
* point.
if (DTRACE(Context))
ThreadContext::compare(oldTC, newTC);
*/
BaseMasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort();
BaseMasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort();
BaseMasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort();
BaseMasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort();
// Move over any table walker ports if they exist
if (new_itb_port) {
assert(!new_itb_port->isConnected());
assert(old_itb_port);
assert(old_itb_port->isConnected());
BaseSlavePort &slavePort = old_itb_port->getSlavePort();
old_itb_port->unbind();
new_itb_port->bind(slavePort);
}
if (new_dtb_port) {
assert(!new_dtb_port->isConnected());
assert(old_dtb_port);
assert(old_dtb_port->isConnected());
BaseSlavePort &slavePort = old_dtb_port->getSlavePort();
old_dtb_port->unbind();
new_dtb_port->bind(slavePort);
}
newTC->getITBPtr()->takeOverFrom(oldTC->getITBPtr());
newTC->getDTBPtr()->takeOverFrom(oldTC->getDTBPtr());
// Checker whether or not we have to transfer CheckerCPU
// objects over in the switch
CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr();
CheckerCPU *newChecker = newTC->getCheckerCpuPtr();
if (oldChecker && newChecker) {
BaseMasterPort *old_checker_itb_port =
oldChecker->getITBPtr()->getMasterPort();
BaseMasterPort *old_checker_dtb_port =
oldChecker->getDTBPtr()->getMasterPort();
BaseMasterPort *new_checker_itb_port =
newChecker->getITBPtr()->getMasterPort();
BaseMasterPort *new_checker_dtb_port =
newChecker->getDTBPtr()->getMasterPort();
newChecker->getITBPtr()->takeOverFrom(oldChecker->getITBPtr());
newChecker->getDTBPtr()->takeOverFrom(oldChecker->getDTBPtr());
// Move over any table walker ports if they exist for checker
if (new_checker_itb_port) {
assert(!new_checker_itb_port->isConnected());
assert(old_checker_itb_port);
assert(old_checker_itb_port->isConnected());
BaseSlavePort &slavePort =
old_checker_itb_port->getSlavePort();
old_checker_itb_port->unbind();
new_checker_itb_port->bind(slavePort);
}
if (new_checker_dtb_port) {
assert(!new_checker_dtb_port->isConnected());
assert(old_checker_dtb_port);
assert(old_checker_dtb_port->isConnected());
BaseSlavePort &slavePort =
old_checker_dtb_port->getSlavePort();
old_checker_dtb_port->unbind();
new_checker_dtb_port->bind(slavePort);
}
}
}
interrupts = oldCPU->interrupts;
for (ThreadID tid = 0; tid < numThreads; tid++) {
interrupts[tid]->setCPU(this);
}
oldCPU->interrupts.clear();
if (FullSystem) {
for (ThreadID i = 0; i < size; ++i)
threadContexts[i]->profileClear();
if (profileEvent)
schedule(profileEvent, curTick());
}
// All CPUs have an instruction and a data port, and the new CPU's
// ports are dangling while the old CPU has its ports connected
// already. Unbind the old CPU and then bind the ports of the one
// we are switching to.
assert(!getInstPort().isConnected());
assert(oldCPU->getInstPort().isConnected());
BaseSlavePort &inst_peer_port = oldCPU->getInstPort().getSlavePort();
oldCPU->getInstPort().unbind();
getInstPort().bind(inst_peer_port);
assert(!getDataPort().isConnected());
assert(oldCPU->getDataPort().isConnected());
BaseSlavePort &data_peer_port = oldCPU->getDataPort().getSlavePort();
oldCPU->getDataPort().unbind();
getDataPort().bind(data_peer_port);
}
void
BaseCPU::flushTLBs()
{
for (ThreadID i = 0; i < threadContexts.size(); ++i) {
ThreadContext &tc(*threadContexts[i]);
CheckerCPU *checker(tc.getCheckerCpuPtr());
tc.getITBPtr()->flushAll();
tc.getDTBPtr()->flushAll();
if (checker) {
checker->getITBPtr()->flushAll();
checker->getDTBPtr()->flushAll();
}
}
}
BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
: cpu(_cpu), interval(_interval)
{ }
void
BaseCPU::ProfileEvent::process()
{
ThreadID size = cpu->threadContexts.size();
for (ThreadID i = 0; i < size; ++i) {
ThreadContext *tc = cpu->threadContexts[i];
tc->profileSample();
}
cpu->schedule(this, curTick() + interval);
}
void
BaseCPU::serialize(CheckpointOut &cp) const
{
SERIALIZE_SCALAR(instCnt);
if (!_switchedOut) {
/* Unlike _pid, _taskId is not serialized, as they are dynamically
* assigned unique ids that are only meaningful for the duration of
* a specific run. We will need to serialize the entire taskMap in
* system. */
SERIALIZE_SCALAR(_pid);
// Serialize the threads, this is done by the CPU implementation.
for (ThreadID i = 0; i < numThreads; ++i) {
ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
interrupts[i]->serialize(cp);
serializeThread(cp, i);
}
}
}
void
BaseCPU::unserialize(CheckpointIn &cp)
{
UNSERIALIZE_SCALAR(instCnt);
if (!_switchedOut) {
UNSERIALIZE_SCALAR(_pid);
// Unserialize the threads, this is done by the CPU implementation.
for (ThreadID i = 0; i < numThreads; ++i) {
ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
interrupts[i]->unserialize(cp);
unserializeThread(cp, i);
}
}
}
void
BaseCPU::scheduleInstStop(ThreadID tid, Counter insts, const char *cause)
{
const Tick now(comInstEventQueue[tid]->getCurTick());
Event *event(new LocalSimLoopExitEvent(cause, 0));
comInstEventQueue[tid]->schedule(event, now + insts);
}
uint64_t
BaseCPU::getCurrentInstCount(ThreadID tid)
{
return Tick(comInstEventQueue[tid]->getCurTick());
}
AddressMonitor::AddressMonitor() {
armed = false;
waiting = false;
gotWakeup = false;
}
bool AddressMonitor::doMonitor(PacketPtr pkt) {
assert(pkt->req->hasPaddr());
if (armed && waiting) {
if (pAddr == pkt->getAddr()) {
DPRINTF(Mwait,"pAddr=0x%lx invalidated: waking up core\n",
pkt->getAddr());
waiting = false;
return true;
}
}
return false;
}
void
BaseCPU::scheduleLoadStop(ThreadID tid, Counter loads, const char *cause)
{
const Tick now(comLoadEventQueue[tid]->getCurTick());
Event *event(new LocalSimLoopExitEvent(cause, 0));
comLoadEventQueue[tid]->schedule(event, now + loads);
}
void
BaseCPU::traceFunctionsInternal(Addr pc)
{
if (!debugSymbolTable)
return;
// if pc enters different function, print new function symbol and
// update saved range. Otherwise do nothing.
if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
string sym_str;
bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
currentFunctionStart,
currentFunctionEnd);
if (!found) {
// no symbol found: use addr as label
sym_str = csprintf("0x%x", pc);
currentFunctionStart = pc;
currentFunctionEnd = pc + 1;
}
ccprintf(*functionTraceStream, " (%d)\n%d: %s",
curTick() - functionEntryTick, curTick(), sym_str);
functionEntryTick = curTick();
}
}