gem5/cpu/o3/alpha_cpu.hh
Kevin Lim a514bf2150 Comments and code cleanup.
cpu/activity.cc:
cpu/activity.hh:
cpu/o3/alpha_cpu.hh:
    Updates to include comments.
cpu/base_dyn_inst.cc:
    Remove call to thread->misspeculating(), as it's never actually misspeculating.

--HG--
extra : convert_revision : 86574d684770fac9b480475acca048ea418cdac3
2006-05-31 11:45:02 -04:00

518 lines
17 KiB
C++

/*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_O3_ALPHA_FULL_CPU_HH__
#define __CPU_O3_ALPHA_FULL_CPU_HH__
#include "arch/isa_traits.hh"
#include "cpu/exec_context.hh"
#include "cpu/o3/cpu.hh"
#include "sim/byteswap.hh"
class EndQuiesceEvent;
namespace Kernel {
class Statistics;
};
/**
* AlphaFullCPU class. Derives from the FullO3CPU class, and
* implements all ISA and implementation specific functions of the
* CPU. This is the CPU class that is used for the SimObjects, and is
* what is given to the DynInsts. Most of its state exists in the
* FullO3CPU; the state is has is mainly for ISA specific
* functionality.
*/
template <class Impl>
class AlphaFullCPU : public FullO3CPU<Impl>
{
protected:
typedef TheISA::IntReg IntReg;
typedef TheISA::MiscReg MiscReg;
typedef TheISA::RegFile RegFile;
typedef TheISA::MiscRegFile MiscRegFile;
public:
typedef O3ThreadState<Impl> ImplState;
typedef O3ThreadState<Impl> Thread;
typedef typename Impl::Params Params;
/** Constructs an AlphaFullCPU with the given parameters. */
AlphaFullCPU(Params *params);
/**
* Derived ExecContext class for use with the AlphaFullCPU. It
* provides the interface for any external objects to access a
* single thread's state and some general CPU state. Any time
* external objects try to update state through this interface,
* the CPU will create an event to squash all in-flight
* instructions in order to ensure state is maintained correctly.
*/
class AlphaXC : public ExecContext
{
public:
/** Pointer to the CPU. */
AlphaFullCPU<Impl> *cpu;
/** Pointer to the thread state that this XC corrseponds to. */
O3ThreadState<Impl> *thread;
/** Returns a pointer to this CPU. */
virtual BaseCPU *getCpuPtr() { return cpu; }
/** Sets this CPU's ID. */
virtual void setCpuId(int id) { cpu->cpu_id = id; }
/** Reads this CPU's ID. */
virtual int readCpuId() { return cpu->cpu_id; }
/** Returns a pointer to functional memory. */
virtual FunctionalMemory *getMemPtr() { return thread->mem; }
#if FULL_SYSTEM
/** Returns a pointer to the system. */
virtual System *getSystemPtr() { return cpu->system; }
/** Returns a pointer to physical memory. */
virtual PhysicalMemory *getPhysMemPtr() { return cpu->physmem; }
/** Returns a pointer to the ITB. */
virtual AlphaITB *getITBPtr() { return cpu->itb; }
/** Returns a pointer to the DTB. */
virtual AlphaDTB *getDTBPtr() { return cpu->dtb; }
/** Returns a pointer to this thread's kernel statistics. */
virtual Kernel::Statistics *getKernelStats()
{ return thread->kernelStats; }
#else
/** Returns a pointer to this thread's process. */
virtual Process *getProcessPtr() { return thread->process; }
#endif
/** Returns this thread's status. */
virtual Status status() const { return thread->status(); }
/** Sets this thread's status. */
virtual void setStatus(Status new_status)
{ thread->setStatus(new_status); }
/** Set the status to Active. Optional delay indicates number of
* cycles to wait before beginning execution. */
virtual void activate(int delay = 1);
/** Set the status to Suspended. */
virtual void suspend();
/** Set the status to Unallocated. */
virtual void deallocate();
/** Set the status to Halted. */
virtual void halt();
#if FULL_SYSTEM
/** Dumps the function profiling information.
* @todo: Implement.
*/
virtual void dumpFuncProfile();
#endif
/** Takes over execution of a thread from another CPU. */
virtual void takeOverFrom(ExecContext *old_context);
/** Registers statistics associated with this XC. */
virtual void regStats(const std::string &name);
/** Serializes state. */
virtual void serialize(std::ostream &os);
/** Unserializes state. */
virtual void unserialize(Checkpoint *cp, const std::string &section);
#if FULL_SYSTEM
/** Returns pointer to the quiesce event. */
virtual EndQuiesceEvent *getQuiesceEvent();
/** Reads the last tick that this thread was activated on. */
virtual Tick readLastActivate();
/** Reads the last tick that this thread was suspended on. */
virtual Tick readLastSuspend();
/** Clears the function profiling information. */
virtual void profileClear();
/** Samples the function profiling information. */
virtual void profileSample();
#endif
/** Returns this thread's ID number. */
virtual int getThreadNum() { return thread->tid; }
/** Returns the instruction this thread is currently committing.
* Only used when an instruction faults.
*/
virtual TheISA::MachInst getInst();
/** Copies the architectural registers from another XC into this XC. */
virtual void copyArchRegs(ExecContext *xc);
/** Resets all architectural registers to 0. */
virtual void clearArchRegs();
/** Reads an integer register. */
virtual uint64_t readIntReg(int reg_idx);
/** Reads a single precision floating point register. */
virtual float readFloatRegSingle(int reg_idx);
/** Reads a double precision floating point register. */
virtual double readFloatRegDouble(int reg_idx);
/** Reads a floating point register as an integer value. */
virtual uint64_t readFloatRegInt(int reg_idx);
/** Sets an integer register to a value. */
virtual void setIntReg(int reg_idx, uint64_t val);
/** Sets a single precision fp register to a value. */
virtual void setFloatRegSingle(int reg_idx, float val);
/** Sets a double precision fp register to a value. */
virtual void setFloatRegDouble(int reg_idx, double val);
/** Sets a fp register to an integer value. */
virtual void setFloatRegInt(int reg_idx, uint64_t val);
/** Reads this thread's PC. */
virtual uint64_t readPC()
{ return cpu->readPC(thread->tid); }
/** Sets this thread's PC. */
virtual void setPC(uint64_t val);
/** Reads this thread's next PC. */
virtual uint64_t readNextPC()
{ return cpu->readNextPC(thread->tid); }
/** Sets this thread's next PC. */
virtual void setNextPC(uint64_t val);
/** Reads a miscellaneous register. */
virtual MiscReg readMiscReg(int misc_reg)
{ return cpu->readMiscReg(misc_reg, thread->tid); }
/** Reads a misc. register, including any side-effects the
* read might have as defined by the architecture. */
virtual MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
{ return cpu->readMiscRegWithEffect(misc_reg, fault, thread->tid); }
/** Sets a misc. register. */
virtual Fault setMiscReg(int misc_reg, const MiscReg &val);
/** Sets a misc. register, including any side-effects the
* write might have as defined by the architecture. */
virtual Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val);
/** Returns the number of consecutive store conditional failures. */
// @todo: Figure out where these store cond failures should go.
virtual unsigned readStCondFailures()
{ return thread->storeCondFailures; }
/** Sets the number of consecutive store conditional failures. */
virtual void setStCondFailures(unsigned sc_failures)
{ thread->storeCondFailures = sc_failures; }
#if FULL_SYSTEM
/** Returns if the thread is currently in PAL mode, based on
* the PC's value. */
virtual bool inPalMode()
{ return TheISA::PcPAL(cpu->readPC(thread->tid)); }
#endif
// Only really makes sense for old CPU model. Lots of code
// outside the CPU still checks this function, so it will
// always return false to keep everything working.
/** Checks if the thread is misspeculating. Because it is
* very difficult to determine if the thread is
* misspeculating, this is set as false. */
virtual bool misspeculating() { return false; }
#if !FULL_SYSTEM
/** Gets a syscall argument by index. */
virtual IntReg getSyscallArg(int i);
/** Sets a syscall argument. */
virtual void setSyscallArg(int i, IntReg val);
/** Sets the syscall return value. */
virtual void setSyscallReturn(SyscallReturn return_value);
/** Executes a syscall in SE mode. */
virtual void syscall() { return cpu->syscall(thread->tid); }
/** Reads the funcExeInst counter. */
virtual Counter readFuncExeInst() { return thread->funcExeInst; }
#endif
};
#if FULL_SYSTEM
/** ITB pointer. */
AlphaITB *itb;
/** DTB pointer. */
AlphaDTB *dtb;
#endif
/** Registers statistics. */
void regStats();
#if FULL_SYSTEM
/** Translates instruction requestion. */
Fault translateInstReq(MemReqPtr &req)
{
return itb->translate(req);
}
/** Translates data read request. */
Fault translateDataReadReq(MemReqPtr &req)
{
return dtb->translate(req, false);
}
/** Translates data write request. */
Fault translateDataWriteReq(MemReqPtr &req)
{
return dtb->translate(req, true);
}
#else
Fault dummyTranslation(MemReqPtr &req)
{
#if 0
assert((req->vaddr >> 48 & 0xffff) == 0);
#endif
// put the asid in the upper 16 bits of the paddr
req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
return NoFault;
}
/** Translates instruction requestion in syscall emulation mode. */
Fault translateInstReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
/** Translates data read request in syscall emulation mode. */
Fault translateDataReadReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
/** Translates data write request in syscall emulation mode. */
Fault translateDataWriteReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
#endif
/** Reads a miscellaneous register. */
MiscReg readMiscReg(int misc_reg, unsigned tid);
/** Reads a misc. register, including any side effects the read
* might have as defined by the architecture.
*/
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault, unsigned tid);
/** Sets a miscellaneous register. */
Fault setMiscReg(int misc_reg, const MiscReg &val, unsigned tid);
/** Sets a misc. register, including any side effects the write
* might have as defined by the architecture.
*/
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val, unsigned tid);
/** Initiates a squash of all in-flight instructions for a given
* thread. The source of the squash is an external update of
* state through the XC.
*/
void squashFromXC(unsigned tid);
#if FULL_SYSTEM
/** Posts an interrupt. */
void post_interrupt(int int_num, int index);
/** Reads the interrupt flag. */
int readIntrFlag();
/** Sets the interrupt flags. */
void setIntrFlag(int val);
/** HW return from error interrupt. */
Fault hwrei(unsigned tid);
/** Returns if a specific PC is a PAL mode PC. */
bool inPalMode(uint64_t PC)
{ return AlphaISA::PcPAL(PC); }
/** Traps to handle given fault. */
void trap(Fault fault, unsigned tid);
bool simPalCheck(int palFunc, unsigned tid);
/** Processes any interrupts. */
void processInterrupts();
/** Halts the CPU. */
void halt() { panic("Halt not implemented!\n"); }
#endif
#if !FULL_SYSTEM
/** Executes a syscall.
* @todo: Determine if this needs to be virtual.
*/
void syscall(int tid);
/** Gets a syscall argument. */
IntReg getSyscallArg(int i, int tid);
/** Used to shift args for indirect syscall. */
void setSyscallArg(int i, IntReg val, int tid);
/** Sets the return value of a syscall. */
void setSyscallReturn(SyscallReturn return_value, int tid);
#endif
/** Read from memory function. */
template <class T>
Fault read(MemReqPtr &req, T &data)
{
#if 0
#if FULL_SYSTEM && defined(TARGET_ALPHA)
if (req->flags & LOCKED) {
req->xc->setMiscReg(TheISA::Lock_Addr_DepTag, req->paddr);
req->xc->setMiscReg(TheISA::Lock_Flag_DepTag, true);
}
#endif
#endif
Fault error;
#if FULL_SYSTEM
// @todo: Fix this LL/SC hack.
if (req->flags & LOCKED) {
lockAddr = req->paddr;
lockFlag = true;
}
#endif
error = this->mem->read(req, data);
data = gtoh(data);
return error;
}
/** CPU read function, forwards read to LSQ. */
template <class T>
Fault read(MemReqPtr &req, T &data, int load_idx)
{
return this->iew.ldstQueue.read(req, data, load_idx);
}
/** Write to memory function. */
template <class T>
Fault write(MemReqPtr &req, T &data)
{
#if 0
#if FULL_SYSTEM && defined(TARGET_ALPHA)
ExecContext *xc;
// If this is a store conditional, act appropriately
if (req->flags & LOCKED) {
xc = req->xc;
if (req->flags & UNCACHEABLE) {
// Don't update result register (see stq_c in isa_desc)
req->result = 2;
xc->setStCondFailures(0);//Needed? [RGD]
} else {
bool lock_flag = xc->readMiscReg(TheISA::Lock_Flag_DepTag);
Addr lock_addr = xc->readMiscReg(TheISA::Lock_Addr_DepTag);
req->result = lock_flag;
if (!lock_flag ||
((lock_addr & ~0xf) != (req->paddr & ~0xf))) {
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
xc->setStCondFailures(xc->readStCondFailures() + 1);
if (((xc->readStCondFailures()) % 100000) == 0) {
std::cerr << "Warning: "
<< xc->readStCondFailures()
<< " consecutive store conditional failures "
<< "on cpu " << req->xc->readCpuId()
<< std::endl;
}
return NoFault;
}
else xc->setStCondFailures(0);
}
}
// Need to clear any locked flags on other proccessors for
// this address. Only do this for succsful Store Conditionals
// and all other stores (WH64?). Unsuccessful Store
// Conditionals would have returned above, and wouldn't fall
// through.
for (int i = 0; i < this->system->execContexts.size(); i++){
xc = this->system->execContexts[i];
if ((xc->readMiscReg(TheISA::Lock_Addr_DepTag) & ~0xf) ==
(req->paddr & ~0xf)) {
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
}
}
#endif
#endif
#if FULL_SYSTEM
// @todo: Fix this LL/SC hack.
if (req->flags & LOCKED) {
if (req->flags & UNCACHEABLE) {
req->result = 2;
} else {
if (this->lockFlag) {
req->result = 1;
} else {
req->result = 0;
return NoFault;
}
}
}
#endif
return this->mem->write(req, (T)htog(data));
}
/** CPU write function, forwards write to LSQ. */
template <class T>
Fault write(MemReqPtr &req, T &data, int store_idx)
{
return this->iew.ldstQueue.write(req, data, store_idx);
}
Addr lockAddr;
/** Temporary fix for the lock flag, works in the UP case. */
bool lockFlag;
};
#endif // __CPU_O3_ALPHA_FULL_CPU_HH__