gem5/mem/bridge.hh
Ali Saidi 53d93ef918 add a bridge object, modify bus object to be able to connect to other buses or bridges without panicing
SConscript:
    add new cc files to scons
mem/bus.cc:
mem/bus.hh:
    implement addressRanges() on the bus.
    propigate address ranges to anyone who is interested stripping out ranges of who your propigating to (to avoid livelock)
mem/packet.hh:
    add intersect function that returns true if two packets touch at least one byte of the same data (for functional access)
    add fixPacket() that will eventually take the correct action giving a timing and functional packet, right now it panics
mem/physical.cc:
    Don't panic if the physical memory recieves a status change, just ignore.

--HG--
extra : convert_revision : d470d51f2fb1db2700ad271e09792315ef33ba01
2006-04-28 15:37:48 -04:00

215 lines
6.8 KiB
C++

/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file Decleration of a simple bus bridge object with no buffering
*/
#ifndef __MEM_BRIDGE_HH__
#define __MEM_BRIDGE_HH__
#include <string>
#include <list>
#include <inttypes.h>
#include <queue>
#include "mem/mem_object.hh"
#include "mem/packet.hh"
#include "mem/port.hh"
#include "sim/eventq.hh"
class Bridge : public MemObject
{
public:
enum Side
{
SideA,
SideB
};
protected:
/** Function called by the port when the bus is recieving a Timing
transaction.*/
bool recvTiming(Packet &pkt, Side id);
/** Function called by the port when the bus is recieving a Atomic
transaction.*/
Tick recvAtomic(Packet &pkt, Side id);
/** Function called by the port when the bus is recieving a Functional
transaction.*/
void recvFunctional(Packet &pkt, Side id);
/** Function called by the port when the bus is recieving a status change.*/
void recvStatusChange(Port::Status status, Side id);
/** Process address range request.
* @param resp addresses that we can respond to
* @param snoop addresses that we would like to snoop
* @param id ide of the busport that made the request.
*/
void addressRanges(AddrRangeList &resp, AddrRangeList &snoop, Side id);
/** Event that the SendEvent calls when it fires. This code must reschedule
* the send event as required. */
void timerEvent();
/** Decleration of the buses port type, one will be instantiated for each
of the interfaces connecting to the bus. */
class BridgePort : public Port
{
/** A pointer to the bus to which this port belongs. */
Bridge *bridge;
/** A id to keep track of the intercafe ID this port is connected to. */
Bridge::Side side;
public:
/** Constructor for the BusPort.*/
BridgePort(Bridge *_bridge, Side _side)
: bridge(_bridge), side(_side)
{ }
int numQueued() { return outbound.size(); }
protected:
/** Data this is waiting to be transmitted. */
std::list<std::pair<Packet*, Tick> > outbound;
void sendPkt(Packet &pkt);
void sendPkt(std::pair<Packet*, Tick> p);
/** When reciving a timing request from the peer port,
pass it to the bridge. */
virtual bool recvTiming(Packet &pkt)
{ return bridge->recvTiming(pkt, side); }
/** When reciving a retry request from the peer port,
pass it to the bridge. */
virtual Packet* recvRetry();
/** When reciving a Atomic requestfrom the peer port,
pass it to the bridge. */
virtual Tick recvAtomic(Packet &pkt)
{ return bridge->recvAtomic(pkt, side); }
/** When reciving a Functional request from the peer port,
pass it to the bridge. */
virtual void recvFunctional(Packet &pkt)
{ bridge->recvFunctional(pkt, side); }
/** When reciving a status changefrom the peer port,
pass it to the bridge. */
virtual void recvStatusChange(Status status)
{ bridge->recvStatusChange(status, side); }
/** When reciving a address range request the peer port,
pass it to the bridge. */
virtual void getDeviceAddressRanges(AddrRangeList &resp, AddrRangeList &snoop)
{ bridge->addressRanges(resp, snoop, side); }
friend class Bridge;
};
class SendEvent : public Event
{
Bridge *bridge;
SendEvent(Bridge *b)
: Event(&mainEventQueue), bridge(b) {}
virtual void process() { bridge->timerEvent(); }
virtual const char *description() { return "bridge delay event"; }
friend class Bridge;
};
SendEvent sendEvent;
/** Sides of the bus bridges. */
BridgePort* sideA;
BridgePort* sideB;
/** inbound queues on both sides. */
std::list<std::pair<Packet*, Tick> > inboundA;
std::list<std::pair<Packet*, Tick> > inboundB;
/** The size of the queue for data coming into side a */
int queueSizeA;
int queueSizeB;
/* if the side is blocked or not. */
bool blockedA;
bool blockedB;
/** Miminum delay though this bridge. */
Tick delay;
/** If this bridge should acknowledge writes. */
bool ackWrites;
public:
/** A function used to return the port associated with this bus object. */
virtual Port *getPort(const std::string &if_name)
{
if (if_name == "side_a") {
if (sideA != NULL)
panic("bridge side a already connected to.");
sideA = new BridgePort(this, SideA);
return sideA;
} else if (if_name == "side_b") {
if (sideB != NULL)
panic("bridge side b already connected to.");
sideB = new BridgePort(this, SideB);
return sideB;
} else
return NULL;
}
virtual void init();
Bridge(const std::string &n, int qsa, int qsb, Tick _delay, int write_ack)
: MemObject(n), sendEvent(this), sideA(NULL), sideB(NULL),
queueSizeA(qsa), queueSizeB(qsb), blockedA(false), blockedB(false),
delay(_delay), ackWrites(write_ack)
{}
/** Check if the port should block/unblock after recieving/sending a packet.
* */
void blockCheck(Side id);
friend class Bridge::SendEvent;
};
#endif //__MEM_BUS_HH__