gem5/tests/configs/tgen-simple-mem.py
Akash Bagdia e7e17f92db power: Add voltage domains to the clock domains
This patch adds the notion of voltage domains, and groups clock
domains that operate under the same voltage (i.e. power supply) into
domains. Each clock domain is required to be associated with a voltage
domain, and the latter requires the voltage to be explicitly set.

A voltage domain is an independently controllable voltage supply being
provided to section of the design. Thus, if you wish to perform
dynamic voltage scaling on a CPU, its clock domain should be
associated with a separate voltage domain.

The current implementation of the voltage domain does not take into
consideration cases where there are derived voltage domains running at
ratio of native voltage domains, as with the case where there can be
on-chip buck/boost (charge pumps) voltage regulation logic.

The regression and configuration scripts are updated with a generic
voltage domain for the system, and one for the CPUs.
2013-08-19 03:52:28 -04:00

76 lines
3.3 KiB
Python

# Copyright (c) 2012 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Andreas Hansson
import m5
from m5.objects import *
# both traffic generator and communication monitor are only available
# if we have protobuf support, so potentially skip this test
require_sim_object("TrafficGen")
require_sim_object("CommMonitor")
# even if this is only a traffic generator, call it cpu to make sure
# the scripts are happy
cpu = TrafficGen(config_file = "tests/quick/se/70.tgen/tgen-simple-mem.cfg")
# system simulated
system = System(cpu = cpu, physmem = SimpleMemory(),
membus = NoncoherentBus(width = 16),
clk_domain = SrcClockDomain(clock = '1GHz',
voltage_domain =
VoltageDomain()))
# add a communication monitor, and also trace all the packets
system.monitor = CommMonitor(trace_file = "monitor.ptrc.gz")
# connect the traffic generator to the bus via a communication monitor
system.cpu.port = system.monitor.slave
system.monitor.master = system.membus.slave
# connect the system port even if it is not used in this example
system.system_port = system.membus.slave
# connect memory to the membus
system.physmem.port = system.membus.master
# -----------------------
# run simulation
# -----------------------
root = Root(full_system = False, system = system)
root.system.mem_mode = 'timing'