gem5/cpu/simple/cpu.cc
Ali Saidi 8f8d09538f Mostly done with all device models for new memory system. Still need to get timing packets working and get sinic working
after merge from head. Checkpointing may need some work now. Endian-happiness still not complete.

SConscript:
    add all devices back into make file
base/inet.hh:
dev/etherbus.cc:
dev/etherbus.hh:
dev/etherdump.cc:
dev/etherdump.hh:
dev/etherint.hh:
dev/etherlink.cc:
dev/etherlink.hh:
dev/etherpkt.cc:
dev/etherpkt.hh:
dev/ethertap.cc:
dev/ethertap.hh:
dev/pktfifo.cc:
dev/pktfifo.hh:
    rename PacketPtr EthPacketPtr so it doesn't conflict with the PacketPtr type in the memory system
configs/test/fs.py:
    add nics to fs.py
cpu/cpu_exec_context.cc:
    remove this check, as it's not valid. We may want to add something else back in to make sure that no one can delete the
    static virtual ports in the exec context
cpu/simple/cpu.cc:
cpu/simple/cpu.hh:
dev/alpha_console.cc:
dev/ide_ctrl.cc:
    use new methods for accessing packet data
dev/ide_disk.cc:
    add some more dprintfs
dev/io_device.cc:
    delete packets when we are done with them. Update for new packet methods to access data
dev/isa_fake.cc:
dev/pciconfigall.cc:
dev/tsunami_cchip.cc:
dev/tsunami_io.cc:
dev/tsunami_pchip.cc:
dev/uart8250.cc:
dev/uart8250.hh:
mem/physical.cc:
mem/port.cc:
    dUpdate for new packet methods to access data
dev/ns_gige.cc:
    Update for new memory system
dev/ns_gige.hh:
python/m5/objects/Ethernet.py:
    update for new memory system
dev/sinic.cc:
dev/sinic.hh:
    Update for new memory system. Untested as need to merge in head because of kernel driver differences between versions
mem/packet.hh:
    Add methods to access data instead of accessing it directly.

--HG--
extra : convert_revision : 223f43876afd404e68337270cd9a5e44d0bf553e
2006-04-24 19:31:50 -04:00

1225 lines
32 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <list>
#include <sstream>
#include <string>
#include "arch/utility.hh"
#include "base/cprintf.hh"
#include "base/inifile.hh"
#include "base/loader/symtab.hh"
#include "base/misc.hh"
#include "base/pollevent.hh"
#include "base/range.hh"
#include "base/stats/events.hh"
#include "base/trace.hh"
#include "cpu/base.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/exec_context.hh"
#include "cpu/exetrace.hh"
#include "cpu/profile.hh"
#include "cpu/sampler/sampler.hh"
#include "cpu/simple/cpu.hh"
#include "cpu/smt.hh"
#include "cpu/static_inst.hh"
#include "kern/kernel_stats.hh"
#include "sim/byteswap.hh"
#include "sim/builder.hh"
#include "sim/debug.hh"
#include "sim/host.hh"
#include "sim/sim_events.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"
#if FULL_SYSTEM
#include "base/remote_gdb.hh"
//#include "mem/functional/memory_control.hh"
//#include "mem/functional/physical.hh"
#include "sim/system.hh"
#include "arch/tlb.hh"
#include "arch/stacktrace.hh"
#include "arch/vtophys.hh"
#else // !FULL_SYSTEM
#include "mem/mem_object.hh"
#endif // FULL_SYSTEM
using namespace std;
using namespace TheISA;
SimpleCPU::TickEvent::TickEvent(SimpleCPU *c, int w)
: Event(&mainEventQueue, CPU_Tick_Pri), cpu(c), width(w)
{
}
void
SimpleCPU::init()
{
//Create Memory Ports (conect them up)
Port *mem_dport = mem->getPort("");
dcachePort.setPeer(mem_dport);
mem_dport->setPeer(&dcachePort);
Port *mem_iport = mem->getPort("");
icachePort.setPeer(mem_iport);
mem_iport->setPeer(&icachePort);
BaseCPU::init();
#if FULL_SYSTEM
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
// initialize CPU, including PC
TheISA::initCPU(xc, xc->readCpuId());
}
#endif
}
void
SimpleCPU::TickEvent::process()
{
int count = width;
do {
cpu->tick();
} while (--count > 0 && cpu->status() == Running);
}
const char *
SimpleCPU::TickEvent::description()
{
return "SimpleCPU tick event";
}
bool
SimpleCPU::CpuPort::recvTiming(Packet &pkt)
{
cpu->processResponse(pkt);
return true;
}
Tick
SimpleCPU::CpuPort::recvAtomic(Packet &pkt)
{
panic("CPU doesn't expect callback!");
return curTick;
}
void
SimpleCPU::CpuPort::recvFunctional(Packet &pkt)
{
panic("CPU doesn't expect callback!");
}
void
SimpleCPU::CpuPort::recvStatusChange(Status status)
{
cpu->recvStatusChange(status);
}
Packet *
SimpleCPU::CpuPort::recvRetry()
{
return cpu->processRetry();
}
SimpleCPU::SimpleCPU(Params *p)
: BaseCPU(p), mem(p->mem), icachePort(this),
dcachePort(this), tickEvent(this, p->width), cpuXC(NULL)
{
_status = Idle;
#if FULL_SYSTEM
cpuXC = new CPUExecContext(this, 0, p->system, p->itb, p->dtb);
#else
cpuXC = new CPUExecContext(this, /* thread_num */ 0, p->process,
/* asid */ 0, mem);
#endif // !FULL_SYSTEM
xcProxy = cpuXC->getProxy();
#if SIMPLE_CPU_MEM_ATOMIC || SIMPLE_CPU_MEM_IMMEDIATE
ifetch_req = new Request(true);
ifetch_req->setAsid(0);
// @todo fix me and get the real cpu iD!!!
ifetch_req->setCpuNum(0);
ifetch_req->setSize(sizeof(MachInst));
ifetch_pkt = new Packet;
ifetch_pkt->cmd = Read;
ifetch_pkt->dataStatic(&inst);
ifetch_pkt->req = ifetch_req;
ifetch_pkt->size = sizeof(MachInst);
data_read_req = new Request(true);
// @todo fix me and get the real cpu iD!!!
data_read_req->setCpuNum(0);
data_read_req->setAsid(0);
data_read_pkt = new Packet;
data_read_pkt->cmd = Read;
data_read_pkt->dataStatic(&dataReg);
data_read_pkt->req = data_read_req;
data_write_req = new Request(true);
// @todo fix me and get the real cpu iD!!!
data_write_req->setCpuNum(0);
data_write_req->setAsid(0);
data_write_pkt = new Packet;
data_write_pkt->cmd = Write;
data_write_pkt->req = data_write_req;
#endif
numInst = 0;
startNumInst = 0;
numLoad = 0;
startNumLoad = 0;
lastIcacheStall = 0;
lastDcacheStall = 0;
execContexts.push_back(xcProxy);
}
SimpleCPU::~SimpleCPU()
{
}
void
SimpleCPU::switchOut(Sampler *s)
{
sampler = s;
if (status() == DcacheWaitResponse) {
DPRINTF(Sampler,"Outstanding dcache access, waiting for completion\n");
_status = DcacheWaitSwitch;
}
else {
_status = SwitchedOut;
if (tickEvent.scheduled())
tickEvent.squash();
sampler->signalSwitched();
}
}
void
SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU);
assert(!tickEvent.scheduled());
// if any of this CPU's ExecContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
if (xc->status() == ExecContext::Active && _status != Running) {
_status = Running;
tickEvent.schedule(curTick);
}
}
}
void
SimpleCPU::activateContext(int thread_num, int delay)
{
assert(thread_num == 0);
assert(cpuXC);
assert(_status == Idle);
notIdleFraction++;
scheduleTickEvent(delay);
_status = Running;
}
void
SimpleCPU::suspendContext(int thread_num)
{
assert(thread_num == 0);
assert(cpuXC);
assert(_status == Running);
notIdleFraction--;
unscheduleTickEvent();
_status = Idle;
}
void
SimpleCPU::deallocateContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
SimpleCPU::haltContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
SimpleCPU::regStats()
{
using namespace Stats;
BaseCPU::regStats();
numInsts
.name(name() + ".num_insts")
.desc("Number of instructions executed")
;
numMemRefs
.name(name() + ".num_refs")
.desc("Number of memory references")
;
notIdleFraction
.name(name() + ".not_idle_fraction")
.desc("Percentage of non-idle cycles")
;
idleFraction
.name(name() + ".idle_fraction")
.desc("Percentage of idle cycles")
;
icacheStallCycles
.name(name() + ".icache_stall_cycles")
.desc("ICache total stall cycles")
.prereq(icacheStallCycles)
;
dcacheStallCycles
.name(name() + ".dcache_stall_cycles")
.desc("DCache total stall cycles")
.prereq(dcacheStallCycles)
;
icacheRetryCycles
.name(name() + ".icache_retry_cycles")
.desc("ICache total retry cycles")
.prereq(icacheRetryCycles)
;
dcacheRetryCycles
.name(name() + ".dcache_retry_cycles")
.desc("DCache total retry cycles")
.prereq(dcacheRetryCycles)
;
idleFraction = constant(1.0) - notIdleFraction;
}
void
SimpleCPU::resetStats()
{
startNumInst = numInst;
notIdleFraction = (_status != Idle);
}
void
SimpleCPU::serialize(ostream &os)
{
BaseCPU::serialize(os);
SERIALIZE_ENUM(_status);
SERIALIZE_SCALAR(inst);
nameOut(os, csprintf("%s.xc", name()));
cpuXC->serialize(os);
nameOut(os, csprintf("%s.tickEvent", name()));
tickEvent.serialize(os);
nameOut(os, csprintf("%s.cacheCompletionEvent", name()));
}
void
SimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
BaseCPU::unserialize(cp, section);
UNSERIALIZE_ENUM(_status);
UNSERIALIZE_SCALAR(inst);
cpuXC->unserialize(cp, csprintf("%s.xc", section));
tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
}
void
change_thread_state(int thread_number, int activate, int priority)
{
}
Fault
SimpleCPU::copySrcTranslate(Addr src)
{
#if 0
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
int offset = src & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(src & PageMask) != ((src + blk_size) & PageMask) &&
(src >> 40) != 0xfffffc) {
warn("Copied block source spans pages %x.", src);
no_warn = false;
}
memReq->reset(src & ~(blk_size - 1), blk_size);
// translate to physical address Fault fault = cpuXC->translateDataReadReq(req);
if (fault == NoFault) {
cpuXC->copySrcAddr = src;
cpuXC->copySrcPhysAddr = memReq->paddr + offset;
} else {
assert(!fault->isAlignmentFault());
cpuXC->copySrcAddr = 0;
cpuXC->copySrcPhysAddr = 0;
}
return fault;
#else
return NoFault;
#endif
}
Fault
SimpleCPU::copy(Addr dest)
{
#if 0
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
uint8_t data[blk_size];
//assert(cpuXC->copySrcAddr);
int offset = dest & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(dest & PageMask) != ((dest + blk_size) & PageMask) &&
(dest >> 40) != 0xfffffc) {
no_warn = false;
warn("Copied block destination spans pages %x. ", dest);
}
memReq->reset(dest & ~(blk_size -1), blk_size);
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(req);
if (fault == NoFault) {
Addr dest_addr = memReq->paddr + offset;
// Need to read straight from memory since we have more than 8 bytes.
memReq->paddr = cpuXC->copySrcPhysAddr;
cpuXC->mem->read(memReq, data);
memReq->paddr = dest_addr;
cpuXC->mem->write(memReq, data);
if (dcacheInterface) {
memReq->cmd = Copy;
memReq->completionEvent = NULL;
memReq->paddr = cpuXC->copySrcPhysAddr;
memReq->dest = dest_addr;
memReq->size = 64;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
dcacheInterface->access(memReq);
}
}
else
assert(!fault->isAlignmentFault());
return fault;
#else
panic("copy not implemented");
return NoFault;
#endif
}
// precise architected memory state accessor macros
template <class T>
Fault
SimpleCPU::read(Addr addr, T &data, unsigned flags)
{
if (status() == DcacheWaitResponse || status() == DcacheWaitSwitch) {
// Fault fault = xc->read(memReq,data);
// Not sure what to check for no fault...
if (data_read_pkt->result == Success) {
data = data_read_pkt->get<T>();
}
if (traceData) {
traceData->setAddr(data_read_req->getVaddr());
}
// @todo: Figure out a way to create a Fault from the packet result.
return NoFault;
}
// memReq->reset(addr, sizeof(T), flags);
#if SIMPLE_CPU_MEM_TIMING
CpuRequest *data_read_req = new Request(true);
#endif
data_read_req->setVaddr(addr);
data_read_req->setSize(sizeof(T));
data_read_req->setFlags(flags);
data_read_req->setTime(curTick);
// translate to physical address
Fault fault = cpuXC->translateDataReadReq(data_read_req);
// Now do the access.
if (fault == NoFault) {
#if SIMPLE_CPU_MEM_TIMING
data_read_pkt = new Packet;
data_read_pkt->cmd = Read;
data_read_pkt->req = data_read_req;
data_read_pkt->data = new uint8_t[8];
#endif
data_read_pkt->reset();
data_read_pkt->addr = data_read_req->getPaddr();
data_read_pkt->size = sizeof(T);
sendDcacheRequest(data_read_pkt);
#if SIMPLE_CPU_MEM_IMMEDIATE
// Need to find a way to not duplicate code above.
if (data_read_pkt->result == Success) {
data = data_read_pkt->get<T>();
}
if (traceData) {
traceData->setAddr(addr);
}
// @todo: Figure out a way to create a Fault from the packet result.
return NoFault;
#endif
}
/*
memReq->cmd = Read;
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
MemAccessResult result = dcacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && dcacheInterface->doEvents()) {
memReq->completionEvent = &cacheCompletionEvent;
lastDcacheStall = curTick;
unscheduleTickEvent();
_status = DcacheMissStall;
} else {
// do functional access
fault = cpuXC->read(memReq, data);
}
} else if(fault == NoFault) {
// do functional access
fault = cpuXC->read(memReq, data);
}
*/
// This will need a new way to tell if it has a dcache attached.
if (data_read_req->getFlags() & UNCACHEABLE)
recordEvent("Uncached Read");
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
SimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
SimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
SimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
SimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
SimpleCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
SimpleCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
SimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
data_write_req->setVaddr(addr);
data_write_req->setTime(curTick);
data_write_req->setSize(sizeof(T));
data_write_req->setFlags(flags);
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(data_write_req);
// Now do the access.
if (fault == NoFault) {
#if SIMPLE_CPU_MEM_TIMING
data_write_pkt = new Packet;
data_write_pkt->cmd = Write;
data_write_pkt->req = data_write_req;
data_write_pkt->allocate();
data_write_pkt->set(data);
#else
data_write_pkt->reset();
data_write_pkt->dataStatic(&data);
#endif
data_write_pkt->addr = data_write_req->getPaddr();
data_write_pkt->size = sizeof(T);
sendDcacheRequest(data_write_pkt);
}
/*
// do functional access
if (fault == NoFault)
fault = cpuXC->write(memReq, data);
if (fault == NoFault && dcacheInterface) {
memReq->cmd = Write;
memcpy(memReq->data,(uint8_t *)&data,memReq->size);
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
MemAccessResult result = dcacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && dcacheInterface->doEvents()) {
memReq->completionEvent = &cacheCompletionEvent;
lastDcacheStall = curTick;
unscheduleTickEvent();
_status = DcacheMissStall;
}
}
*/
if (res && (fault == NoFault))
*res = data_write_pkt->result;
// This will need a new way to tell if it's hooked up to a cache or not.
if (data_write_req->getFlags() & UNCACHEABLE)
recordEvent("Uncached Write");
// @todo this is a hack and only works on uniprocessor systems some one else
// can implement LL/SC.
if (data_write_req->getFlags() & LOCKED)
*res = 1;
// If the write needs to have a fault on the access, consider calling
// changeStatus() and changing it to "bad addr write" or something.
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
#if FULL_SYSTEM
Addr
SimpleCPU::dbg_vtophys(Addr addr)
{
return vtophys(xcProxy, addr);
}
#endif // FULL_SYSTEM
void
SimpleCPU::sendIcacheRequest(Packet *pkt)
{
assert(!tickEvent.scheduled());
#if SIMPLE_CPU_MEM_TIMING
retry_pkt = pkt;
bool success = icachePort.sendTiming(*pkt);
unscheduleTickEvent();
lastIcacheStall = curTick;
if (!success) {
// Need to wait for retry
_status = IcacheRetry;
} else {
// Need to wait for cache to respond
_status = IcacheWaitResponse;
}
#elif SIMPLE_CPU_MEM_ATOMIC
Tick latency = icachePort.sendAtomic(*pkt);
unscheduleTickEvent();
scheduleTickEvent(latency);
// Note that Icache miss cycles will be incorrect. Unless
// we check the status of the packet sent (is this valid?),
// we won't know if the latency is a hit or a miss.
icacheStallCycles += latency;
_status = IcacheAccessComplete;
#elif SIMPLE_CPU_MEM_IMMEDIATE
icachePort.sendAtomic(*pkt);
#else
#error "SimpleCPU has no mem model set"
#endif
}
void
SimpleCPU::sendDcacheRequest(Packet *pkt)
{
assert(!tickEvent.scheduled());
#if SIMPLE_CPU_MEM_TIMING
unscheduleTickEvent();
retry_pkt = pkt;
bool success = dcachePort.sendTiming(*pkt);
lastDcacheStall = curTick;
if (!success) {
_status = DcacheRetry;
} else {
_status = DcacheWaitResponse;
}
#elif SIMPLE_CPU_MEM_ATOMIC
unscheduleTickEvent();
Tick latency = dcachePort.sendAtomic(*pkt);
scheduleTickEvent(latency);
// Note that Dcache miss cycles will be incorrect. Unless
// we check the status of the packet sent (is this valid?),
// we won't know if the latency is a hit or a miss.
dcacheStallCycles += latency;
#elif SIMPLE_CPU_MEM_IMMEDIATE
dcachePort.sendAtomic(*pkt);
#else
#error "SimpleCPU has no mem model set"
#endif
}
void
SimpleCPU::processResponse(Packet &response)
{
assert(SIMPLE_CPU_MEM_TIMING);
// For what things is the CPU the consumer of the packet it sent
// out? This may create a memory leak if that's the case and it's
// expected of the SimpleCPU to delete its own packet.
Packet *pkt = &response;
switch (status()) {
case IcacheWaitResponse:
icacheStallCycles += curTick - lastIcacheStall;
_status = IcacheAccessComplete;
scheduleTickEvent(1);
// Copy the icache data into the instruction itself.
inst = pkt->get<MachInst>();
delete pkt;
break;
case DcacheWaitResponse:
if (pkt->cmd == Read) {
curStaticInst->execute(this,traceData);
if (traceData)
traceData->finalize();
}
delete pkt;
dcacheStallCycles += curTick - lastDcacheStall;
_status = Running;
scheduleTickEvent(1);
break;
case DcacheWaitSwitch:
if (pkt->cmd == Read) {
curStaticInst->execute(this,traceData);
if (traceData)
traceData->finalize();
}
delete pkt;
_status = SwitchedOut;
sampler->signalSwitched();
case SwitchedOut:
// If this CPU has been switched out due to sampling/warm-up,
// ignore any further status changes (e.g., due to cache
// misses outstanding at the time of the switch).
delete pkt;
return;
default:
panic("SimpleCPU::processCacheCompletion: bad state");
break;
}
}
Packet *
SimpleCPU::processRetry()
{
#if SIMPLE_CPU_MEM_TIMING
switch(status()) {
case IcacheRetry:
icacheRetryCycles += curTick - lastIcacheStall;
return retry_pkt;
break;
case DcacheRetry:
dcacheRetryCycles += curTick - lastDcacheStall;
return retry_pkt;
break;
default:
panic("SimpleCPU::processRetry: bad state");
break;
}
#else
panic("shouldn't be here");
#endif
}
#if FULL_SYSTEM
void
SimpleCPU::post_interrupt(int int_num, int index)
{
BaseCPU::post_interrupt(int_num, index);
if (cpuXC->status() == ExecContext::Suspended) {
DPRINTF(IPI,"Suspended Processor awoke\n");
cpuXC->activate();
}
}
#endif // FULL_SYSTEM
/* start simulation, program loaded, processor precise state initialized */
void
SimpleCPU::tick()
{
DPRINTF(SimpleCPU,"\n\n");
numCycles++;
traceData = NULL;
Fault fault = NoFault;
#if FULL_SYSTEM
if (checkInterrupts && check_interrupts() && !cpuXC->inPalMode() &&
status() != IcacheAccessComplete) {
int ipl = 0;
int summary = 0;
checkInterrupts = false;
if (cpuXC->readMiscReg(IPR_SIRR)) {
for (int i = INTLEVEL_SOFTWARE_MIN;
i < INTLEVEL_SOFTWARE_MAX; i++) {
if (cpuXC->readMiscReg(IPR_SIRR) & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1;
summary |= (ULL(1) << i);
}
}
}
uint64_t interrupts = cpuXC->cpu->intr_status();
for (int i = INTLEVEL_EXTERNAL_MIN;
i < INTLEVEL_EXTERNAL_MAX; i++) {
if (interrupts & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = i;
summary |= (ULL(1) << i);
}
}
if (cpuXC->readMiscReg(IPR_ASTRR))
panic("asynchronous traps not implemented\n");
if (ipl && ipl > cpuXC->readMiscReg(IPR_IPLR)) {
cpuXC->setMiscReg(IPR_ISR, summary);
cpuXC->setMiscReg(IPR_INTID, ipl);
Fault(new InterruptFault)->invoke(xcProxy);
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
cpuXC->readMiscReg(IPR_IPLR), ipl, summary);
}
}
#endif
// maintain $r0 semantics
cpuXC->setIntReg(ZeroReg, 0);
#if THE_ISA == ALPHA_ISA
cpuXC->setFloatReg(ZeroReg, 0.0);
#endif // ALPHA_ISA
if (status() == IcacheAccessComplete) {
// We've already fetched an instruction and were stalled on an
// I-cache miss. No need to fetch it again.
// Set status to running; tick event will get rescheduled if
// necessary at end of tick() function.
_status = Running;
} else {
// Try to fetch an instruction
// set up memory request for instruction fetch
DPRINTF(Fetch,"Fetch: PC:%08p NPC:%08p NNPC:%08p\n",cpuXC->readPC(),
cpuXC->readNextPC(),cpuXC->readNextNPC());
#if SIMPLE_CPU_MEM_TIMING
CpuRequest *ifetch_req = new CpuRequest();
ifetch_req->setSize(sizeof(MachInst));
#endif
ifetch_req->resetMin();
ifetch_req->setVaddr(cpuXC->readPC() & ~3);
ifetch_req->setTime(curTick);
#if FULL_SYSTEM
ifetch_req->setFlags((cpuXC->readPC() & 1) ? PHYSICAL : 0);
#else
ifetch_req->setFlags(0);
#endif
fault = cpuXC->translateInstReq(ifetch_req);
if (fault == NoFault) {
#if SIMPLE_CPU_MEM_TIMING
Packet *ifetch_pkt = new Packet;
ifetch_pkt->cmd = Read;
ifetch_pkt->data = (uint8_t *)&inst;
ifetch_pkt->req = ifetch_req;
ifetch_pkt->size = sizeof(MachInst);
#endif
ifetch_pkt->reset();
ifetch_pkt->addr = ifetch_req->getPaddr();
sendIcacheRequest(ifetch_pkt);
#if SIMPLE_CPU_MEM_TIMING || SIMPLE_CPU_MEM_ATOMIC
return;
#endif
/*
if (icacheInterface && fault == NoFault) {
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags |= INST_READ;
MemAccessResult result = icacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && icacheInterface->doEvents()) {
memReq->completionEvent = &cacheCompletionEvent;
lastIcacheStall = curTick;
unscheduleTickEvent();
_status = IcacheMissStall;
return;
}
}
*/
}
}
// If we've got a valid instruction (i.e., no fault on instruction
// fetch), then execute it.
if (fault == NoFault) {
// keep an instruction count
numInst++;
numInsts++;
// check for instruction-count-based events
comInstEventQueue[0]->serviceEvents(numInst);
// decode the instruction
inst = gtoh(inst);
curStaticInst = StaticInst::decode(makeExtMI(inst, cpuXC->readPC()));
traceData = Trace::getInstRecord(curTick, xcProxy, this, curStaticInst,
cpuXC->readPC());
DPRINTF(Decode,"Decode: Decoded %s instruction (opcode: 0x%x): 0x%x\n",
curStaticInst->getName(),curStaticInst->getOpcode(), curStaticInst->machInst);
#if FULL_SYSTEM
cpuXC->setInst(inst);
#endif // FULL_SYSTEM
cpuXC->func_exe_inst++;
fault = curStaticInst->execute(this, traceData);
#if FULL_SYSTEM
if (system->kernelBinning->fnbin) {
assert(kernelStats);
system->kernelBinning->execute(xcProxy, inst);
}
if (cpuXC->profile) {
bool usermode =
(cpuXC->readMiscReg(AlphaISA::IPR_DTB_CM) & 0x18) != 0;
cpuXC->profilePC = usermode ? 1 : cpuXC->readPC();
ProfileNode *node = cpuXC->profile->consume(xcProxy, inst);
if (node)
cpuXC->profileNode = node;
}
#endif
if (curStaticInst->isMemRef()) {
numMemRefs++;
}
if (curStaticInst->isLoad()) {
++numLoad;
comLoadEventQueue[0]->serviceEvents(numLoad);
}
// If we have a dcache miss, then we can't finialize the instruction
// trace yet because we want to populate it with the data later
if (traceData && (status() != DcacheWaitResponse)) {
traceData->finalize();
}
traceFunctions(cpuXC->readPC());
} // if (fault == NoFault)
if (fault != NoFault) {
#if FULL_SYSTEM
fault->invoke(xcProxy);
#else // !FULL_SYSTEM
fatal("fault (%s) detected @ PC %08p", fault->name(), cpuXC->readPC());
#endif // FULL_SYSTEM
}
else {
#if THE_ISA == ALPHA_ISA
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst));
#else
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
cpuXC->setNextPC(cpuXC->readNextNPC());
cpuXC->setNextNPC(cpuXC->readNextNPC() + sizeof(MachInst));
#endif
}
#if FULL_SYSTEM
Addr oldpc;
do {
oldpc = cpuXC->readPC();
system->pcEventQueue.service(xcProxy);
} while (oldpc != cpuXC->readPC());
#endif
assert(status() == Running ||
status() == Idle ||
status() == DcacheWaitResponse);
if (status() == Running && !tickEvent.scheduled())
tickEvent.schedule(curTick + cycles(1));
}
////////////////////////////////////////////////////////////////////////
//
// SimpleCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
SimObjectParam<MemObject *> mem;
#if FULL_SYSTEM
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
SimObjectParam<System *> system;
Param<int> cpu_id;
Param<Tick> profile;
#else
SimObjectParam<Process *> workload;
#endif // FULL_SYSTEM
Param<int> clock;
Param<bool> defer_registration;
Param<int> width;
Param<bool> function_trace;
Param<Tick> function_trace_start;
END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
INIT_PARAM(max_insts_any_thread,
"terminate when any thread reaches this inst count"),
INIT_PARAM(max_insts_all_threads,
"terminate when all threads have reached this inst count"),
INIT_PARAM(max_loads_any_thread,
"terminate when any thread reaches this load count"),
INIT_PARAM(max_loads_all_threads,
"terminate when all threads have reached this load count"),
INIT_PARAM(mem, "memory"),
#if FULL_SYSTEM
INIT_PARAM(itb, "Instruction TLB"),
INIT_PARAM(dtb, "Data TLB"),
INIT_PARAM(system, "system object"),
INIT_PARAM(cpu_id, "processor ID"),
INIT_PARAM(profile, ""),
#else
INIT_PARAM(workload, "processes to run"),
#endif // FULL_SYSTEM
INIT_PARAM(clock, "clock speed"),
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
INIT_PARAM(width, "cpu width"),
INIT_PARAM(function_trace, "Enable function trace"),
INIT_PARAM(function_trace_start, "Cycle to start function trace")
END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
CREATE_SIM_OBJECT(SimpleCPU)
{
SimpleCPU::Params *params = new SimpleCPU::Params();
params->name = getInstanceName();
params->numberOfThreads = 1;
params->max_insts_any_thread = max_insts_any_thread;
params->max_insts_all_threads = max_insts_all_threads;
params->max_loads_any_thread = max_loads_any_thread;
params->max_loads_all_threads = max_loads_all_threads;
params->deferRegistration = defer_registration;
params->clock = clock;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
params->width = width;
params->mem = mem;
#if FULL_SYSTEM
params->itb = itb;
params->dtb = dtb;
params->system = system;
params->cpu_id = cpu_id;
params->profile = profile;
#else
params->process = workload;
#endif
SimpleCPU *cpu = new SimpleCPU(params);
return cpu;
}
REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)