gem5/src/base/statistics.hh
Nathan Binkert d667ce01b4 total should be the sum of the vector result of an operation,
not sum the operands and then apply the operation.

--HG--
extra : convert_revision : 06486e59b3dd9588b458ef45c341cc4f2554dc09
2007-05-11 11:47:18 -07:00

2899 lines
67 KiB
C++

/*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Nathan Binkert
* Erik Hallnor
*/
/** @file
* Declaration of Statistics objects.
*/
/**
* @todo
*
* Generalized N-dimensinal vector
* documentation
* key stats
* interval stats
* -- these both can use the same function that prints out a
* specific set of stats
* VectorStandardDeviation totals
* Document Namespaces
*/
#ifndef __BASE_STATISTICS_HH__
#define __BASE_STATISTICS_HH__
#include <algorithm>
#include <cassert>
#ifdef __SUNPRO_CC
#include <math.h>
#endif
#include <cmath>
#include <functional>
#include <iosfwd>
#include <string>
#include <vector>
#include "base/cprintf.hh"
#include "base/intmath.hh"
#include "base/refcnt.hh"
#include "base/str.hh"
#include "base/stats/flags.hh"
#include "base/stats/visit.hh"
#include "base/stats/types.hh"
#include "sim/host.hh"
class Callback;
/** The current simulated tick. */
extern Tick curTick;
/* A namespace for all of the Statistics */
namespace Stats {
/* Contains the statistic implementation details */
//////////////////////////////////////////////////////////////////////
//
// Statistics Framework Base classes
//
//////////////////////////////////////////////////////////////////////
struct StatData
{
/** The name of the stat. */
std::string name;
/** The description of the stat. */
std::string desc;
/** The formatting flags. */
StatFlags flags;
/** The display precision. */
int precision;
/** A pointer to a prerequisite Stat. */
const StatData *prereq;
/**
* A unique stat ID for each stat in the simulator.
* Can be used externally for lookups as well as for debugging.
*/
int id;
StatData();
virtual ~StatData();
/**
* Reset the corresponding stat to the default state.
*/
virtual void reset() = 0;
/**
* @return true if this stat has a value and satisfies its
* requirement as a prereq
*/
virtual bool zero() const = 0;
/**
* Check that this stat has been set up properly and is ready for
* use
* @return true for success
*/
virtual bool check() const = 0;
bool baseCheck() const;
/**
* Visitor entry for outputing statistics data
*/
virtual void visit(Visit &visitor) = 0;
/**
* Checks if the first stat's name is alphabetically less than the second.
* This function breaks names up at periods and considers each subname
* separately.
* @param stat1 The first stat.
* @param stat2 The second stat.
* @return stat1's name is alphabetically before stat2's
*/
static bool less(StatData *stat1, StatData *stat2);
};
class ScalarData : public StatData
{
public:
virtual Counter value() const = 0;
virtual Result result() const = 0;
virtual Result total() const = 0;
virtual void visit(Visit &visitor) { visitor.visit(*this); }
};
template <class Stat>
class ScalarStatData : public ScalarData
{
protected:
Stat &s;
public:
ScalarStatData(Stat &stat) : s(stat) {}
virtual bool check() const { return s.check(); }
virtual Counter value() const { return s.value(); }
virtual Result result() const { return s.result(); }
virtual Result total() const { return s.total(); }
virtual void reset() { s.reset(); }
virtual bool zero() const { return s.zero(); }
};
struct VectorData : public StatData
{
/** Names and descriptions of subfields. */
mutable std::vector<std::string> subnames;
mutable std::vector<std::string> subdescs;
virtual size_t size() const = 0;
virtual const VCounter &value() const = 0;
virtual const VResult &result() const = 0;
virtual Result total() const = 0;
void update()
{
if (!subnames.empty()) {
int s = size();
if (subnames.size() < s)
subnames.resize(s);
if (subdescs.size() < s)
subdescs.resize(s);
}
}
};
template <class Stat>
class VectorStatData : public VectorData
{
protected:
Stat &s;
mutable VCounter cvec;
mutable VResult rvec;
public:
VectorStatData(Stat &stat) : s(stat) {}
virtual bool check() const { return s.check(); }
virtual bool zero() const { return s.zero(); }
virtual void reset() { s.reset(); }
virtual size_t size() const { return s.size(); }
virtual VCounter &value() const
{
s.value(cvec);
return cvec;
}
virtual const VResult &result() const
{
s.result(rvec);
return rvec;
}
virtual Result total() const { return s.total(); }
virtual void visit(Visit &visitor)
{
update();
s.update(this);
visitor.visit(*this);
}
};
struct DistDataData
{
Counter min_val;
Counter max_val;
Counter underflow;
Counter overflow;
VCounter cvec;
Counter sum;
Counter squares;
Counter samples;
Counter min;
Counter max;
Counter bucket_size;
int size;
bool fancy;
};
struct DistData : public StatData
{
/** Local storage for the entry values, used for printing. */
DistDataData data;
};
template <class Stat>
class DistStatData : public DistData
{
protected:
Stat &s;
public:
DistStatData(Stat &stat) : s(stat) {}
virtual bool check() const { return s.check(); }
virtual void reset() { s.reset(); }
virtual bool zero() const { return s.zero(); }
virtual void visit(Visit &visitor)
{
s.update(this);
visitor.visit(*this);
}
};
struct VectorDistData : public StatData
{
std::vector<DistDataData> data;
/** Names and descriptions of subfields. */
mutable std::vector<std::string> subnames;
mutable std::vector<std::string> subdescs;
/** Local storage for the entry values, used for printing. */
mutable VResult rvec;
virtual size_t size() const = 0;
void update()
{
int s = size();
if (subnames.size() < s)
subnames.resize(s);
if (subdescs.size() < s)
subdescs.resize(s);
}
};
template <class Stat>
class VectorDistStatData : public VectorDistData
{
protected:
Stat &s;
public:
VectorDistStatData(Stat &stat) : s(stat) {}
virtual bool check() const { return s.check(); }
virtual void reset() { s.reset(); }
virtual size_t size() const { return s.size(); }
virtual bool zero() const { return s.zero(); }
virtual void visit(Visit &visitor)
{
update();
s.update(this);
visitor.visit(*this);
}
};
struct Vector2dData : public StatData
{
/** Names and descriptions of subfields. */
std::vector<std::string> subnames;
std::vector<std::string> subdescs;
std::vector<std::string> y_subnames;
/** Local storage for the entry values, used for printing. */
mutable VCounter cvec;
mutable int x;
mutable int y;
void update()
{
if (subnames.size() < x)
subnames.resize(x);
}
};
template <class Stat>
class Vector2dStatData : public Vector2dData
{
protected:
Stat &s;
public:
Vector2dStatData(Stat &stat) : s(stat) {}
virtual bool check() const { return s.check(); }
virtual void reset() { s.reset(); }
virtual bool zero() const { return s.zero(); }
virtual void visit(Visit &visitor)
{
update();
s.update(this);
visitor.visit(*this);
}
};
class DataAccess
{
protected:
StatData *find() const;
void map(StatData *data);
StatData *statData();
const StatData *statData() const;
void setInit();
void setPrint();
};
template <class Parent, class Child, template <class> class Data>
class Wrap : public Child
{
protected:
Parent &self() { return *reinterpret_cast<Parent *>(this); }
protected:
Data<Child> *statData()
{
StatData *__data = DataAccess::statData();
Data<Child> *ptr = dynamic_cast<Data<Child> *>(__data);
assert(ptr);
return ptr;
}
public:
const Data<Child> *statData() const
{
const StatData *__data = DataAccess::statData();
const Data<Child> *ptr = dynamic_cast<const Data<Child> *>(__data);
assert(ptr);
return ptr;
}
protected:
/**
* Copy constructor, copies are not allowed.
*/
Wrap(const Wrap &stat);
/**
* Can't copy stats.
*/
void operator=(const Wrap &);
public:
Wrap()
{
this->map(new Data<Child>(*this));
}
/**
* Set the name and marks this stat to print at the end of simulation.
* @param name The new name.
* @return A reference to this stat.
*/
Parent &name(const std::string &_name)
{
Data<Child> *data = this->statData();
data->name = _name;
this->setPrint();
return this->self();
}
/**
* Set the description and marks this stat to print at the end of
* simulation.
* @param desc The new description.
* @return A reference to this stat.
*/
Parent &desc(const std::string &_desc)
{
this->statData()->desc = _desc;
return this->self();
}
/**
* Set the precision and marks this stat to print at the end of simulation.
* @param p The new precision
* @return A reference to this stat.
*/
Parent &precision(int _precision)
{
this->statData()->precision = _precision;
return this->self();
}
/**
* Set the flags and marks this stat to print at the end of simulation.
* @param f The new flags.
* @return A reference to this stat.
*/
Parent &flags(StatFlags _flags)
{
this->statData()->flags |= _flags;
return this->self();
}
/**
* Set the prerequisite stat and marks this stat to print at the end of
* simulation.
* @param prereq The prerequisite stat.
* @return A reference to this stat.
*/
template <class Stat>
Parent &prereq(const Stat &prereq)
{
this->statData()->prereq = prereq.statData();
return this->self();
}
};
template <class Parent, class Child, template <class Child> class Data>
class WrapVec : public Wrap<Parent, Child, Data>
{
public:
// The following functions are specific to vectors. If you use them
// in a non vector context, you will get a nice compiler error!
/**
* Set the subfield name for the given index, and marks this stat to print
* at the end of simulation.
* @param index The subfield index.
* @param name The new name of the subfield.
* @return A reference to this stat.
*/
Parent &subname(int index, const std::string &name)
{
std::vector<std::string> &subn = this->statData()->subnames;
if (subn.size() <= index)
subn.resize(index + 1);
subn[index] = name;
return this->self();
}
/**
* Set the subfield description for the given index and marks this stat to
* print at the end of simulation.
* @param index The subfield index.
* @param desc The new description of the subfield
* @return A reference to this stat.
*/
Parent &subdesc(int index, const std::string &desc)
{
std::vector<std::string> &subd = this->statData()->subdescs;
if (subd.size() <= index)
subd.resize(index + 1);
subd[index] = desc;
return this->self();
}
};
template <class Parent, class Child, template <class Child> class Data>
class WrapVec2d : public WrapVec<Parent, Child, Data>
{
public:
/**
* @warning This makes the assumption that if you're gonna subnames a 2d
* vector, you're subnaming across all y
*/
Parent &ysubnames(const char **names)
{
Data<Child> *data = this->statData();
data->y_subnames.resize(this->y);
for (int i = 0; i < this->y; ++i)
data->y_subnames[i] = names[i];
return this->self();
}
Parent &ysubname(int index, const std::string subname)
{
Data<Child> *data = this->statData();
assert(index < this->y);
data->y_subnames.resize(this->y);
data->y_subnames[index] = subname.c_str();
return this->self();
}
};
//////////////////////////////////////////////////////////////////////
//
// Simple Statistics
//
//////////////////////////////////////////////////////////////////////
/**
* Templatized storage and interface for a simple scalar stat.
*/
struct StatStor
{
public:
/** The paramaters for this storage type, none for a scalar. */
struct Params { };
private:
/** The statistic value. */
Counter data;
public:
/**
* Builds this storage element and calls the base constructor of the
* datatype.
*/
StatStor(const Params &) : data(Counter()) {}
/**
* The the stat to the given value.
* @param val The new value.
* @param p The paramters of this storage type.
*/
void set(Counter val, const Params &p) { data = val; }
/**
* Increment the stat by the given value.
* @param val The new value.
* @param p The paramters of this storage type.
*/
void inc(Counter val, const Params &p) { data += val; }
/**
* Decrement the stat by the given value.
* @param val The new value.
* @param p The paramters of this storage type.
*/
void dec(Counter val, const Params &p) { data -= val; }
/**
* Return the value of this stat as its base type.
* @param p The params of this storage type.
* @return The value of this stat.
*/
Counter value(const Params &p) const { return data; }
/**
* Return the value of this stat as a result type.
* @param p The parameters of this storage type.
* @return The value of this stat.
*/
Result result(const Params &p) const { return (Result)data; }
/**
* Reset stat value to default
*/
void reset() { data = Counter(); }
/**
* @return true if zero value
*/
bool zero() const { return data == Counter(); }
};
/**
* Templatized storage and interface to a per-tick average stat. This keeps
* a current count and updates a total (count * ticks) when this count
* changes. This allows the quick calculation of a per tick count of the item
* being watched. This is good for keeping track of residencies in structures
* among other things.
*/
struct AvgStor
{
public:
/** The paramaters for this storage type */
struct Params { };
private:
/** The current count. */
Counter current;
/** The total count for all tick. */
mutable Result total;
/** The tick that current last changed. */
mutable Tick last;
public:
/**
* Build and initializes this stat storage.
*/
AvgStor(Params &p) : current(0), total(0), last(0) { }
/**
* Set the current count to the one provided, update the total and last
* set values.
* @param val The new count.
* @param p The parameters for this storage.
*/
void set(Counter val, Params &p) {
total += current * (curTick - last);
last = curTick;
current = val;
}
/**
* Increment the current count by the provided value, calls set.
* @param val The amount to increment.
* @param p The parameters for this storage.
*/
void inc(Counter val, Params &p) { set(current + val, p); }
/**
* Deccrement the current count by the provided value, calls set.
* @param val The amount to decrement.
* @param p The parameters for this storage.
*/
void dec(Counter val, Params &p) { set(current - val, p); }
/**
* Return the current count.
* @param p The parameters for this storage.
* @return The current count.
*/
Counter value(const Params &p) const { return current; }
/**
* Return the current average.
* @param p The parameters for this storage.
* @return The current average.
*/
Result result(const Params &p) const
{
total += current * (curTick - last);
last = curTick;
return (Result)(total + current) / (Result)(curTick + 1);
}
/**
* Reset stat value to default
*/
void reset()
{
total = 0;
last = curTick;
}
/**
* @return true if zero value
*/
bool zero() const { return total == 0.0; }
};
/**
* Implementation of a scalar stat. The type of stat is determined by the
* Storage template.
*/
template <class Stor>
class ScalarBase : public DataAccess
{
public:
typedef Stor Storage;
/** Define the params of the storage class. */
typedef typename Storage::Params Params;
protected:
/** The storage of this stat. */
char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
/** The parameters for this stat. */
Params params;
protected:
/**
* Retrieve the storage.
* @param index The vector index to access.
* @return The storage object at the given index.
*/
Storage *
data()
{
return reinterpret_cast<Storage *>(storage);
}
/**
* Retrieve a const pointer to the storage.
* for the given index.
* @param index The vector index to access.
* @return A const pointer to the storage object at the given index.
*/
const Storage *
data() const
{
return reinterpret_cast<const Storage *>(storage);
}
void
doInit()
{
new (storage) Storage(params);
setInit();
}
public:
/**
* Return the current value of this stat as its base type.
* @return The current value.
*/
Counter value() const { return data()->value(params); }
public:
/**
* Create and initialize this stat, register it with the database.
*/
ScalarBase()
{ }
public:
// Common operators for stats
/**
* Increment the stat by 1. This calls the associated storage object inc
* function.
*/
void operator++() { data()->inc(1, params); }
/**
* Decrement the stat by 1. This calls the associated storage object dec
* function.
*/
void operator--() { data()->dec(1, params); }
/** Increment the stat by 1. */
void operator++(int) { ++*this; }
/** Decrement the stat by 1. */
void operator--(int) { --*this; }
/**
* Set the data value to the given value. This calls the associated storage
* object set function.
* @param v The new value.
*/
template <typename U>
void operator=(const U &v) { data()->set(v, params); }
/**
* Increment the stat by the given value. This calls the associated
* storage object inc function.
* @param v The value to add.
*/
template <typename U>
void operator+=(const U &v) { data()->inc(v, params); }
/**
* Decrement the stat by the given value. This calls the associated
* storage object dec function.
* @param v The value to substract.
*/
template <typename U>
void operator-=(const U &v) { data()->dec(v, params); }
/**
* Return the number of elements, always 1 for a scalar.
* @return 1.
*/
size_t size() const { return 1; }
bool check() const { return true; }
/**
* Reset stat value to default
*/
void reset() { data()->reset(); }
Counter value() { return data()->value(params); }
Result result() { return data()->result(params); }
Result total() { return result(); }
bool zero() { return result() == 0.0; }
};
class ProxyData : public ScalarData
{
public:
virtual void visit(Visit &visitor) { visitor.visit(*this); }
virtual std::string str() const { return to_string(value()); }
virtual size_t size() const { return 1; }
virtual bool zero() const { return value() == 0; }
virtual bool check() const { return true; }
virtual void reset() { }
};
template <class T>
class ValueProxy : public ProxyData
{
private:
T *scalar;
public:
ValueProxy(T &val) : scalar(&val) {}
virtual Counter value() const { return *scalar; }
virtual Result result() const { return *scalar; }
virtual Result total() const { return *scalar; }
};
template <class T>
class FunctorProxy : public ProxyData
{
private:
T *functor;
public:
FunctorProxy(T &func) : functor(&func) {}
virtual Counter value() const { return (*functor)(); }
virtual Result result() const { return (*functor)(); }
virtual Result total() const { return (*functor)(); }
};
class ValueBase : public DataAccess
{
private:
ProxyData *proxy;
public:
ValueBase() : proxy(NULL) { }
~ValueBase() { if (proxy) delete proxy; }
template <class T>
void scalar(T &value)
{
proxy = new ValueProxy<T>(value);
setInit();
}
template <class T>
void functor(T &func)
{
proxy = new FunctorProxy<T>(func);
setInit();
}
Counter value() { return proxy->value(); }
Result result() const { return proxy->result(); }
Result total() const { return proxy->total(); };
size_t size() const { return proxy->size(); }
std::string str() const { return proxy->str(); }
bool zero() const { return proxy->zero(); }
bool check() const { return proxy != NULL; }
void reset() { }
};
//////////////////////////////////////////////////////////////////////
//
// Vector Statistics
//
//////////////////////////////////////////////////////////////////////
/**
* A proxy class to access the stat at a given index in a VectorBase stat.
* Behaves like a ScalarBase.
*/
template <class Stat>
class ScalarProxy
{
private:
/** Pointer to the parent Vector. */
Stat *stat;
/** The index to access in the parent VectorBase. */
int index;
public:
/**
* Return the current value of this stat as its base type.
* @return The current value.
*/
Counter value() const { return stat->data(index)->value(stat->params); }
/**
* Return the current value of this statas a result type.
* @return The current value.
*/
Result result() const { return stat->data(index)->result(stat->params); }
public:
/**
* Create and initialize this proxy, do not register it with the database.
* @param p The params to use.
* @param i The index to access.
*/
ScalarProxy(Stat *s, int i)
: stat(s), index(i)
{
assert(stat);
}
/**
* Create a copy of the provided ScalarProxy.
* @param sp The proxy to copy.
*/
ScalarProxy(const ScalarProxy &sp)
: stat(sp.stat), index(sp.index)
{}
/**
* Set this proxy equal to the provided one.
* @param sp The proxy to copy.
* @return A reference to this proxy.
*/
const ScalarProxy &operator=(const ScalarProxy &sp) {
stat = sp.stat;
index = sp.index;
return *this;
}
public:
// Common operators for stats
/**
* Increment the stat by 1. This calls the associated storage object inc
* function.
*/
void operator++() { stat->data(index)->inc(1, stat->params); }
/**
* Decrement the stat by 1. This calls the associated storage object dec
* function.
*/
void operator--() { stat->data(index)->dec(1, stat->params); }
/** Increment the stat by 1. */
void operator++(int) { ++*this; }
/** Decrement the stat by 1. */
void operator--(int) { --*this; }
/**
* Set the data value to the given value. This calls the associated storage
* object set function.
* @param v The new value.
*/
template <typename U>
void operator=(const U &v) { stat->data(index)->set(v, stat->params); }
/**
* Increment the stat by the given value. This calls the associated
* storage object inc function.
* @param v The value to add.
*/
template <typename U>
void operator+=(const U &v) { stat->data(index)->inc(v, stat->params); }
/**
* Decrement the stat by the given value. This calls the associated
* storage object dec function.
* @param v The value to substract.
*/
template <typename U>
void operator-=(const U &v) { stat->data(index)->dec(v, stat->params); }
/**
* Return the number of elements, always 1 for a scalar.
* @return 1.
*/
size_t size() const { return 1; }
/**
* This stat has no state. Nothing to reset
*/
void reset() { }
public:
std::string
str() const
{
return csprintf("%s[%d]", stat->str(), index);
}
};
/**
* Implementation of a vector of stats. The type of stat is determined by the
* Storage class. @sa ScalarBase
*/
template <class Stor>
class VectorBase : public DataAccess
{
public:
typedef Stor Storage;
/** Define the params of the storage class. */
typedef typename Storage::Params Params;
/** Proxy type */
typedef ScalarProxy<VectorBase<Storage> > Proxy;
friend class ScalarProxy<VectorBase<Storage> >;
protected:
/** The storage of this stat. */
Storage *storage;
size_t _size;
/** The parameters for this stat. */
Params params;
protected:
/**
* Retrieve the storage.
* @param index The vector index to access.
* @return The storage object at the given index.
*/
Storage *data(int index) { return &storage[index]; }
/**
* Retrieve a const pointer to the storage.
* @param index The vector index to access.
* @return A const pointer to the storage object at the given index.
*/
const Storage *data(int index) const { return &storage[index]; }
void
doInit(int s)
{
assert(s > 0 && "size must be positive!");
assert(!storage && "already initialized");
_size = s;
char *ptr = new char[_size * sizeof(Storage)];
storage = reinterpret_cast<Storage *>(ptr);
for (int i = 0; i < _size; ++i)
new (&storage[i]) Storage(params);
setInit();
}
public:
void value(VCounter &vec) const
{
vec.resize(size());
for (int i = 0; i < size(); ++i)
vec[i] = data(i)->value(params);
}
/**
* Copy the values to a local vector and return a reference to it.
* @return A reference to a vector of the stat values.
*/
void result(VResult &vec) const
{
vec.resize(size());
for (int i = 0; i < size(); ++i)
vec[i] = data(i)->result(params);
}
/**
* Return a total of all entries in this vector.
* @return The total of all vector entries.
*/
Result total() const {
Result total = 0.0;
for (int i = 0; i < size(); ++i)
total += data(i)->result(params);
return total;
}
/**
* @return the number of elements in this vector.
*/
size_t size() const { return _size; }
bool
zero() const
{
for (int i = 0; i < size(); ++i)
if (data(i)->zero())
return false;
return true;
}
bool
check() const
{
return storage != NULL;
}
void
reset()
{
for (int i = 0; i < size(); ++i)
data(i)->reset();
}
public:
VectorBase()
: storage(NULL)
{}
~VectorBase()
{
if (!storage)
return;
for (int i = 0; i < _size; ++i)
data(i)->~Storage();
delete [] reinterpret_cast<char *>(storage);
}
/**
* Return a reference (ScalarProxy) to the stat at the given index.
* @param index The vector index to access.
* @return A reference of the stat.
*/
Proxy
operator[](int index)
{
assert (index >= 0 && index < size());
return Proxy(this, index);
}
void update(StatData *data) {}
};
template <class Stat>
class VectorProxy
{
private:
Stat *stat;
int offset;
int len;
private:
mutable VResult vec;
typename Stat::Storage *
data(int index)
{
assert(index < len);
return stat->data(offset + index);
}
const typename Stat::Storage *
data(int index) const
{
assert(index < len);
return const_cast<Stat *>(stat)->data(offset + index);
}
public:
const VResult &
result() const
{
vec.resize(size());
for (int i = 0; i < size(); ++i)
vec[i] = data(i)->result(stat->params);
return vec;
}
Result
total() const
{
Result total = 0;
for (int i = 0; i < size(); ++i)
total += data(i)->result(stat->params);
return total;
}
public:
VectorProxy(Stat *s, int o, int l)
: stat(s), offset(o), len(l)
{
}
VectorProxy(const VectorProxy &sp)
: stat(sp.stat), offset(sp.offset), len(sp.len)
{
}
const VectorProxy &
operator=(const VectorProxy &sp)
{
stat = sp.stat;
offset = sp.offset;
len = sp.len;
return *this;
}
ScalarProxy<Stat> operator[](int index)
{
assert (index >= 0 && index < size());
return ScalarProxy<Stat>(stat, offset + index);
}
size_t size() const { return len; }
/**
* This stat has no state. Nothing to reset.
*/
void reset() { }
};
template <class Stor>
class Vector2dBase : public DataAccess
{
public:
typedef Stor Storage;
typedef typename Storage::Params Params;
typedef VectorProxy<Vector2dBase<Storage> > Proxy;
friend class ScalarProxy<Vector2dBase<Storage> >;
friend class VectorProxy<Vector2dBase<Storage> >;
protected:
size_t x;
size_t y;
size_t _size;
Storage *storage;
Params params;
protected:
Storage *data(int index) { return &storage[index]; }
const Storage *data(int index) const { return &storage[index]; }
void
doInit(int _x, int _y)
{
assert(_x > 0 && _y > 0 && "sizes must be positive!");
assert(!storage && "already initialized");
Vector2dData *statdata = dynamic_cast<Vector2dData *>(find());
x = _x;
y = _y;
statdata->x = _x;
statdata->y = _y;
_size = x * y;
char *ptr = new char[_size * sizeof(Storage)];
storage = reinterpret_cast<Storage *>(ptr);
for (int i = 0; i < _size; ++i)
new (&storage[i]) Storage(params);
setInit();
}
public:
Vector2dBase()
: storage(NULL)
{}
~Vector2dBase()
{
if (!storage)
return;
for (int i = 0; i < _size; ++i)
data(i)->~Storage();
delete [] reinterpret_cast<char *>(storage);
}
void
update(Vector2dData *newdata)
{
int size = this->size();
newdata->cvec.resize(size);
for (int i = 0; i < size; ++i)
newdata->cvec[i] = data(i)->value(params);
}
std::string ysubname(int i) const { return (*this->y_subnames)[i]; }
Proxy
operator[](int index)
{
int offset = index * y;
assert (index >= 0 && offset + index < size());
return Proxy(this, offset, y);
}
size_t
size() const
{
return _size;
}
bool
zero() const
{
return data(0)->zero();
#if 0
for (int i = 0; i < size(); ++i)
if (!data(i)->zero())
return false;
return true;
#endif
}
/**
* Reset stat value to default
*/
void
reset()
{
for (int i = 0; i < size(); ++i)
data(i)->reset();
}
bool
check()
{
return storage != NULL;
}
};
//////////////////////////////////////////////////////////////////////
//
// Non formula statistics
//
//////////////////////////////////////////////////////////////////////
/**
* Templatized storage and interface for a distrbution stat.
*/
struct DistStor
{
public:
/** The parameters for a distribution stat. */
struct Params
{
/** The minimum value to track. */
Counter min;
/** The maximum value to track. */
Counter max;
/** The number of entries in each bucket. */
Counter bucket_size;
/** The number of buckets. Equal to (max-min)/bucket_size. */
int size;
};
enum { fancy = false };
private:
/** The smallest value sampled. */
Counter min_val;
/** The largest value sampled. */
Counter max_val;
/** The number of values sampled less than min. */
Counter underflow;
/** The number of values sampled more than max. */
Counter overflow;
/** The current sum. */
Counter sum;
/** The sum of squares. */
Counter squares;
/** The number of samples. */
Counter samples;
/** Counter for each bucket. */
VCounter cvec;
public:
DistStor(const Params &params)
: cvec(params.size)
{
reset();
}
/**
* Add a value to the distribution for the given number of times.
* @param val The value to add.
* @param number The number of times to add the value.
* @param params The paramters of the distribution.
*/
void sample(Counter val, int number, const Params &params)
{
if (val < params.min)
underflow += number;
else if (val > params.max)
overflow += number;
else {
int index = (int)std::floor((val - params.min) / params.bucket_size);
assert(index < size(params));
cvec[index] += number;
}
if (val < min_val)
min_val = val;
if (val > max_val)
max_val = val;
Counter sample = val * number;
sum += sample;
squares += sample * sample;
samples += number;
}
/**
* Return the number of buckets in this distribution.
* @return the number of buckets.
* @todo Is it faster to return the size from the parameters?
*/
size_t size(const Params &) const { return cvec.size(); }
/**
* Returns true if any calls to sample have been made.
* @param params The paramters of the distribution.
* @return True if any values have been sampled.
*/
bool zero(const Params &params) const
{
return samples == Counter();
}
void update(DistDataData *data, const Params &params)
{
data->min = params.min;
data->max = params.max;
data->bucket_size = params.bucket_size;
data->size = params.size;
data->min_val = (min_val == INT_MAX) ? 0 : min_val;
data->max_val = (max_val == INT_MIN) ? 0 : max_val;
data->underflow = underflow;
data->overflow = overflow;
data->cvec.resize(params.size);
for (int i = 0; i < params.size; ++i)
data->cvec[i] = cvec[i];
data->sum = sum;
data->squares = squares;
data->samples = samples;
}
/**
* Reset stat value to default
*/
void reset()
{
min_val = INT_MAX;
max_val = INT_MIN;
underflow = 0;
overflow = 0;
int size = cvec.size();
for (int i = 0; i < size; ++i)
cvec[i] = Counter();
sum = Counter();
squares = Counter();
samples = Counter();
}
};
/**
* Templatized storage and interface for a distribution that calculates mean
* and variance.
*/
struct FancyStor
{
public:
/**
* No paramters for this storage.
*/
struct Params {};
enum { fancy = true };
private:
/** The current sum. */
Counter sum;
/** The sum of squares. */
Counter squares;
/** The number of samples. */
Counter samples;
public:
/**
* Create and initialize this storage.
*/
FancyStor(const Params &)
: sum(Counter()), squares(Counter()), samples(Counter())
{ }
/**
* Add a value the given number of times to this running average.
* Update the running sum and sum of squares, increment the number of
* values seen by the given number.
* @param val The value to add.
* @param number The number of times to add the value.
* @param p The parameters of this stat.
*/
void sample(Counter val, int number, const Params &p)
{
Counter value = val * number;
sum += value;
squares += value * value;
samples += number;
}
void update(DistDataData *data, const Params &params)
{
data->sum = sum;
data->squares = squares;
data->samples = samples;
}
/**
* Return the number of entries in this stat, 1
* @return 1.
*/
size_t size(const Params &) const { return 1; }
/**
* Return true if no samples have been added.
* @return True if no samples have been added.
*/
bool zero(const Params &) const { return samples == Counter(); }
/**
* Reset stat value to default
*/
void reset()
{
sum = Counter();
squares = Counter();
samples = Counter();
}
};
/**
* Templatized storage for distribution that calculates per tick mean and
* variance.
*/
struct AvgFancy
{
public:
/** No parameters for this storage. */
struct Params {};
enum { fancy = true };
private:
/** Current total. */
Counter sum;
/** Current sum of squares. */
Counter squares;
public:
/**
* Create and initialize this storage.
*/
AvgFancy(const Params &) : sum(Counter()), squares(Counter()) {}
/**
* Add a value to the distribution for the given number of times.
* Update the running sum and sum of squares.
* @param val The value to add.
* @param number The number of times to add the value.
* @param p The paramters of the distribution.
*/
void sample(Counter val, int number, const Params &p)
{
Counter value = val * number;
sum += value;
squares += value * value;
}
void update(DistDataData *data, const Params &params)
{
data->sum = sum;
data->squares = squares;
data->samples = curTick;
}
/**
* Return the number of entries, in this case 1.
* @return 1.
*/
size_t size(const Params &params) const { return 1; }
/**
* Return true if no samples have been added.
* @return True if the sum is zero.
*/
bool zero(const Params &params) const { return sum == Counter(); }
/**
* Reset stat value to default
*/
void reset()
{
sum = Counter();
squares = Counter();
}
};
/**
* Implementation of a distribution stat. The type of distribution is
* determined by the Storage template. @sa ScalarBase
*/
template <class Stor>
class DistBase : public DataAccess
{
public:
typedef Stor Storage;
/** Define the params of the storage class. */
typedef typename Storage::Params Params;
protected:
/** The storage for this stat. */
char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
/** The parameters for this stat. */
Params params;
protected:
/**
* Retrieve the storage.
* @return The storage object for this stat.
*/
Storage *data()
{
return reinterpret_cast<Storage *>(storage);
}
/**
* Retrieve a const pointer to the storage.
* @return A const pointer to the storage object for this stat.
*/
const Storage *
data() const
{
return reinterpret_cast<const Storage *>(storage);
}
void
doInit()
{
new (storage) Storage(params);
setInit();
}
public:
DistBase() { }
/**
* Add a value to the distribtion n times. Calls sample on the storage
* class.
* @param v The value to add.
* @param n The number of times to add it, defaults to 1.
*/
template <typename U>
void sample(const U &v, int n = 1) { data()->sample(v, n, params); }
/**
* Return the number of entries in this stat.
* @return The number of entries.
*/
size_t size() const { return data()->size(params); }
/**
* Return true if no samples have been added.
* @return True if there haven't been any samples.
*/
bool zero() const { return data()->zero(params); }
void update(DistData *base)
{
base->data.fancy = Storage::fancy;
data()->update(&(base->data), params);
}
/**
* Reset stat value to default
*/
void
reset()
{
data()->reset();
}
bool
check()
{
return true;
}
};
template <class Stat>
class DistProxy;
template <class Stor>
class VectorDistBase : public DataAccess
{
public:
typedef Stor Storage;
typedef typename Storage::Params Params;
typedef DistProxy<VectorDistBase<Storage> > Proxy;
friend class DistProxy<VectorDistBase<Storage> >;
protected:
Storage *storage;
size_t _size;
Params params;
protected:
Storage *
data(int index)
{
return &storage[index];
}
const Storage *
data(int index) const
{
return &storage[index];
}
void
doInit(int s)
{
assert(s > 0 && "size must be positive!");
assert(!storage && "already initialized");
_size = s;
char *ptr = new char[_size * sizeof(Storage)];
storage = reinterpret_cast<Storage *>(ptr);
for (int i = 0; i < _size; ++i)
new (&storage[i]) Storage(params);
setInit();
}
public:
VectorDistBase()
: storage(NULL)
{}
~VectorDistBase()
{
if (!storage)
return ;
for (int i = 0; i < _size; ++i)
data(i)->~Storage();
delete [] reinterpret_cast<char *>(storage);
}
Proxy operator[](int index);
size_t
size() const
{
return _size;
}
bool
zero() const
{
return false;
#if 0
for (int i = 0; i < size(); ++i)
if (!data(i)->zero(params))
return false;
return true;
#endif
}
/**
* Reset stat value to default
*/
void
reset()
{
for (int i = 0; i < size(); ++i)
data(i)->reset();
}
bool
check()
{
return storage != NULL;
}
void
update(VectorDistData *base)
{
int size = this->size();
base->data.resize(size);
for (int i = 0; i < size; ++i) {
base->data[i].fancy = Storage::fancy;
data(i)->update(&(base->data[i]), params);
}
}
};
template <class Stat>
class DistProxy
{
private:
Stat *stat;
int index;
protected:
typename Stat::Storage *data() { return stat->data(index); }
const typename Stat::Storage *data() const { return stat->data(index); }
public:
DistProxy(Stat *s, int i)
: stat(s), index(i)
{}
DistProxy(const DistProxy &sp)
: stat(sp.stat), index(sp.index)
{}
const DistProxy &operator=(const DistProxy &sp)
{
stat = sp.stat;
index = sp.index;
return *this;
}
public:
template <typename U>
void
sample(const U &v, int n = 1)
{
data()->sample(v, n, stat->params);
}
size_t
size() const
{
return 1;
}
bool
zero() const
{
return data()->zero(stat->params);
}
/**
* Proxy has no state. Nothing to reset.
*/
void reset() { }
};
template <class Storage>
inline typename VectorDistBase<Storage>::Proxy
VectorDistBase<Storage>::operator[](int index)
{
assert (index >= 0 && index < size());
return typename VectorDistBase<Storage>::Proxy(this, index);
}
#if 0
template <class Storage>
Result
VectorDistBase<Storage>::total(int index) const
{
int total = 0;
for (int i = 0; i < x_size(); ++i) {
total += data(i)->result(stat->params);
}
}
#endif
//////////////////////////////////////////////////////////////////////
//
// Formula Details
//
//////////////////////////////////////////////////////////////////////
/**
* Base class for formula statistic node. These nodes are used to build a tree
* that represents the formula.
*/
class Node : public RefCounted
{
public:
/**
* Return the number of nodes in the subtree starting at this node.
* @return the number of nodes in this subtree.
*/
virtual size_t size() const = 0;
/**
* Return the result vector of this subtree.
* @return The result vector of this subtree.
*/
virtual const VResult &result() const = 0;
/**
* Return the total of the result vector.
* @return The total of the result vector.
*/
virtual Result total() const = 0;
/**
*
*/
virtual std::string str() const = 0;
};
/** Reference counting pointer to a function Node. */
typedef RefCountingPtr<Node> NodePtr;
class ScalarStatNode : public Node
{
private:
const ScalarData *data;
mutable VResult vresult;
public:
ScalarStatNode(const ScalarData *d) : data(d), vresult(1) {}
virtual const VResult &result() const
{
vresult[0] = data->result();
return vresult;
}
virtual Result total() const { return data->result(); };
virtual size_t size() const { return 1; }
/**
*
*/
virtual std::string str() const { return data->name; }
};
template <class Stat>
class ScalarProxyNode : public Node
{
private:
const ScalarProxy<Stat> proxy;
mutable VResult vresult;
public:
ScalarProxyNode(const ScalarProxy<Stat> &p)
: proxy(p), vresult(1)
{ }
virtual const VResult &
result() const
{
vresult[0] = proxy.result();
return vresult;
}
virtual Result
total() const
{
return proxy.result();
}
virtual size_t
size() const
{
return 1;
}
/**
*
*/
virtual std::string
str() const
{
return proxy.str();
}
};
class VectorStatNode : public Node
{
private:
const VectorData *data;
public:
VectorStatNode(const VectorData *d) : data(d) { }
virtual const VResult &result() const { return data->result(); }
virtual Result total() const { return data->total(); };
virtual size_t size() const { return data->size(); }
virtual std::string str() const { return data->name; }
};
template <class T>
class ConstNode : public Node
{
private:
VResult vresult;
public:
ConstNode(T s) : vresult(1, (Result)s) {}
const VResult &result() const { return vresult; }
virtual Result total() const { return vresult[0]; };
virtual size_t size() const { return 1; }
virtual std::string str() const { return to_string(vresult[0]); }
};
template <class Op>
struct OpString;
template<>
struct OpString<std::plus<Result> >
{
static std::string str() { return "+"; }
};
template<>
struct OpString<std::minus<Result> >
{
static std::string str() { return "-"; }
};
template<>
struct OpString<std::multiplies<Result> >
{
static std::string str() { return "*"; }
};
template<>
struct OpString<std::divides<Result> >
{
static std::string str() { return "/"; }
};
template<>
struct OpString<std::modulus<Result> >
{
static std::string str() { return "%"; }
};
template<>
struct OpString<std::negate<Result> >
{
static std::string str() { return "-"; }
};
template <class Op>
class UnaryNode : public Node
{
public:
NodePtr l;
mutable VResult vresult;
public:
UnaryNode(NodePtr &p) : l(p) {}
const VResult &result() const
{
const VResult &lvec = l->result();
int size = lvec.size();
assert(size > 0);
vresult.resize(size);
Op op;
for (int i = 0; i < size; ++i)
vresult[i] = op(lvec[i]);
return vresult;
}
Result total() const
{
const VResult &vec = this->result();
Result total = 0;
for (int i = 0; i < size(); i++)
total += vec[i];
return total;
}
virtual size_t size() const { return l->size(); }
virtual std::string str() const
{
return OpString<Op>::str() + l->str();
}
};
template <class Op>
class BinaryNode : public Node
{
public:
NodePtr l;
NodePtr r;
mutable VResult vresult;
public:
BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
const VResult &result() const
{
Op op;
const VResult &lvec = l->result();
const VResult &rvec = r->result();
assert(lvec.size() > 0 && rvec.size() > 0);
if (lvec.size() == 1 && rvec.size() == 1) {
vresult.resize(1);
vresult[0] = op(lvec[0], rvec[0]);
} else if (lvec.size() == 1) {
int size = rvec.size();
vresult.resize(size);
for (int i = 0; i < size; ++i)
vresult[i] = op(lvec[0], rvec[i]);
} else if (rvec.size() == 1) {
int size = lvec.size();
vresult.resize(size);
for (int i = 0; i < size; ++i)
vresult[i] = op(lvec[i], rvec[0]);
} else if (rvec.size() == lvec.size()) {
int size = rvec.size();
vresult.resize(size);
for (int i = 0; i < size; ++i)
vresult[i] = op(lvec[i], rvec[i]);
}
return vresult;
}
Result total() const
{
const VResult &vec = this->result();
Result total = 0;
for (int i = 0; i < size(); i++)
total += vec[i];
return total;
}
virtual size_t size() const {
int ls = l->size();
int rs = r->size();
if (ls == 1)
return rs;
else if (rs == 1)
return ls;
else {
assert(ls == rs && "Node vector sizes are not equal");
return ls;
}
}
virtual std::string str() const
{
return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
}
};
template <class Op>
class SumNode : public Node
{
public:
NodePtr l;
mutable VResult vresult;
public:
SumNode(NodePtr &p) : l(p), vresult(1) {}
const VResult &result() const
{
const VResult &lvec = l->result();
int size = lvec.size();
assert(size > 0);
vresult[0] = 0.0;
Op op;
for (int i = 0; i < size; ++i)
vresult[0] = op(vresult[0], lvec[i]);
return vresult;
}
Result total() const
{
const VResult &lvec = l->result();
int size = lvec.size();
assert(size > 0);
Result vresult = 0.0;
Op op;
for (int i = 0; i < size; ++i)
vresult = op(vresult, lvec[i]);
return vresult;
}
virtual size_t size() const { return 1; }
virtual std::string str() const
{
return csprintf("total(%s)", l->str());
}
};
//////////////////////////////////////////////////////////////////////
//
// Visible Statistics Types
//
//////////////////////////////////////////////////////////////////////
/**
* @defgroup VisibleStats "Statistic Types"
* These are the statistics that are used in the simulator.
* @{
*/
/**
* This is a simple scalar statistic, like a counter.
* @sa Stat, ScalarBase, StatStor
*/
template<int N = 0>
class Scalar : public Wrap<Scalar<N>, ScalarBase<StatStor>, ScalarStatData>
{
public:
/** The base implementation. */
typedef ScalarBase<StatStor> Base;
Scalar()
{
this->doInit();
}
/**
* Sets the stat equal to the given value. Calls the base implementation
* of operator=
* @param v The new value.
*/
template <typename U>
void operator=(const U &v) { Base::operator=(v); }
};
class Value : public Wrap<Value, ValueBase, ScalarStatData>
{
public:
/** The base implementation. */
typedef ValueBase Base;
template <class T>
Value &scalar(T &value)
{
Base::scalar(value);
return *this;
}
template <class T>
Value &functor(T &func)
{
Base::functor(func);
return *this;
}
};
/**
* A stat that calculates the per tick average of a value.
* @sa Stat, ScalarBase, AvgStor
*/
template<int N = 0>
class Average : public Wrap<Average<N>, ScalarBase<AvgStor>, ScalarStatData>
{
public:
/** The base implementation. */
typedef ScalarBase<AvgStor> Base;
Average()
{
this->doInit();
}
/**
* Sets the stat equal to the given value. Calls the base implementation
* of operator=
* @param v The new value.
*/
template <typename U>
void operator=(const U &v) { Base::operator=(v); }
};
/**
* A vector of scalar stats.
* @sa Stat, VectorBase, StatStor
*/
template<int N = 0>
class Vector : public WrapVec<Vector<N>, VectorBase<StatStor>, VectorStatData>
{
public:
/** The base implementation. */
typedef ScalarBase<StatStor> Base;
/**
* Set this vector to have the given size.
* @param size The new size.
* @return A reference to this stat.
*/
Vector &init(size_t size) {
this->doInit(size);
return *this;
}
};
/**
* A vector of Average stats.
* @sa Stat, VectorBase, AvgStor
*/
template<int N = 0>
class AverageVector
: public WrapVec<AverageVector<N>, VectorBase<AvgStor>, VectorStatData>
{
public:
/**
* Set this vector to have the given size.
* @param size The new size.
* @return A reference to this stat.
*/
AverageVector &init(size_t size) {
this->doInit(size);
return *this;
}
};
/**
* A 2-Dimensional vecto of scalar stats.
* @sa Stat, Vector2dBase, StatStor
*/
template<int N = 0>
class Vector2d
: public WrapVec2d<Vector2d<N>, Vector2dBase<StatStor>, Vector2dStatData>
{
public:
Vector2d &init(size_t x, size_t y) {
this->doInit(x, y);
return *this;
}
};
/**
* A simple distribution stat.
* @sa Stat, DistBase, DistStor
*/
template<int N = 0>
class Distribution
: public Wrap<Distribution<N>, DistBase<DistStor>, DistStatData>
{
public:
/** Base implementation. */
typedef DistBase<DistStor> Base;
/** The Parameter type. */
typedef DistStor::Params Params;
public:
/**
* Set the parameters of this distribution. @sa DistStor::Params
* @param min The minimum value of the distribution.
* @param max The maximum value of the distribution.
* @param bkt The number of values in each bucket.
* @return A reference to this distribution.
*/
Distribution &init(Counter min, Counter max, Counter bkt) {
this->params.min = min;
this->params.max = max;
this->params.bucket_size = bkt;
this->params.size = (int)rint((max - min) / bkt + 1.0);
this->doInit();
return *this;
}
};
/**
* Calculates the mean and variance of all the samples.
* @sa Stat, DistBase, FancyStor
*/
template<int N = 0>
class StandardDeviation
: public Wrap<StandardDeviation<N>, DistBase<FancyStor>, DistStatData>
{
public:
/** The base implementation */
typedef DistBase<DistStor> Base;
/** The parameter type. */
typedef DistStor::Params Params;
public:
/**
* Construct and initialize this distribution.
*/
StandardDeviation() {
this->doInit();
}
};
/**
* Calculates the per tick mean and variance of the samples.
* @sa Stat, DistBase, AvgFancy
*/
template<int N = 0>
class AverageDeviation
: public Wrap<AverageDeviation<N>, DistBase<AvgFancy>, DistStatData>
{
public:
/** The base implementation */
typedef DistBase<DistStor> Base;
/** The parameter type. */
typedef DistStor::Params Params;
public:
/**
* Construct and initialize this distribution.
*/
AverageDeviation()
{
this->doInit();
}
};
/**
* A vector of distributions.
* @sa Stat, VectorDistBase, DistStor
*/
template<int N = 0>
class VectorDistribution
: public WrapVec<VectorDistribution<N>,
VectorDistBase<DistStor>,
VectorDistStatData>
{
public:
/** The base implementation */
typedef VectorDistBase<DistStor> Base;
/** The parameter type. */
typedef DistStor::Params Params;
public:
/**
* Initialize storage and parameters for this distribution.
* @param size The size of the vector (the number of distributions).
* @param min The minimum value of the distribution.
* @param max The maximum value of the distribution.
* @param bkt The number of values in each bucket.
* @return A reference to this distribution.
*/
VectorDistribution &init(int size, Counter min, Counter max, Counter bkt) {
this->params.min = min;
this->params.max = max;
this->params.bucket_size = bkt;
this->params.size = (int)rint((max - min) / bkt + 1.0);
this->doInit(size);
return *this;
}
};
/**
* This is a vector of StandardDeviation stats.
* @sa Stat, VectorDistBase, FancyStor
*/
template<int N = 0>
class VectorStandardDeviation
: public WrapVec<VectorStandardDeviation<N>,
VectorDistBase<FancyStor>,
VectorDistStatData>
{
public:
/** The base implementation */
typedef VectorDistBase<FancyStor> Base;
/** The parameter type. */
typedef DistStor::Params Params;
public:
/**
* Initialize storage for this distribution.
* @param size The size of the vector.
* @return A reference to this distribution.
*/
VectorStandardDeviation &init(int size) {
this->doInit(size);
return *this;
}
};
/**
* This is a vector of AverageDeviation stats.
* @sa Stat, VectorDistBase, AvgFancy
*/
template<int N = 0>
class VectorAverageDeviation
: public WrapVec<VectorAverageDeviation<N>,
VectorDistBase<AvgFancy>,
VectorDistStatData>
{
public:
/** The base implementation */
typedef VectorDistBase<AvgFancy> Base;
/** The parameter type. */
typedef DistStor::Params Params;
public:
/**
* Initialize storage for this distribution.
* @param size The size of the vector.
* @return A reference to this distribution.
*/
VectorAverageDeviation &init(int size) {
this->doInit(size);
return *this;
}
};
/**
* A formula for statistics that is calculated when printed. A formula is
* stored as a tree of Nodes that represent the equation to calculate.
* @sa Stat, ScalarStat, VectorStat, Node, Temp
*/
class FormulaBase : public DataAccess
{
protected:
/** The root of the tree which represents the Formula */
NodePtr root;
friend class Temp;
public:
/**
* Return the result of the Fomula in a vector. If there were no Vector
* components to the Formula, then the vector is size 1. If there were,
* like x/y with x being a vector of size 3, then the result returned will
* be x[0]/y, x[1]/y, x[2]/y, respectively.
* @return The result vector.
*/
void result(VResult &vec) const;
/**
* Return the total Formula result. If there is a Vector
* component to this Formula, then this is the result of the
* Formula if the formula is applied after summing all the
* components of the Vector. For example, if Formula is x/y where
* x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
* there is no Vector component, total() returns the same value as
* the first entry in the VResult val() returns.
* @return The total of the result vector.
*/
Result total() const;
/**
* Return the number of elements in the tree.
*/
size_t size() const;
bool check() const { return true; }
/**
* Formulas don't need to be reset
*/
void reset();
/**
*
*/
bool zero() const;
/**
*
*/
void update(StatData *);
std::string str() const;
};
class FormulaData : public VectorData
{
public:
virtual std::string str() const = 0;
virtual bool check() const { return true; }
};
template <class Stat>
class FormulaStatData : public FormulaData
{
protected:
Stat &s;
mutable VResult vec;
mutable VCounter cvec;
public:
FormulaStatData(Stat &stat) : s(stat) {}
virtual bool zero() const { return s.zero(); }
virtual void reset() { s.reset(); }
virtual size_t size() const { return s.size(); }
virtual const VResult &result() const
{
s.result(vec);
return vec;
}
virtual Result total() const { return s.total(); }
virtual VCounter &value() const { return cvec; }
virtual void visit(Visit &visitor)
{
update();
s.update(this);
visitor.visit(*this);
}
virtual std::string str() const { return s.str(); }
};
class Temp;
class Formula
: public WrapVec<Formula,
FormulaBase,
FormulaStatData>
{
public:
/**
* Create and initialize thie formula, and register it with the database.
*/
Formula();
/**
* Create a formula with the given root node, register it with the
* database.
* @param r The root of the expression tree.
*/
Formula(Temp r);
/**
* Set an unitialized Formula to the given root.
* @param r The root of the expression tree.
* @return a reference to this formula.
*/
const Formula &operator=(Temp r);
/**
* Add the given tree to the existing one.
* @param r The root of the expression tree.
* @return a reference to this formula.
*/
const Formula &operator+=(Temp r);
};
class FormulaNode : public Node
{
private:
const Formula &formula;
mutable VResult vec;
public:
FormulaNode(const Formula &f) : formula(f) {}
virtual size_t size() const { return formula.size(); }
virtual const VResult &result() const { formula.result(vec); return vec; }
virtual Result total() const { return formula.total(); }
virtual std::string str() const { return formula.str(); }
};
/**
* Helper class to construct formula node trees.
*/
class Temp
{
protected:
/**
* Pointer to a Node object.
*/
NodePtr node;
public:
/**
* Copy the given pointer to this class.
* @param n A pointer to a Node object to copy.
*/
Temp(NodePtr n) : node(n) { }
/**
* Return the node pointer.
* @return the node pointer.
*/
operator NodePtr&() { return node;}
public:
/**
* Create a new ScalarStatNode.
* @param s The ScalarStat to place in a node.
*/
template <int N>
Temp(const Scalar<N> &s)
: node(new ScalarStatNode(s.statData())) { }
/**
* Create a new ScalarStatNode.
* @param s The ScalarStat to place in a node.
*/
Temp(const Value &s)
: node(new ScalarStatNode(s.statData())) { }
/**
* Create a new ScalarStatNode.
* @param s The ScalarStat to place in a node.
*/
template <int N>
Temp(const Average<N> &s)
: node(new ScalarStatNode(s.statData())) { }
/**
* Create a new VectorStatNode.
* @param s The VectorStat to place in a node.
*/
template <int N>
Temp(const Vector<N> &s)
: node(new VectorStatNode(s.statData())) { }
/**
*
*/
Temp(const Formula &f)
: node(new FormulaNode(f)) { }
/**
* Create a new ScalarProxyNode.
* @param p The ScalarProxy to place in a node.
*/
template <class Stat>
Temp(const ScalarProxy<Stat> &p)
: node(new ScalarProxyNode<Stat>(p)) { }
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(signed char value)
: node(new ConstNode<signed char>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(unsigned char value)
: node(new ConstNode<unsigned char>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(signed short value)
: node(new ConstNode<signed short>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(unsigned short value)
: node(new ConstNode<unsigned short>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(signed int value)
: node(new ConstNode<signed int>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(unsigned int value)
: node(new ConstNode<unsigned int>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(signed long value)
: node(new ConstNode<signed long>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(unsigned long value)
: node(new ConstNode<unsigned long>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(signed long long value)
: node(new ConstNode<signed long long>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(unsigned long long value)
: node(new ConstNode<unsigned long long>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(float value)
: node(new ConstNode<float>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(double value)
: node(new ConstNode<double>(value)) {}
};
/**
* @}
*/
void check();
void dump();
void reset();
void registerResetCallback(Callback *cb);
inline Temp
operator+(Temp l, Temp r)
{
return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
}
inline Temp
operator-(Temp l, Temp r)
{
return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
}
inline Temp
operator*(Temp l, Temp r)
{
return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
}
inline Temp
operator/(Temp l, Temp r)
{
return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
}
inline Temp
operator-(Temp l)
{
return NodePtr(new UnaryNode<std::negate<Result> >(l));
}
template <typename T>
inline Temp
constant(T val)
{
return NodePtr(new ConstNode<T>(val));
}
inline Temp
sum(Temp val)
{
return NodePtr(new SumNode<std::plus<Result> >(val));
}
/* namespace Stats */ }
#endif // __BASE_STATISTICS_HH__