cae6b571d6
into ewok.(none):/home/gblack/m5/newmem --HG-- extra : convert_revision : 3eb97976caf57e43119a998c31128ca6f163c05b
546 lines
14 KiB
C++
546 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2001-2006 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __CPU_CPU_EXEC_CONTEXT_HH__
|
|
#define __CPU_CPU_EXEC_CONTEXT_HH__
|
|
|
|
#include "arch/isa_traits.hh"
|
|
#include "config/full_system.hh"
|
|
#include "cpu/exec_context.hh"
|
|
#include "mem/physical.hh"
|
|
#include "mem/request.hh"
|
|
#include "sim/byteswap.hh"
|
|
#include "sim/eventq.hh"
|
|
#include "sim/host.hh"
|
|
#include "sim/serialize.hh"
|
|
|
|
class BaseCPU;
|
|
|
|
#if FULL_SYSTEM
|
|
|
|
#include "sim/system.hh"
|
|
#include "arch/tlb.hh"
|
|
|
|
class FunctionProfile;
|
|
class ProfileNode;
|
|
class FunctionalPort;
|
|
class PhysicalPort;
|
|
|
|
|
|
#else // !FULL_SYSTEM
|
|
|
|
#include "sim/process.hh"
|
|
#include "mem/page_table.hh"
|
|
class TranslatingPort;
|
|
|
|
|
|
#endif // FULL_SYSTEM
|
|
|
|
//
|
|
// The CPUExecContext object represents a functional context for
|
|
// instruction execution. It incorporates everything required for
|
|
// architecture-level functional simulation of a single thread.
|
|
//
|
|
|
|
class CPUExecContext
|
|
{
|
|
protected:
|
|
typedef TheISA::RegFile RegFile;
|
|
typedef TheISA::MachInst MachInst;
|
|
typedef TheISA::MiscRegFile MiscRegFile;
|
|
typedef TheISA::MiscReg MiscReg;
|
|
typedef TheISA::FloatReg FloatReg;
|
|
typedef TheISA::FloatRegBits FloatRegBits;
|
|
public:
|
|
typedef ExecContext::Status Status;
|
|
|
|
private:
|
|
Status _status;
|
|
|
|
public:
|
|
Status status() const { return _status; }
|
|
|
|
void setStatus(Status newStatus) { _status = newStatus; }
|
|
|
|
/// Set the status to Active. Optional delay indicates number of
|
|
/// cycles to wait before beginning execution.
|
|
void activate(int delay = 1);
|
|
|
|
/// Set the status to Suspended.
|
|
void suspend();
|
|
|
|
/// Set the status to Unallocated.
|
|
void deallocate();
|
|
|
|
/// Set the status to Halted.
|
|
void halt();
|
|
|
|
protected:
|
|
RegFile regs; // correct-path register context
|
|
|
|
public:
|
|
// pointer to CPU associated with this context
|
|
BaseCPU *cpu;
|
|
|
|
ProxyExecContext<CPUExecContext> *proxy;
|
|
|
|
// Current instruction
|
|
MachInst inst;
|
|
|
|
// Index of hardware thread context on the CPU that this represents.
|
|
int thread_num;
|
|
|
|
// ID of this context w.r.t. the System or Process object to which
|
|
// it belongs. For full-system mode, this is the system CPU ID.
|
|
int cpu_id;
|
|
|
|
Tick lastActivate;
|
|
Tick lastSuspend;
|
|
|
|
System *system;
|
|
|
|
|
|
#if FULL_SYSTEM
|
|
AlphaITB *itb;
|
|
AlphaDTB *dtb;
|
|
|
|
/** A functional port outgoing only for functional accesses to physical
|
|
* addresses.*/
|
|
FunctionalPort *physPort;
|
|
|
|
/** A functional port, outgoing only, for functional accesse to virtual
|
|
* addresses. That doen't require execution context information */
|
|
VirtualPort *virtPort;
|
|
|
|
FunctionProfile *profile;
|
|
ProfileNode *profileNode;
|
|
Addr profilePC;
|
|
void dumpFuncProfile();
|
|
|
|
/** Event for timing out quiesce instruction */
|
|
struct EndQuiesceEvent : public Event
|
|
{
|
|
/** A pointer to the execution context that is quiesced */
|
|
CPUExecContext *cpuXC;
|
|
|
|
EndQuiesceEvent(CPUExecContext *_cpuXC);
|
|
|
|
/** Event process to occur at interrupt*/
|
|
virtual void process();
|
|
|
|
/** Event description */
|
|
virtual const char *description();
|
|
};
|
|
EndQuiesceEvent quiesceEvent;
|
|
|
|
Event *getQuiesceEvent() { return &quiesceEvent; }
|
|
|
|
Tick readLastActivate() { return lastActivate; }
|
|
|
|
Tick readLastSuspend() { return lastSuspend; }
|
|
|
|
void profileClear();
|
|
|
|
void profileSample();
|
|
|
|
#else
|
|
/// Port that syscalls can use to access memory (provides translation step).
|
|
TranslatingPort *port;
|
|
|
|
Process *process;
|
|
|
|
// Address space ID. Note that this is used for TIMING cache
|
|
// simulation only; all functional memory accesses should use
|
|
// one of the FunctionalMemory pointers above.
|
|
short asid;
|
|
|
|
#endif
|
|
|
|
/**
|
|
* Temporary storage to pass the source address from copy_load to
|
|
* copy_store.
|
|
* @todo Remove this temporary when we have a better way to do it.
|
|
*/
|
|
Addr copySrcAddr;
|
|
/**
|
|
* Temp storage for the physical source address of a copy.
|
|
* @todo Remove this temporary when we have a better way to do it.
|
|
*/
|
|
Addr copySrcPhysAddr;
|
|
|
|
|
|
/*
|
|
* number of executed instructions, for matching with syscall trace
|
|
* points in EIO files.
|
|
*/
|
|
Counter func_exe_inst;
|
|
|
|
//
|
|
// Count failed store conditionals so we can warn of apparent
|
|
// application deadlock situations.
|
|
unsigned storeCondFailures;
|
|
|
|
// constructor: initialize context from given process structure
|
|
#if FULL_SYSTEM
|
|
CPUExecContext(BaseCPU *_cpu, int _thread_num, System *_system,
|
|
AlphaITB *_itb, AlphaDTB *_dtb);
|
|
#else
|
|
CPUExecContext(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid,
|
|
MemObject *memobj);
|
|
// Constructor to use XC to pass reg file around. Not used for anything
|
|
// else.
|
|
CPUExecContext(RegFile *regFile);
|
|
#endif
|
|
virtual ~CPUExecContext();
|
|
|
|
virtual void takeOverFrom(ExecContext *oldContext);
|
|
|
|
void regStats(const std::string &name);
|
|
|
|
void serialize(std::ostream &os);
|
|
void unserialize(Checkpoint *cp, const std::string §ion);
|
|
|
|
BaseCPU *getCpuPtr() { return cpu; }
|
|
|
|
ExecContext *getProxy() { return proxy; }
|
|
|
|
int getThreadNum() { return thread_num; }
|
|
|
|
#if FULL_SYSTEM
|
|
System *getSystemPtr() { return system; }
|
|
|
|
AlphaITB *getITBPtr() { return itb; }
|
|
|
|
AlphaDTB *getDTBPtr() { return dtb; }
|
|
|
|
int getInstAsid() { return regs.instAsid(); }
|
|
int getDataAsid() { return regs.dataAsid(); }
|
|
|
|
Fault translateInstReq(RequestPtr &req)
|
|
{
|
|
return itb->translate(req, proxy);
|
|
}
|
|
|
|
Fault translateDataReadReq(RequestPtr &req)
|
|
{
|
|
return dtb->translate(req, proxy, false);
|
|
}
|
|
|
|
Fault translateDataWriteReq(RequestPtr &req)
|
|
{
|
|
return dtb->translate(req, proxy, true);
|
|
}
|
|
|
|
FunctionalPort *getPhysPort() { return physPort; }
|
|
|
|
/** Return a virtual port. If no exec context is specified then a static
|
|
* port is returned. Otherwise a port is created and returned. It must be
|
|
* deleted by deleteVirtPort(). */
|
|
VirtualPort *getVirtPort(ExecContext *xc);
|
|
|
|
void delVirtPort(VirtualPort *vp);
|
|
|
|
#else
|
|
TranslatingPort *getMemPort() { return port; }
|
|
|
|
Process *getProcessPtr() { return process; }
|
|
|
|
int getInstAsid() { return asid; }
|
|
int getDataAsid() { return asid; }
|
|
|
|
Fault translateInstReq(RequestPtr &req)
|
|
{
|
|
return process->pTable->translate(req);
|
|
}
|
|
|
|
Fault translateDataReadReq(RequestPtr &req)
|
|
{
|
|
return process->pTable->translate(req);
|
|
}
|
|
|
|
Fault translateDataWriteReq(RequestPtr &req)
|
|
{
|
|
return process->pTable->translate(req);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
template <class T>
|
|
Fault read(RequestPtr &req, T &data)
|
|
{
|
|
#if FULL_SYSTEM && THE_ISA == ALPHA_ISA
|
|
if (req->flags & LOCKED) {
|
|
req->xc->setMiscReg(TheISA::Lock_Addr_DepTag, req->paddr);
|
|
req->xc->setMiscReg(TheISA::Lock_Flag_DepTag, true);
|
|
}
|
|
#endif
|
|
|
|
Fault error;
|
|
error = mem->prot_read(req->paddr, data, req->size);
|
|
data = LittleEndianGuest::gtoh(data);
|
|
return error;
|
|
}
|
|
|
|
template <class T>
|
|
Fault write(RequestPtr &req, T &data)
|
|
{
|
|
#if FULL_SYSTEM && THE_ISA == ALPHA_ISA
|
|
ExecContext *xc;
|
|
|
|
// If this is a store conditional, act appropriately
|
|
if (req->flags & LOCKED) {
|
|
xc = req->xc;
|
|
|
|
if (req->flags & UNCACHEABLE) {
|
|
// Don't update result register (see stq_c in isa_desc)
|
|
req->result = 2;
|
|
xc->setStCondFailures(0);//Needed? [RGD]
|
|
} else {
|
|
bool lock_flag = xc->readMiscReg(TheISA::Lock_Flag_DepTag);
|
|
Addr lock_addr = xc->readMiscReg(TheISA::Lock_Addr_DepTag);
|
|
req->result = lock_flag;
|
|
if (!lock_flag ||
|
|
((lock_addr & ~0xf) != (req->paddr & ~0xf))) {
|
|
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
|
|
xc->setStCondFailures(xc->readStCondFailures() + 1);
|
|
if (((xc->readStCondFailures()) % 100000) == 0) {
|
|
std::cerr << "Warning: "
|
|
<< xc->readStCondFailures()
|
|
<< " consecutive store conditional failures "
|
|
<< "on cpu " << req->xc->readCpuId()
|
|
<< std::endl;
|
|
}
|
|
return NoFault;
|
|
}
|
|
else xc->setStCondFailures(0);
|
|
}
|
|
}
|
|
|
|
// Need to clear any locked flags on other proccessors for
|
|
// this address. Only do this for succsful Store Conditionals
|
|
// and all other stores (WH64?). Unsuccessful Store
|
|
// Conditionals would have returned above, and wouldn't fall
|
|
// through.
|
|
for (int i = 0; i < system->execContexts.size(); i++){
|
|
xc = system->execContexts[i];
|
|
if ((xc->readMiscReg(TheISA::Lock_Addr_DepTag) & ~0xf) ==
|
|
(req->paddr & ~0xf)) {
|
|
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
return mem->prot_write(req->paddr, (T)htog(data), req->size);
|
|
}
|
|
*/
|
|
virtual bool misspeculating();
|
|
|
|
|
|
MachInst getInst() { return inst; }
|
|
|
|
void setInst(MachInst new_inst)
|
|
{
|
|
inst = new_inst;
|
|
}
|
|
|
|
Fault instRead(RequestPtr &req)
|
|
{
|
|
panic("instRead not implemented");
|
|
// return funcPhysMem->read(req, inst);
|
|
return NoFault;
|
|
}
|
|
|
|
void setCpuId(int id) { cpu_id = id; }
|
|
|
|
int readCpuId() { return cpu_id; }
|
|
|
|
void copyArchRegs(ExecContext *xc);
|
|
|
|
//
|
|
// New accessors for new decoder.
|
|
//
|
|
uint64_t readIntReg(int reg_idx)
|
|
{
|
|
return regs.readIntReg(reg_idx);
|
|
}
|
|
|
|
FloatReg readFloatReg(int reg_idx, int width)
|
|
{
|
|
return regs.readFloatReg(reg_idx, width);
|
|
}
|
|
|
|
FloatReg readFloatReg(int reg_idx)
|
|
{
|
|
return regs.readFloatReg(reg_idx);
|
|
}
|
|
|
|
FloatRegBits readFloatRegBits(int reg_idx, int width)
|
|
{
|
|
return regs.readFloatRegBits(reg_idx, width);
|
|
}
|
|
|
|
FloatRegBits readFloatRegBits(int reg_idx)
|
|
{
|
|
return regs.readFloatRegBits(reg_idx);
|
|
}
|
|
|
|
void setIntReg(int reg_idx, uint64_t val)
|
|
{
|
|
regs.setIntReg(reg_idx, val);
|
|
}
|
|
|
|
void setFloatReg(int reg_idx, FloatReg val, int width)
|
|
{
|
|
regs.setFloatReg(reg_idx, val, width);
|
|
}
|
|
|
|
void setFloatReg(int reg_idx, FloatReg val)
|
|
{
|
|
regs.setFloatReg(reg_idx, val);
|
|
}
|
|
|
|
void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
|
|
{
|
|
regs.setFloatRegBits(reg_idx, val, width);
|
|
}
|
|
|
|
void setFloatRegBits(int reg_idx, FloatRegBits val)
|
|
{
|
|
regs.setFloatRegBits(reg_idx, val);
|
|
}
|
|
|
|
uint64_t readPC()
|
|
{
|
|
return regs.readPC();
|
|
}
|
|
|
|
void setPC(uint64_t val)
|
|
{
|
|
regs.setPC(val);
|
|
}
|
|
|
|
uint64_t readNextPC()
|
|
{
|
|
return regs.readNextPC();
|
|
}
|
|
|
|
void setNextPC(uint64_t val)
|
|
{
|
|
regs.setNextPC(val);
|
|
}
|
|
|
|
uint64_t readNextNPC()
|
|
{
|
|
return regs.readNextNPC();
|
|
}
|
|
|
|
void setNextNPC(uint64_t val)
|
|
{
|
|
regs.setNextNPC(val);
|
|
}
|
|
|
|
|
|
MiscReg readMiscReg(int misc_reg)
|
|
{
|
|
return regs.readMiscReg(misc_reg);
|
|
}
|
|
|
|
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
|
|
{
|
|
return regs.readMiscRegWithEffect(misc_reg, fault, proxy);
|
|
}
|
|
|
|
Fault setMiscReg(int misc_reg, const MiscReg &val)
|
|
{
|
|
return regs.setMiscReg(misc_reg, val);
|
|
}
|
|
|
|
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
|
|
{
|
|
return regs.setMiscRegWithEffect(misc_reg, val, proxy);
|
|
}
|
|
|
|
unsigned readStCondFailures() { return storeCondFailures; }
|
|
|
|
void setStCondFailures(unsigned sc_failures)
|
|
{ storeCondFailures = sc_failures; }
|
|
|
|
void clearArchRegs() { regs.clear(); }
|
|
|
|
#if FULL_SYSTEM
|
|
int readIntrFlag() { return regs.intrflag; }
|
|
void setIntrFlag(int val) { regs.intrflag = val; }
|
|
Fault hwrei();
|
|
bool inPalMode() { return AlphaISA::PcPAL(regs.readPC()); }
|
|
bool simPalCheck(int palFunc);
|
|
#endif
|
|
|
|
#if !FULL_SYSTEM
|
|
TheISA::IntReg getSyscallArg(int i)
|
|
{
|
|
return regs.readIntReg(TheISA::ArgumentReg0 + i);
|
|
}
|
|
|
|
// used to shift args for indirect syscall
|
|
void setSyscallArg(int i, TheISA::IntReg val)
|
|
{
|
|
regs.setIntReg(TheISA::ArgumentReg0 + i, val);
|
|
}
|
|
|
|
void setSyscallReturn(SyscallReturn return_value)
|
|
{
|
|
TheISA::setSyscallReturn(return_value, ®s);
|
|
}
|
|
|
|
void syscall(int64_t callnum)
|
|
{
|
|
process->syscall(callnum, proxy);
|
|
}
|
|
|
|
Counter readFuncExeInst() { return func_exe_inst; }
|
|
|
|
void setFuncExeInst(Counter new_val) { func_exe_inst = new_val; }
|
|
#endif
|
|
|
|
void changeRegFileContext(RegFile::ContextParam param,
|
|
RegFile::ContextVal val)
|
|
{
|
|
regs.changeContext(param, val);
|
|
}
|
|
};
|
|
|
|
|
|
// for non-speculative execution context, spec_mode is always false
|
|
inline bool
|
|
CPUExecContext::misspeculating()
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif // __CPU_CPU_EXEC_CONTEXT_HH__
|