f3358e5f7b
cpu/o3/2bit_local_pred.cc: cpu/o3/2bit_local_pred.hh: cpu/o3/bpred_unit.hh: cpu/o3/bpred_unit_impl.hh: cpu/o3/btb.cc: cpu/o3/btb.hh: cpu/o3/commit.hh: cpu/o3/commit_impl.hh: cpu/o3/cpu.cc: cpu/o3/cpu.hh: cpu/o3/decode.hh: cpu/o3/decode_impl.hh: cpu/o3/fetch.hh: cpu/o3/fetch_impl.hh: cpu/o3/fu_pool.cc: cpu/o3/fu_pool.hh: cpu/o3/iew.hh: cpu/o3/iew_impl.hh: cpu/o3/inst_queue.hh: cpu/o3/inst_queue_impl.hh: cpu/o3/lsq.hh: cpu/o3/lsq_impl.hh: cpu/o3/lsq_unit.hh: cpu/o3/lsq_unit_impl.hh: cpu/o3/mem_dep_unit.hh: cpu/o3/mem_dep_unit_impl.hh: cpu/o3/ras.cc: cpu/o3/ras.hh: cpu/o3/rename.hh: cpu/o3/rename_impl.hh: cpu/o3/rob.hh: cpu/o3/rob_impl.hh: cpu/o3/sat_counter.cc: cpu/o3/sat_counter.hh: cpu/o3/thread_state.hh: Handle switching out and taking over. Needs to be able to reset all state. cpu/o3/alpha_cpu_impl.hh: Handle taking over from another XC. --HG-- extra : convert_revision : b936e826f0f8a18319bfa940ff35097b4192b449
740 lines
24 KiB
C++
740 lines
24 KiB
C++
/*
|
|
* Copyright (c) 2004-2005 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __CPU_O3_LSQ_UNIT_HH__
|
|
#define __CPU_O3_LSQ_UNIT_HH__
|
|
|
|
#include <map>
|
|
#include <queue>
|
|
#include <algorithm>
|
|
|
|
#include "config/full_system.hh"
|
|
#include "base/hashmap.hh"
|
|
#include "cpu/inst_seq.hh"
|
|
#include "mem/mem_interface.hh"
|
|
//#include "mem/page_table.hh"
|
|
#include "sim/debug.hh"
|
|
#include "sim/sim_object.hh"
|
|
#include "arch/faults.hh"
|
|
|
|
/**
|
|
* Class that implements the actual LQ and SQ for each specific thread.
|
|
* Both are circular queues; load entries are freed upon committing, while
|
|
* store entries are freed once they writeback. The LSQUnit tracks if there
|
|
* are memory ordering violations, and also detects partial load to store
|
|
* forwarding cases (a store only has part of a load's data) that requires
|
|
* the load to wait until the store writes back. In the former case it
|
|
* holds onto the instruction until the dependence unit looks at it, and
|
|
* in the latter it stalls the LSQ until the store writes back. At that
|
|
* point the load is replayed.
|
|
*/
|
|
template <class Impl>
|
|
class LSQUnit {
|
|
protected:
|
|
typedef TheISA::IntReg IntReg;
|
|
public:
|
|
typedef typename Impl::Params Params;
|
|
typedef typename Impl::FullCPU FullCPU;
|
|
typedef typename Impl::DynInstPtr DynInstPtr;
|
|
typedef typename Impl::CPUPol::IEW IEW;
|
|
typedef typename Impl::CPUPol::IssueStruct IssueStruct;
|
|
|
|
private:
|
|
class StoreCompletionEvent : public Event {
|
|
public:
|
|
/** Constructs a store completion event. */
|
|
StoreCompletionEvent(int store_idx, Event *wb_event, LSQUnit *lsq_ptr);
|
|
|
|
/** Processes the store completion event. */
|
|
void process();
|
|
|
|
/** Returns the description of this event. */
|
|
const char *description();
|
|
|
|
private:
|
|
/** The store index of the store being written back. */
|
|
int storeIdx;
|
|
/** The writeback event for the store. Needed for store
|
|
* conditionals.
|
|
*/
|
|
Event *wbEvent;
|
|
/** The pointer to the LSQ unit that issued the store. */
|
|
LSQUnit<Impl> *lsqPtr;
|
|
};
|
|
|
|
friend class StoreCompletionEvent;
|
|
|
|
public:
|
|
/** Constructs an LSQ unit. init() must be called prior to use. */
|
|
LSQUnit();
|
|
|
|
/** Initializes the LSQ unit with the specified number of entries. */
|
|
void init(Params *params, unsigned maxLQEntries,
|
|
unsigned maxSQEntries, unsigned id);
|
|
|
|
/** Returns the name of the LSQ unit. */
|
|
std::string name() const;
|
|
|
|
/** Sets the CPU pointer. */
|
|
void setCPU(FullCPU *cpu_ptr)
|
|
{ cpu = cpu_ptr; }
|
|
|
|
/** Sets the IEW stage pointer. */
|
|
void setIEW(IEW *iew_ptr)
|
|
{ iewStage = iew_ptr; }
|
|
|
|
/** Sets the page table pointer. */
|
|
// void setPageTable(PageTable *pt_ptr);
|
|
|
|
void switchOut();
|
|
|
|
void takeOverFrom();
|
|
|
|
bool isSwitchedOut() { return switchedOut; }
|
|
|
|
/** Ticks the LSQ unit, which in this case only resets the number of
|
|
* used cache ports.
|
|
* @todo: Move the number of used ports up to the LSQ level so it can
|
|
* be shared by all LSQ units.
|
|
*/
|
|
void tick() { usedPorts = 0; }
|
|
|
|
/** Inserts an instruction. */
|
|
void insert(DynInstPtr &inst);
|
|
/** Inserts a load instruction. */
|
|
void insertLoad(DynInstPtr &load_inst);
|
|
/** Inserts a store instruction. */
|
|
void insertStore(DynInstPtr &store_inst);
|
|
|
|
/** Executes a load instruction. */
|
|
Fault executeLoad(DynInstPtr &inst);
|
|
|
|
Fault executeLoad(int lq_idx);
|
|
/** Executes a store instruction. */
|
|
Fault executeStore(DynInstPtr &inst);
|
|
|
|
/** Commits the head load. */
|
|
void commitLoad();
|
|
/** Commits a specific load, given by the sequence number. */
|
|
void commitLoad(InstSeqNum &inst);
|
|
/** Commits loads older than a specific sequence number. */
|
|
void commitLoads(InstSeqNum &youngest_inst);
|
|
|
|
/** Commits stores older than a specific sequence number. */
|
|
void commitStores(InstSeqNum &youngest_inst);
|
|
|
|
/** Writes back stores. */
|
|
void writebackStores();
|
|
|
|
// @todo: Include stats in the LSQ unit.
|
|
//void regStats();
|
|
|
|
/** Clears all the entries in the LQ. */
|
|
void clearLQ();
|
|
|
|
/** Clears all the entries in the SQ. */
|
|
void clearSQ();
|
|
|
|
/** Resizes the LQ to a given size. */
|
|
void resizeLQ(unsigned size);
|
|
|
|
/** Resizes the SQ to a given size. */
|
|
void resizeSQ(unsigned size);
|
|
|
|
/** Squashes all instructions younger than a specific sequence number. */
|
|
void squash(const InstSeqNum &squashed_num);
|
|
|
|
/** Returns if there is a memory ordering violation. Value is reset upon
|
|
* call to getMemDepViolator().
|
|
*/
|
|
bool violation() { return memDepViolator; }
|
|
|
|
/** Returns the memory ordering violator. */
|
|
DynInstPtr getMemDepViolator();
|
|
|
|
/** Returns if a load became blocked due to the memory system. It clears
|
|
* the bool's value upon this being called.
|
|
*/
|
|
bool loadBlocked()
|
|
{ return isLoadBlocked; }
|
|
|
|
void clearLoadBlocked()
|
|
{ isLoadBlocked = false; }
|
|
|
|
bool isLoadBlockedHandled()
|
|
{ return loadBlockedHandled; }
|
|
|
|
void setLoadBlockedHandled()
|
|
{ loadBlockedHandled = true; }
|
|
|
|
/** Returns the number of free entries (min of free LQ and SQ entries). */
|
|
unsigned numFreeEntries();
|
|
|
|
/** Returns the number of loads ready to execute. */
|
|
int numLoadsReady();
|
|
|
|
/** Returns the number of loads in the LQ. */
|
|
int numLoads() { return loads; }
|
|
|
|
/** Returns the number of stores in the SQ. */
|
|
int numStores() { return stores; }
|
|
|
|
/** Returns if either the LQ or SQ is full. */
|
|
bool isFull() { return lqFull() || sqFull(); }
|
|
|
|
/** Returns if the LQ is full. */
|
|
bool lqFull() { return loads >= (LQEntries - 1); }
|
|
|
|
/** Returns if the SQ is full. */
|
|
bool sqFull() { return stores >= (SQEntries - 1); }
|
|
|
|
/** Debugging function to dump instructions in the LSQ. */
|
|
void dumpInsts();
|
|
|
|
/** Returns the number of instructions in the LSQ. */
|
|
unsigned getCount() { return loads + stores; }
|
|
|
|
/** Returns if there are any stores to writeback. */
|
|
bool hasStoresToWB() { return storesToWB; }
|
|
|
|
/** Returns the number of stores to writeback. */
|
|
int numStoresToWB() { return storesToWB; }
|
|
|
|
/** Returns if the LSQ unit will writeback on this cycle. */
|
|
bool willWB() { return storeQueue[storeWBIdx].canWB &&
|
|
!storeQueue[storeWBIdx].completed &&
|
|
!dcacheInterface->isBlocked(); }
|
|
|
|
private:
|
|
/** Completes the store at the specified index. */
|
|
void completeStore(int store_idx);
|
|
|
|
/** Increments the given store index (circular queue). */
|
|
inline void incrStIdx(int &store_idx);
|
|
/** Decrements the given store index (circular queue). */
|
|
inline void decrStIdx(int &store_idx);
|
|
/** Increments the given load index (circular queue). */
|
|
inline void incrLdIdx(int &load_idx);
|
|
/** Decrements the given load index (circular queue). */
|
|
inline void decrLdIdx(int &load_idx);
|
|
|
|
private:
|
|
/** Pointer to the CPU. */
|
|
FullCPU *cpu;
|
|
|
|
/** Pointer to the IEW stage. */
|
|
IEW *iewStage;
|
|
|
|
/** Pointer to the D-cache. */
|
|
MemInterface *dcacheInterface;
|
|
|
|
/** Pointer to the page table. */
|
|
// PageTable *pTable;
|
|
|
|
public:
|
|
struct SQEntry {
|
|
/** Constructs an empty store queue entry. */
|
|
SQEntry()
|
|
: inst(NULL), req(NULL), size(0), data(0),
|
|
canWB(0), committed(0), completed(0)
|
|
{ }
|
|
|
|
/** Constructs a store queue entry for a given instruction. */
|
|
SQEntry(DynInstPtr &_inst)
|
|
: inst(_inst), req(NULL), size(0), data(0),
|
|
canWB(0), committed(0), completed(0)
|
|
{ }
|
|
|
|
/** The store instruction. */
|
|
DynInstPtr inst;
|
|
/** The memory request for the store. */
|
|
MemReqPtr req;
|
|
/** The size of the store. */
|
|
int size;
|
|
/** The store data. */
|
|
IntReg data;
|
|
/** Whether or not the store can writeback. */
|
|
bool canWB;
|
|
/** Whether or not the store is committed. */
|
|
bool committed;
|
|
/** Whether or not the store is completed. */
|
|
bool completed;
|
|
};
|
|
/*
|
|
enum Status {
|
|
Running,
|
|
Idle,
|
|
DcacheMissStall,
|
|
DcacheMissSwitch
|
|
};
|
|
*/
|
|
private:
|
|
/** The LSQUnit thread id. */
|
|
unsigned lsqID;
|
|
|
|
/** The status of the LSQ unit. */
|
|
// Status _status;
|
|
|
|
/** The store queue. */
|
|
std::vector<SQEntry> storeQueue;
|
|
|
|
/** The load queue. */
|
|
std::vector<DynInstPtr> loadQueue;
|
|
|
|
// Consider making these 16 bits
|
|
/** The number of LQ entries. */
|
|
unsigned LQEntries;
|
|
/** The number of SQ entries. */
|
|
unsigned SQEntries;
|
|
|
|
/** The number of load instructions in the LQ. */
|
|
int loads;
|
|
/** The number of store instructions in the SQ (excludes those waiting to
|
|
* writeback).
|
|
*/
|
|
int stores;
|
|
/** The number of store instructions in the SQ waiting to writeback. */
|
|
int storesToWB;
|
|
|
|
/** The index of the head instruction in the LQ. */
|
|
int loadHead;
|
|
/** The index of the tail instruction in the LQ. */
|
|
int loadTail;
|
|
|
|
/** The index of the head instruction in the SQ. */
|
|
int storeHead;
|
|
/** The index of the first instruction that is ready to be written back,
|
|
* and has not yet been written back.
|
|
*/
|
|
int storeWBIdx;
|
|
/** The index of the tail instruction in the SQ. */
|
|
int storeTail;
|
|
|
|
/// @todo Consider moving to a more advanced model with write vs read ports
|
|
/** The number of cache ports available each cycle. */
|
|
int cachePorts;
|
|
|
|
/** The number of used cache ports in this cycle. */
|
|
int usedPorts;
|
|
|
|
bool switchedOut;
|
|
|
|
//list<InstSeqNum> mshrSeqNums;
|
|
|
|
//Stats::Scalar<> dcacheStallCycles;
|
|
Counter lastDcacheStall;
|
|
|
|
/** Wire to read information from the issue stage time queue. */
|
|
typename TimeBuffer<IssueStruct>::wire fromIssue;
|
|
|
|
// Make these per thread?
|
|
/** Whether or not the LSQ is stalled. */
|
|
bool stalled;
|
|
/** The store that causes the stall due to partial store to load
|
|
* forwarding.
|
|
*/
|
|
InstSeqNum stallingStoreIsn;
|
|
/** The index of the above store. */
|
|
int stallingLoadIdx;
|
|
|
|
/** Whether or not a load is blocked due to the memory system. It is
|
|
* cleared when this value is checked via loadBlocked().
|
|
*/
|
|
bool isLoadBlocked;
|
|
|
|
bool loadBlockedHandled;
|
|
|
|
InstSeqNum blockedLoadSeqNum;
|
|
|
|
/** The oldest faulting load instruction. */
|
|
DynInstPtr loadFaultInst;
|
|
/** The oldest faulting store instruction. */
|
|
DynInstPtr storeFaultInst;
|
|
|
|
/** The oldest load that caused a memory ordering violation. */
|
|
DynInstPtr memDepViolator;
|
|
|
|
// Will also need how many read/write ports the Dcache has. Or keep track
|
|
// of that in stage that is one level up, and only call executeLoad/Store
|
|
// the appropriate number of times.
|
|
/*
|
|
// total number of loads forwaded from LSQ stores
|
|
Stats::Vector<> lsq_forw_loads;
|
|
|
|
// total number of loads ignored due to invalid addresses
|
|
Stats::Vector<> inv_addr_loads;
|
|
|
|
// total number of software prefetches ignored due to invalid addresses
|
|
Stats::Vector<> inv_addr_swpfs;
|
|
|
|
// total non-speculative bogus addresses seen (debug var)
|
|
Counter sim_invalid_addrs;
|
|
Stats::Vector<> fu_busy; //cumulative fu busy
|
|
|
|
// ready loads blocked due to memory disambiguation
|
|
Stats::Vector<> lsq_blocked_loads;
|
|
|
|
Stats::Scalar<> lsqInversion;
|
|
*/
|
|
public:
|
|
/** Executes the load at the given index. */
|
|
template <class T>
|
|
Fault read(MemReqPtr &req, T &data, int load_idx);
|
|
|
|
/** Executes the store at the given index. */
|
|
template <class T>
|
|
Fault write(MemReqPtr &req, T &data, int store_idx);
|
|
|
|
/** Returns the index of the head load instruction. */
|
|
int getLoadHead() { return loadHead; }
|
|
/** Returns the sequence number of the head load instruction. */
|
|
InstSeqNum getLoadHeadSeqNum()
|
|
{
|
|
if (loadQueue[loadHead]) {
|
|
return loadQueue[loadHead]->seqNum;
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
|
|
/** Returns the index of the head store instruction. */
|
|
int getStoreHead() { return storeHead; }
|
|
/** Returns the sequence number of the head store instruction. */
|
|
InstSeqNum getStoreHeadSeqNum()
|
|
{
|
|
if (storeQueue[storeHead].inst) {
|
|
return storeQueue[storeHead].inst->seqNum;
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
|
|
/** Returns whether or not the LSQ unit is stalled. */
|
|
bool isStalled() { return stalled; }
|
|
};
|
|
|
|
template <class Impl>
|
|
template <class T>
|
|
Fault
|
|
LSQUnit<Impl>::read(MemReqPtr &req, T &data, int load_idx)
|
|
{
|
|
//Depending on issue2execute delay a squashed load could
|
|
//execute if it is found to be squashed in the same
|
|
//cycle it is scheduled to execute
|
|
assert(loadQueue[load_idx]);
|
|
|
|
if (loadQueue[load_idx]->isExecuted()) {
|
|
panic("Should not reach this point with split ops!");
|
|
memcpy(&data,req->data,req->size);
|
|
|
|
return NoFault;
|
|
}
|
|
|
|
// Make sure this isn't an uncacheable access
|
|
// A bit of a hackish way to get uncached accesses to work only if they're
|
|
// at the head of the LSQ and are ready to commit (at the head of the ROB
|
|
// too).
|
|
// @todo: Fix uncached accesses.
|
|
if (req->flags & UNCACHEABLE &&
|
|
(load_idx != loadHead || !loadQueue[load_idx]->reachedCommit)) {
|
|
iewStage->rescheduleMemInst(loadQueue[load_idx]);
|
|
return TheISA::genMachineCheckFault();
|
|
}
|
|
|
|
// Check the SQ for any previous stores that might lead to forwarding
|
|
int store_idx = loadQueue[load_idx]->sqIdx;
|
|
|
|
int store_size = 0;
|
|
|
|
DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
|
|
"storeHead: %i addr: %#x\n",
|
|
load_idx, store_idx, storeHead, req->paddr);
|
|
|
|
#ifdef FULL_SYSTEM
|
|
if (req->flags & LOCKED) {
|
|
cpu->lockAddr = req->paddr;
|
|
cpu->lockFlag = true;
|
|
}
|
|
#endif
|
|
|
|
while (store_idx != -1) {
|
|
// End once we've reached the top of the LSQ
|
|
if (store_idx == storeWBIdx) {
|
|
break;
|
|
}
|
|
|
|
// Move the index to one younger
|
|
if (--store_idx < 0)
|
|
store_idx += SQEntries;
|
|
|
|
assert(storeQueue[store_idx].inst);
|
|
|
|
store_size = storeQueue[store_idx].size;
|
|
|
|
if (store_size == 0)
|
|
continue;
|
|
|
|
// Check if the store data is within the lower and upper bounds of
|
|
// addresses that the request needs.
|
|
bool store_has_lower_limit =
|
|
req->vaddr >= storeQueue[store_idx].inst->effAddr;
|
|
bool store_has_upper_limit =
|
|
(req->vaddr + req->size) <= (storeQueue[store_idx].inst->effAddr +
|
|
store_size);
|
|
bool lower_load_has_store_part =
|
|
req->vaddr < (storeQueue[store_idx].inst->effAddr +
|
|
store_size);
|
|
bool upper_load_has_store_part =
|
|
(req->vaddr + req->size) > storeQueue[store_idx].inst->effAddr;
|
|
|
|
// If the store's data has all of the data needed, we can forward.
|
|
if (store_has_lower_limit && store_has_upper_limit) {
|
|
|
|
int shift_amt = req->vaddr & (store_size - 1);
|
|
// Assumes byte addressing
|
|
shift_amt = shift_amt << 3;
|
|
|
|
// Cast this to type T?
|
|
data = storeQueue[store_idx].data >> shift_amt;
|
|
|
|
req->cmd = Read;
|
|
assert(!req->completionEvent);
|
|
req->completionEvent = NULL;
|
|
req->time = curTick;
|
|
assert(!req->data);
|
|
req->data = new uint8_t[64];
|
|
|
|
memcpy(req->data, &data, req->size);
|
|
|
|
DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
|
|
"addr %#x, data %#x\n",
|
|
store_idx, req->vaddr, *(req->data));
|
|
|
|
typename IEW::LdWritebackEvent *wb =
|
|
new typename IEW::LdWritebackEvent(loadQueue[load_idx],
|
|
iewStage);
|
|
|
|
// We'll say this has a 1 cycle load-store forwarding latency
|
|
// for now.
|
|
// @todo: Need to make this a parameter.
|
|
wb->schedule(curTick);
|
|
|
|
// Should keep track of stat for forwarded data
|
|
return NoFault;
|
|
} else if ((store_has_lower_limit && lower_load_has_store_part) ||
|
|
(store_has_upper_limit && upper_load_has_store_part) ||
|
|
(lower_load_has_store_part && upper_load_has_store_part)) {
|
|
// This is the partial store-load forwarding case where a store
|
|
// has only part of the load's data.
|
|
|
|
// If it's already been written back, then don't worry about
|
|
// stalling on it.
|
|
if (storeQueue[store_idx].completed) {
|
|
continue;
|
|
}
|
|
|
|
// Must stall load and force it to retry, so long as it's the oldest
|
|
// load that needs to do so.
|
|
if (!stalled ||
|
|
(stalled &&
|
|
loadQueue[load_idx]->seqNum <
|
|
loadQueue[stallingLoadIdx]->seqNum)) {
|
|
stalled = true;
|
|
stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
|
|
stallingLoadIdx = load_idx;
|
|
}
|
|
|
|
// Tell IQ/mem dep unit that this instruction will need to be
|
|
// rescheduled eventually
|
|
iewStage->rescheduleMemInst(loadQueue[load_idx]);
|
|
|
|
// Do not generate a writeback event as this instruction is not
|
|
// complete.
|
|
|
|
DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
|
|
"Store idx %i to load addr %#x\n",
|
|
store_idx, req->vaddr);
|
|
|
|
return NoFault;
|
|
}
|
|
}
|
|
|
|
|
|
// If there's no forwarding case, then go access memory
|
|
DynInstPtr inst = loadQueue[load_idx];
|
|
|
|
DPRINTF(LSQUnit, "Doing functional access for inst PC %#x\n",
|
|
loadQueue[load_idx]->readPC());
|
|
assert(!req->data);
|
|
req->cmd = Read;
|
|
req->completionEvent = NULL;
|
|
req->time = curTick;
|
|
req->data = new uint8_t[64];
|
|
Fault fault = cpu->read(req, data);
|
|
memcpy(req->data, &data, sizeof(T));
|
|
|
|
++usedPorts;
|
|
|
|
// if we have a cache, do cache access too
|
|
if (fault == NoFault && dcacheInterface) {
|
|
if (dcacheInterface->isBlocked()) {
|
|
// There's an older load that's already going to squash.
|
|
if (isLoadBlocked && blockedLoadSeqNum < inst->seqNum)
|
|
return NoFault;
|
|
|
|
isLoadBlocked = true;
|
|
loadBlockedHandled = false;
|
|
blockedLoadSeqNum = inst->seqNum;
|
|
// No fault occurred, even though the interface is blocked.
|
|
return NoFault;
|
|
}
|
|
DPRINTF(LSQUnit, "Doing timing access for inst PC %#x\n",
|
|
loadQueue[load_idx]->readPC());
|
|
/*
|
|
Addr debug_addr = ULL(0xfffffc0000be81a8);
|
|
if (req->vaddr == debug_addr) {
|
|
debug_break();
|
|
}
|
|
*/
|
|
assert(!req->completionEvent);
|
|
req->completionEvent =
|
|
new typename IEW::LdWritebackEvent(loadQueue[load_idx], iewStage);
|
|
MemAccessResult result = dcacheInterface->access(req);
|
|
|
|
assert(dcacheInterface->doEvents());
|
|
|
|
// Ugly hack to get an event scheduled *only* if the access is
|
|
// a miss. We really should add first-class support for this
|
|
// at some point.
|
|
if (result != MA_HIT) {
|
|
DPRINTF(LSQUnit, "LSQUnit: D-cache miss!\n");
|
|
DPRINTF(Activity, "Activity: ld accessing mem miss [sn:%lli]\n",
|
|
inst->seqNum);
|
|
|
|
lastDcacheStall = curTick;
|
|
|
|
// _status = DcacheMissStall;
|
|
|
|
} else {
|
|
DPRINTF(Activity, "Activity: ld accessing mem hit [sn:%lli]\n",
|
|
inst->seqNum);
|
|
|
|
DPRINTF(LSQUnit, "LSQUnit: D-cache hit!\n");
|
|
}
|
|
}
|
|
#if 0
|
|
// if we have a cache, do cache access too
|
|
if (dcacheInterface) {
|
|
if (dcacheInterface->isBlocked()) {
|
|
isLoadBlocked = true;
|
|
// No fault occurred, even though the interface is blocked.
|
|
return NoFault;
|
|
}
|
|
|
|
DPRINTF(LSQUnit, "LSQUnit: D-cache: PC:%#x reading from paddr:%#x "
|
|
"vaddr:%#x flags:%i\n",
|
|
inst->readPC(), req->paddr, req->vaddr, req->flags);
|
|
|
|
// Setup MemReq pointer
|
|
req->cmd = Read;
|
|
req->completionEvent = NULL;
|
|
req->time = curTick;
|
|
assert(!req->data);
|
|
req->data = new uint8_t[64];
|
|
|
|
assert(!req->completionEvent);
|
|
req->completionEvent =
|
|
new typename IEW::LdWritebackEvent(loadQueue[load_idx], iewStage);
|
|
|
|
// Do Cache Access
|
|
MemAccessResult result = dcacheInterface->access(req);
|
|
|
|
// Ugly hack to get an event scheduled *only* if the access is
|
|
// a miss. We really should add first-class support for this
|
|
// at some point.
|
|
// @todo: Probably should support having no events
|
|
if (result != MA_HIT) {
|
|
DPRINTF(LSQUnit, "LSQUnit: D-cache miss!\n");
|
|
DPRINTF(Activity, "Activity: ld accessing mem miss [sn:%lli]\n",
|
|
inst->seqNum);
|
|
|
|
lastDcacheStall = curTick;
|
|
|
|
_status = DcacheMissStall;
|
|
|
|
} else {
|
|
DPRINTF(Activity, "Activity: ld accessing mem hit [sn:%lli]\n",
|
|
inst->seqNum);
|
|
|
|
DPRINTF(LSQUnit, "LSQUnit: D-cache hit!\n");
|
|
}
|
|
} else {
|
|
fatal("Must use D-cache with new memory system");
|
|
}
|
|
#endif
|
|
|
|
return fault;
|
|
}
|
|
|
|
template <class Impl>
|
|
template <class T>
|
|
Fault
|
|
LSQUnit<Impl>::write(MemReqPtr &req, T &data, int store_idx)
|
|
{
|
|
assert(storeQueue[store_idx].inst);
|
|
|
|
DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
|
|
" | storeHead:%i [sn:%i]\n",
|
|
store_idx, req->paddr, data, storeHead,
|
|
storeQueue[store_idx].inst->seqNum);
|
|
/*
|
|
if (req->flags & LOCKED) {
|
|
if (req->flags & UNCACHEABLE) {
|
|
req->result = 2;
|
|
} else {
|
|
req->result = 1;
|
|
}
|
|
}
|
|
*/
|
|
storeQueue[store_idx].req = req;
|
|
storeQueue[store_idx].size = sizeof(T);
|
|
storeQueue[store_idx].data = data;
|
|
/*
|
|
Addr debug_addr = ULL(0xfffffc0000be81a8);
|
|
if (req->vaddr == debug_addr) {
|
|
debug_break();
|
|
}
|
|
*/
|
|
// This function only writes the data to the store queue, so no fault
|
|
// can happen here.
|
|
return NoFault;
|
|
}
|
|
|
|
#endif // __CPU_O3_LSQ_UNIT_HH__
|