gem5/src/cpu/minor/scoreboard.cc
Andrew Bardsley 0e8a90f06b cpu: `Minor' in-order CPU model
This patch contains a new CPU model named `Minor'. Minor models a four
stage in-order execution pipeline (fetch lines, decompose into
macroops, decompose macroops into microops, execute).

The model was developed to support the ARM ISA but should be fixable
to support all the remaining gem5 ISAs. It currently also works for
Alpha, and regressions are included for ARM and Alpha (including Linux
boot).

Documentation for the model can be found in src/doc/inside-minor.doxygen and
its internal operations can be visualised using the Minorview tool
utils/minorview.py.

Minor was designed to be fairly simple and not to engage in a lot of
instruction annotation. As such, it currently has very few gathered
stats and may lack other gem5 features.

Minor is faster than the o3 model. Sample results:

     Benchmark     |   Stat host_seconds (s)
    ---------------+--------v--------v--------
     (on ARM, opt) | simple | o3     | minor
                   | timing | timing | timing
    ---------------+--------+--------+--------
    10.linux-boot  |   169  |  1883  |  1075
    10.mcf         |   117  |   967  |   491
    20.parser      |   668  |  6315  |  3146
    30.eon         |   542  |  3413  |  2414
    40.perlbmk     |  2339  | 20905  | 11532
    50.vortex      |   122  |  1094  |   588
    60.bzip2       |  2045  | 18061  |  9662
    70.twolf       |   207  |  2736  |  1036
2014-07-23 16:09:04 -05:00

324 lines
10 KiB
C++

/*
* Copyright (c) 2013-2014 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Andrew Bardsley
*/
#include "arch/registers.hh"
#include "cpu/minor/scoreboard.hh"
#include "cpu/reg_class.hh"
#include "debug/MinorScoreboard.hh"
#include "debug/MinorTiming.hh"
namespace Minor
{
bool
Scoreboard::findIndex(RegIndex reg, Index &scoreboard_index)
{
RegClass reg_class = regIdxToClass(reg);
bool ret = false;
if (reg == TheISA::ZeroReg) {
/* Don't bother with the zero register */
ret = false;
} else {
switch (reg_class)
{
case IntRegClass:
scoreboard_index = reg;
ret = true;
break;
case FloatRegClass:
scoreboard_index = TheISA::NumIntRegs + TheISA::NumCCRegs +
reg - TheISA::FP_Reg_Base;
ret = true;
break;
case CCRegClass:
scoreboard_index = TheISA::NumIntRegs + reg - TheISA::FP_Reg_Base;
ret = true;
break;
case MiscRegClass:
/* Don't bother with Misc registers */
ret = false;
break;
}
}
return ret;
}
/** Flatten a RegIndex, irrespective of what reg type it's pointing to */
static TheISA::RegIndex
flattenRegIndex(TheISA::RegIndex reg, ThreadContext *thread_context)
{
RegClass reg_class = regIdxToClass(reg);
TheISA::RegIndex ret = reg;
switch (reg_class)
{
case IntRegClass:
ret = thread_context->flattenIntIndex(reg);
break;
case FloatRegClass:
ret = thread_context->flattenFloatIndex(reg);
break;
case CCRegClass:
ret = thread_context->flattenCCIndex(reg);
break;
case MiscRegClass:
/* Don't bother to flatten misc regs as we don't need them here */
/* return thread_context->flattenMiscIndex(reg); */
ret = reg;
break;
}
return ret;
}
void
Scoreboard::markupInstDests(MinorDynInstPtr inst, Cycles retire_time,
ThreadContext *thread_context, bool mark_unpredictable)
{
if (inst->isFault())
return;
StaticInstPtr staticInst = inst->staticInst;
unsigned int num_dests = staticInst->numDestRegs();
/** Mark each destination register */
for (unsigned int dest_index = 0; dest_index < num_dests;
dest_index++)
{
RegIndex reg = flattenRegIndex(
staticInst->destRegIdx(dest_index), thread_context);
Index index;
if (findIndex(reg, index)) {
if (mark_unpredictable)
numUnpredictableResults[index]++;
inst->flatDestRegIdx[dest_index] = reg;
numResults[index]++;
returnCycle[index] = retire_time;
/* We should be able to rely on only being given accending
* execSeqNums, but sanity check */
if (inst->id.execSeqNum > writingInst[index]) {
writingInst[index] = inst->id.execSeqNum;
fuIndices[index] = inst->fuIndex;
}
DPRINTF(MinorScoreboard, "Marking up inst: %s"
" regIndex: %d final numResults: %d returnCycle: %d\n",
*inst, index, numResults[index], returnCycle[index]);
} else {
/* Use ZeroReg to mark invalid/untracked dests */
inst->flatDestRegIdx[dest_index] = TheISA::ZeroReg;
}
}
}
InstSeqNum
Scoreboard::execSeqNumToWaitFor(MinorDynInstPtr inst,
ThreadContext *thread_context)
{
InstSeqNum ret = 0;
if (inst->isFault())
return ret;
StaticInstPtr staticInst = inst->staticInst;
unsigned int num_srcs = staticInst->numSrcRegs();
for (unsigned int src_index = 0; src_index < num_srcs; src_index++) {
RegIndex reg = flattenRegIndex(staticInst->srcRegIdx(src_index),
thread_context);
unsigned short int index;
if (findIndex(reg, index)) {
if (writingInst[index] > ret)
ret = writingInst[index];
}
}
DPRINTF(MinorScoreboard, "Inst: %s depends on execSeqNum: %d\n",
*inst, ret);
return ret;
}
void
Scoreboard::clearInstDests(MinorDynInstPtr inst, bool clear_unpredictable)
{
if (inst->isFault())
return;
StaticInstPtr staticInst = inst->staticInst;
unsigned int num_dests = staticInst->numDestRegs();
/** Mark each destination register */
for (unsigned int dest_index = 0; dest_index < num_dests;
dest_index++)
{
RegIndex reg = inst->flatDestRegIdx[dest_index];
Index index;
if (findIndex(reg, index)) {
if (clear_unpredictable && numUnpredictableResults[index] != 0)
numUnpredictableResults[index] --;
numResults[index] --;
if (numResults[index] == 0) {
returnCycle[index] = Cycles(0);
writingInst[index] = 0;
fuIndices[index] = -1;
}
DPRINTF(MinorScoreboard, "Clearing inst: %s"
" regIndex: %d final numResults: %d\n",
*inst, index, numResults[index]);
}
}
}
bool
Scoreboard::canInstIssue(MinorDynInstPtr inst,
const std::vector<Cycles> *src_reg_relative_latencies,
const std::vector<bool> *cant_forward_from_fu_indices,
Cycles now, ThreadContext *thread_context)
{
/* Always allow fault to be issued */
if (inst->isFault())
return true;
StaticInstPtr staticInst = inst->staticInst;
unsigned int num_srcs = staticInst->numSrcRegs();
/* Default to saying you can issue */
bool ret = true;
unsigned int num_relative_latencies = 0;
Cycles default_relative_latency = Cycles(0);
/* Where relative latencies are given, the default is the last
* one as that allows the rel. lat. list to be shorted than the
* number of src. regs */
if (src_reg_relative_latencies &&
src_reg_relative_latencies->size() != 0)
{
num_relative_latencies = src_reg_relative_latencies->size();
default_relative_latency = (*src_reg_relative_latencies)
[num_relative_latencies-1];
}
/* For each source register, find the latest result */
unsigned int src_index = 0;
while (src_index < num_srcs && /* More registers */
ret /* Still possible */)
{
RegIndex reg = flattenRegIndex(staticInst->srcRegIdx(src_index),
thread_context);
unsigned short int index;
if (findIndex(reg, index)) {
bool cant_forward = fuIndices[index] != 1 &&
cant_forward_from_fu_indices &&
index < cant_forward_from_fu_indices->size() &&
(*cant_forward_from_fu_indices)[index];
Cycles relative_latency = (cant_forward ? Cycles(0) :
(src_index >= num_relative_latencies ?
default_relative_latency :
(*src_reg_relative_latencies)[src_index]));
if (returnCycle[index] > (now + relative_latency) ||
numUnpredictableResults[index] != 0)
{
ret = false;
}
}
src_index++;
}
if (DTRACE(MinorTiming)) {
if (ret && num_srcs > num_relative_latencies &&
num_relative_latencies != 0)
{
DPRINTF(MinorTiming, "Warning, inst: %s timing extra decode has"
" more src. regs: %d than relative latencies: %d\n",
staticInst->disassemble(0), num_srcs, num_relative_latencies);
}
}
return ret;
}
void
Scoreboard::minorTrace() const
{
std::ostringstream result_stream;
bool printed_element = false;
unsigned int i = 0;
while (i < numRegs) {
unsigned short int num_results = numResults[i];
unsigned short int num_unpredictable_results =
numUnpredictableResults[i];
if (!(num_results == 0 && num_unpredictable_results == Cycles(0))) {
if (printed_element)
result_stream << ',';
result_stream << '(' << i << ','
<< num_results << '/'
<< num_unpredictable_results << '/'
<< returnCycle[i] << '/'
<< writingInst[i] << ')';
printed_element = true;
}
i++;
}
MINORTRACE("busy=%s\n", result_stream.str());
}
}