gem5/src/dev/net/sinic.cc
mlebeane 96905971f2 dev: Add 'simLength' parameter in EthPacketData
Currently, all the network devices create a 16K buffer for the 'data' field
in EthPacketData, and use 'length' to keep track of the size of the packet
in the buffer.  This patch introduces the 'simLength' parameter to
EthPacketData, which is used to hold the effective length of the packet used
for all timing calulations in the simulator.  Serialization is performed using
only the useful data in the packet ('length') and not necessarily the entire
original buffer.
2016-10-26 22:48:33 -04:00

1564 lines
43 KiB
C++

/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Nathan Binkert
*/
#include "dev/net/sinic.hh"
#include <deque>
#include <limits>
#include <string>
#ifdef SINIC_VTOPHYS
#include "arch/vtophys.hh"
#endif
#include "base/compiler.hh"
#include "base/debug.hh"
#include "base/inet.hh"
#include "base/types.hh"
#include "config/the_isa.hh"
#include "debug/EthernetAll.hh"
#include "dev/net/etherlink.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "sim/eventq.hh"
#include "sim/stats.hh"
using namespace std;
using namespace Net;
using namespace TheISA;
namespace Sinic {
const char *RxStateStrings[] =
{
"rxIdle",
"rxFifoBlock",
"rxBeginCopy",
"rxCopy",
"rxCopyDone"
};
const char *TxStateStrings[] =
{
"txIdle",
"txFifoBlock",
"txBeginCopy",
"txCopy",
"txCopyDone"
};
///////////////////////////////////////////////////////////////////////
//
// Sinic PCI Device
//
Base::Base(const Params *p)
: EtherDevBase(p), rxEnable(false), txEnable(false),
intrDelay(p->intr_delay), intrTick(0), cpuIntrEnable(false),
cpuPendingIntr(false), intrEvent(0), interface(NULL)
{
}
Device::Device(const Params *p)
: Base(p), rxUnique(0), txUnique(0),
virtualRegs(p->virtual_count < 1 ? 1 : p->virtual_count),
rxFifo(p->rx_fifo_size), txFifo(p->tx_fifo_size),
rxKickTick(0), txKickTick(0),
txEvent(this), rxDmaEvent(this), txDmaEvent(this),
dmaReadDelay(p->dma_read_delay), dmaReadFactor(p->dma_read_factor),
dmaWriteDelay(p->dma_write_delay), dmaWriteFactor(p->dma_write_factor)
{
interface = new Interface(name() + ".int0", this);
reset();
}
Device::~Device()
{}
void
Device::regStats()
{
Base::regStats();
_maxVnicDistance = 0;
maxVnicDistance
.name(name() + ".maxVnicDistance")
.desc("maximum vnic distance")
;
totalVnicDistance
.name(name() + ".totalVnicDistance")
.desc("total vnic distance")
;
numVnicDistance
.name(name() + ".numVnicDistance")
.desc("number of vnic distance measurements")
;
avgVnicDistance
.name(name() + ".avgVnicDistance")
.desc("average vnic distance")
;
avgVnicDistance = totalVnicDistance / numVnicDistance;
}
void
Device::resetStats()
{
Base::resetStats();
_maxVnicDistance = 0;
}
EtherInt*
Device::getEthPort(const std::string &if_name, int idx)
{
if (if_name == "interface") {
if (interface->getPeer())
panic("interface already connected to\n");
return interface;
}
return NULL;
}
void
Device::prepareIO(ContextID cpu, int index)
{
int size = virtualRegs.size();
if (index > size)
panic("Trying to access a vnic that doesn't exist %d > %d\n",
index, size);
}
//add stats for head of line blocking
//add stats for average fifo length
//add stats for average number of vnics busy
void
Device::prepareRead(ContextID cpu, int index)
{
using namespace Regs;
prepareIO(cpu, index);
VirtualReg &vnic = virtualRegs[index];
// update rx registers
uint64_t rxdone = vnic.RxDone;
rxdone = set_RxDone_Packets(rxdone, rxFifo.countPacketsAfter(rxFifoPtr));
rxdone = set_RxDone_Empty(rxdone, rxFifo.empty());
rxdone = set_RxDone_High(rxdone, rxFifo.size() > regs.RxFifoHigh);
rxdone = set_RxDone_NotHigh(rxdone, rxLow);
regs.RxData = vnic.RxData;
regs.RxDone = rxdone;
regs.RxWait = rxdone;
// update tx regsiters
uint64_t txdone = vnic.TxDone;
txdone = set_TxDone_Packets(txdone, txFifo.packets());
txdone = set_TxDone_Full(txdone, txFifo.avail() < regs.TxMaxCopy);
txdone = set_TxDone_Low(txdone, txFifo.size() < regs.TxFifoLow);
regs.TxData = vnic.TxData;
regs.TxDone = txdone;
regs.TxWait = txdone;
int head = 0xffff;
if (!rxFifo.empty()) {
int vnic = rxFifo.begin()->priv;
if (vnic != -1 && virtualRegs[vnic].rxPacketOffset > 0)
head = vnic;
}
regs.RxStatus = set_RxStatus_Head(regs.RxStatus, head);
regs.RxStatus = set_RxStatus_Busy(regs.RxStatus, rxBusyCount);
regs.RxStatus = set_RxStatus_Mapped(regs.RxStatus, rxMappedCount);
regs.RxStatus = set_RxStatus_Dirty(regs.RxStatus, rxDirtyCount);
}
void
Device::prepareWrite(ContextID cpu, int index)
{
prepareIO(cpu, index);
}
/**
* I/O read of device register
*/
Tick
Device::read(PacketPtr pkt)
{
assert(config.command & PCI_CMD_MSE);
assert(pkt->getAddr() >= BARAddrs[0] && pkt->getSize() < BARSize[0]);
ContextID cpu = pkt->req->contextId();
Addr daddr = pkt->getAddr() - BARAddrs[0];
Addr index = daddr >> Regs::VirtualShift;
Addr raddr = daddr & Regs::VirtualMask;
if (!regValid(raddr))
panic("invalid register: cpu=%d vnic=%d da=%#x pa=%#x size=%d",
cpu, index, daddr, pkt->getAddr(), pkt->getSize());
const Regs::Info &info = regInfo(raddr);
if (!info.read)
panic("read %s (write only): "
"cpu=%d vnic=%d da=%#x pa=%#x size=%d",
info.name, cpu, index, daddr, pkt->getAddr(), pkt->getSize());
panic("read %s (invalid size): "
"cpu=%d vnic=%d da=%#x pa=%#x size=%d",
info.name, cpu, index, daddr, pkt->getAddr(), pkt->getSize());
prepareRead(cpu, index);
uint64_t value M5_VAR_USED = 0;
if (pkt->getSize() == 4) {
uint32_t reg = regData32(raddr);
pkt->set(reg);
value = reg;
}
if (pkt->getSize() == 8) {
uint64_t reg = regData64(raddr);
pkt->set(reg);
value = reg;
}
DPRINTF(EthernetPIO,
"read %s: cpu=%d vnic=%d da=%#x pa=%#x size=%d val=%#x\n",
info.name, cpu, index, daddr, pkt->getAddr(), pkt->getSize(), value);
// reading the interrupt status register has the side effect of
// clearing it
if (raddr == Regs::IntrStatus)
devIntrClear();
return pioDelay;
}
/**
* IPR read of device register
Fault
Device::iprRead(Addr daddr, ContextID cpu, uint64_t &result)
{
if (!regValid(daddr))
panic("invalid address: da=%#x", daddr);
const Regs::Info &info = regInfo(daddr);
if (!info.read)
panic("reading %s (write only): cpu=%d da=%#x", info.name, cpu, daddr);
DPRINTF(EthernetPIO, "IPR read %s: cpu=%d da=%#x\n",
info.name, cpu, daddr);
prepareRead(cpu, 0);
if (info.size == 4)
result = regData32(daddr);
if (info.size == 8)
result = regData64(daddr);
DPRINTF(EthernetPIO, "IPR read %s: cpu=%s da=%#x val=%#x\n",
info.name, cpu, result);
return NoFault;
}
*/
/**
* I/O write of device register
*/
Tick
Device::write(PacketPtr pkt)
{
assert(config.command & PCI_CMD_MSE);
assert(pkt->getAddr() >= BARAddrs[0] && pkt->getSize() < BARSize[0]);
ContextID cpu = pkt->req->contextId();
Addr daddr = pkt->getAddr() - BARAddrs[0];
Addr index = daddr >> Regs::VirtualShift;
Addr raddr = daddr & Regs::VirtualMask;
if (!regValid(raddr))
panic("invalid register: cpu=%d, da=%#x pa=%#x size=%d",
cpu, daddr, pkt->getAddr(), pkt->getSize());
const Regs::Info &info = regInfo(raddr);
if (!info.write)
panic("write %s (read only): "
"cpu=%d vnic=%d da=%#x pa=%#x size=%d",
info.name, cpu, index, daddr, pkt->getAddr(), pkt->getSize());
if (pkt->getSize() != info.size)
panic("write %s (invalid size): "
"cpu=%d vnic=%d da=%#x pa=%#x size=%d",
info.name, cpu, index, daddr, pkt->getAddr(), pkt->getSize());
VirtualReg &vnic = virtualRegs[index];
DPRINTF(EthernetPIO,
"write %s vnic %d: cpu=%d val=%#x da=%#x pa=%#x size=%d\n",
info.name, index, cpu, info.size == 4 ? pkt->get<uint32_t>() :
pkt->get<uint64_t>(), daddr, pkt->getAddr(), pkt->getSize());
prepareWrite(cpu, index);
switch (raddr) {
case Regs::Config:
changeConfig(pkt->get<uint32_t>());
break;
case Regs::Command:
command(pkt->get<uint32_t>());
break;
case Regs::IntrStatus:
devIntrClear(regs.IntrStatus & pkt->get<uint32_t>());
break;
case Regs::IntrMask:
devIntrChangeMask(pkt->get<uint32_t>());
break;
case Regs::RxData:
if (Regs::get_RxDone_Busy(vnic.RxDone))
panic("receive machine busy with another request! rxState=%s",
RxStateStrings[rxState]);
vnic.rxUnique = rxUnique++;
vnic.RxDone = Regs::RxDone_Busy;
vnic.RxData = pkt->get<uint64_t>();
rxBusyCount++;
if (Regs::get_RxData_Vaddr(pkt->get<uint64_t>())) {
panic("vtophys not implemented in newmem");
#ifdef SINIC_VTOPHYS
Addr vaddr = Regs::get_RxData_Addr(reg64);
Addr paddr = vtophys(req->xc, vaddr);
DPRINTF(EthernetPIO, "write RxData vnic %d (rxunique %d): "
"vaddr=%#x, paddr=%#x\n",
index, vnic.rxUnique, vaddr, paddr);
vnic.RxData = Regs::set_RxData_Addr(vnic.RxData, paddr);
#endif
} else {
DPRINTF(EthernetPIO, "write RxData vnic %d (rxunique %d)\n",
index, vnic.rxUnique);
}
if (vnic.rxIndex == rxFifo.end()) {
DPRINTF(EthernetPIO, "request new packet...appending to rxList\n");
rxList.push_back(index);
} else {
DPRINTF(EthernetPIO, "packet exists...appending to rxBusy\n");
rxBusy.push_back(index);
}
if (rxEnable && (rxState == rxIdle || rxState == rxFifoBlock)) {
rxState = rxFifoBlock;
rxKick();
}
break;
case Regs::TxData:
if (Regs::get_TxDone_Busy(vnic.TxDone))
panic("transmit machine busy with another request! txState=%s",
TxStateStrings[txState]);
vnic.txUnique = txUnique++;
vnic.TxDone = Regs::TxDone_Busy;
if (Regs::get_TxData_Vaddr(pkt->get<uint64_t>())) {
panic("vtophys won't work here in newmem.\n");
#ifdef SINIC_VTOPHYS
Addr vaddr = Regs::get_TxData_Addr(reg64);
Addr paddr = vtophys(req->xc, vaddr);
DPRINTF(EthernetPIO, "write TxData vnic %d (txunique %d): "
"vaddr=%#x, paddr=%#x\n",
index, vnic.txUnique, vaddr, paddr);
vnic.TxData = Regs::set_TxData_Addr(vnic.TxData, paddr);
#endif
} else {
DPRINTF(EthernetPIO, "write TxData vnic %d (txunique %d)\n",
index, vnic.txUnique);
}
if (txList.empty() || txList.front() != index)
txList.push_back(index);
if (txEnable && txState == txIdle && txList.front() == index) {
txState = txFifoBlock;
txKick();
}
break;
}
return pioDelay;
}
void
Device::devIntrPost(uint32_t interrupts)
{
if ((interrupts & Regs::Intr_Res))
panic("Cannot set a reserved interrupt");
regs.IntrStatus |= interrupts;
DPRINTF(EthernetIntr,
"interrupt written to intStatus: intr=%#x status=%#x mask=%#x\n",
interrupts, regs.IntrStatus, regs.IntrMask);
interrupts = regs.IntrStatus & regs.IntrMask;
// Intr_RxHigh is special, we only signal it if we've emptied the fifo
// and then filled it above the high watermark
if (rxEmpty)
rxEmpty = false;
else
interrupts &= ~Regs::Intr_RxHigh;
// Intr_TxLow is special, we only signal it if we've filled up the fifo
// and then dropped below the low watermark
if (txFull)
txFull = false;
else
interrupts &= ~Regs::Intr_TxLow;
if (interrupts) {
Tick when = curTick();
if ((interrupts & Regs::Intr_NoDelay) == 0)
when += intrDelay;
cpuIntrPost(when);
}
}
void
Device::devIntrClear(uint32_t interrupts)
{
if ((interrupts & Regs::Intr_Res))
panic("Cannot clear a reserved interrupt");
regs.IntrStatus &= ~interrupts;
DPRINTF(EthernetIntr,
"interrupt cleared from intStatus: intr=%x status=%x mask=%x\n",
interrupts, regs.IntrStatus, regs.IntrMask);
if (!(regs.IntrStatus & regs.IntrMask))
cpuIntrClear();
}
void
Device::devIntrChangeMask(uint32_t newmask)
{
if (regs.IntrMask == newmask)
return;
regs.IntrMask = newmask;
DPRINTF(EthernetIntr,
"interrupt mask changed: intStatus=%x intMask=%x masked=%x\n",
regs.IntrStatus, regs.IntrMask, regs.IntrStatus & regs.IntrMask);
if (regs.IntrStatus & regs.IntrMask)
cpuIntrPost(curTick());
else
cpuIntrClear();
}
void
Base::cpuIntrPost(Tick when)
{
// If the interrupt you want to post is later than an interrupt
// already scheduled, just let it post in the coming one and don't
// schedule another.
// HOWEVER, must be sure that the scheduled intrTick is in the
// future (this was formerly the source of a bug)
/**
* @todo this warning should be removed and the intrTick code should
* be fixed.
*/
assert(when >= curTick());
assert(intrTick >= curTick() || intrTick == 0);
if (!cpuIntrEnable) {
DPRINTF(EthernetIntr, "interrupts not enabled.\n",
intrTick);
return;
}
if (when > intrTick && intrTick != 0) {
DPRINTF(EthernetIntr, "don't need to schedule event...intrTick=%d\n",
intrTick);
return;
}
intrTick = when;
if (intrTick < curTick()) {
intrTick = curTick();
}
DPRINTF(EthernetIntr, "going to schedule an interrupt for intrTick=%d\n",
intrTick);
if (intrEvent)
intrEvent->squash();
intrEvent = new IntrEvent(this, true);
schedule(intrEvent, intrTick);
}
void
Base::cpuInterrupt()
{
assert(intrTick == curTick());
// Whether or not there's a pending interrupt, we don't care about
// it anymore
intrEvent = 0;
intrTick = 0;
// Don't send an interrupt if there's already one
if (cpuPendingIntr) {
DPRINTF(EthernetIntr,
"would send an interrupt now, but there's already pending\n");
} else {
// Send interrupt
cpuPendingIntr = true;
DPRINTF(EthernetIntr, "posting interrupt\n");
intrPost();
}
}
void
Base::cpuIntrClear()
{
if (!cpuPendingIntr)
return;
if (intrEvent) {
intrEvent->squash();
intrEvent = 0;
}
intrTick = 0;
cpuPendingIntr = false;
DPRINTF(EthernetIntr, "clearing cchip interrupt\n");
intrClear();
}
bool
Base::cpuIntrPending() const
{ return cpuPendingIntr; }
void
Device::changeConfig(uint32_t newconf)
{
uint32_t changed = regs.Config ^ newconf;
if (!changed)
return;
regs.Config = newconf;
if ((changed & Regs::Config_IntEn)) {
cpuIntrEnable = regs.Config & Regs::Config_IntEn;
if (cpuIntrEnable) {
if (regs.IntrStatus & regs.IntrMask)
cpuIntrPost(curTick());
} else {
cpuIntrClear();
}
}
if ((changed & Regs::Config_TxEn)) {
txEnable = regs.Config & Regs::Config_TxEn;
if (txEnable)
txKick();
}
if ((changed & Regs::Config_RxEn)) {
rxEnable = regs.Config & Regs::Config_RxEn;
if (rxEnable)
rxKick();
}
}
void
Device::command(uint32_t command)
{
if (command & Regs::Command_Intr)
devIntrPost(Regs::Intr_Soft);
if (command & Regs::Command_Reset)
reset();
}
void
Device::reset()
{
using namespace Regs;
memset(&regs, 0, sizeof(regs));
regs.Config = 0;
if (params()->rx_thread)
regs.Config |= Config_RxThread;
if (params()->tx_thread)
regs.Config |= Config_TxThread;
if (params()->rss)
regs.Config |= Config_RSS;
if (params()->zero_copy)
regs.Config |= Config_ZeroCopy;
if (params()->delay_copy)
regs.Config |= Config_DelayCopy;
if (params()->virtual_addr)
regs.Config |= Config_Vaddr;
if (params()->delay_copy && params()->zero_copy)
panic("Can't delay copy and zero copy");
regs.IntrMask = Intr_Soft | Intr_RxHigh | Intr_RxPacket | Intr_TxLow;
regs.RxMaxCopy = params()->rx_max_copy;
regs.TxMaxCopy = params()->tx_max_copy;
regs.ZeroCopySize = params()->zero_copy_size;
regs.ZeroCopyMark = params()->zero_copy_threshold;
regs.VirtualCount = params()->virtual_count;
regs.RxMaxIntr = params()->rx_max_intr;
regs.RxFifoSize = params()->rx_fifo_size;
regs.TxFifoSize = params()->tx_fifo_size;
regs.RxFifoLow = params()->rx_fifo_low_mark;
regs.TxFifoLow = params()->tx_fifo_threshold;
regs.RxFifoHigh = params()->rx_fifo_threshold;
regs.TxFifoHigh = params()->tx_fifo_high_mark;
regs.HwAddr = params()->hardware_address;
if (regs.RxMaxCopy < regs.ZeroCopyMark)
panic("Must be able to copy at least as many bytes as the threshold");
if (regs.ZeroCopySize >= regs.ZeroCopyMark)
panic("The number of bytes to copy must be less than the threshold");
rxList.clear();
rxBusy.clear();
rxActive = -1;
txList.clear();
rxBusyCount = 0;
rxDirtyCount = 0;
rxMappedCount = 0;
rxState = rxIdle;
txState = txIdle;
rxFifo.clear();
rxFifoPtr = rxFifo.end();
txFifo.clear();
rxEmpty = false;
rxLow = true;
txFull = false;
int size = virtualRegs.size();
virtualRegs.clear();
virtualRegs.resize(size);
for (int i = 0; i < size; ++i)
virtualRegs[i].rxIndex = rxFifo.end();
}
void
Device::rxDmaDone()
{
assert(rxState == rxCopy);
rxState = rxCopyDone;
DPRINTF(EthernetDMA, "end rx dma write paddr=%#x len=%d\n",
rxDmaAddr, rxDmaLen);
DDUMP(EthernetData, rxDmaData, rxDmaLen);
// If the transmit state machine has a pending DMA, let it go first
if (txState == txBeginCopy)
txKick();
rxKick();
}
void
Device::rxKick()
{
VirtualReg *vnic = NULL;
DPRINTF(EthernetSM, "rxKick: rxState=%s (rxFifo.size=%d)\n",
RxStateStrings[rxState], rxFifo.size());
if (rxKickTick > curTick()) {
DPRINTF(EthernetSM, "rxKick: exiting, can't run till %d\n",
rxKickTick);
return;
}
next:
rxFifo.check();
if (rxState == rxIdle)
goto exit;
if (rxActive == -1) {
if (rxState != rxFifoBlock)
panic("no active vnic while in state %s", RxStateStrings[rxState]);
DPRINTF(EthernetSM, "processing rxState=%s\n",
RxStateStrings[rxState]);
} else {
vnic = &virtualRegs[rxActive];
DPRINTF(EthernetSM,
"processing rxState=%s for vnic %d (rxunique %d)\n",
RxStateStrings[rxState], rxActive, vnic->rxUnique);
}
switch (rxState) {
case rxFifoBlock:
if (DTRACE(EthernetSM)) {
PacketFifo::iterator end = rxFifo.end();
int size = virtualRegs.size();
for (int i = 0; i < size; ++i) {
VirtualReg *vn = &virtualRegs[i];
bool busy = Regs::get_RxDone_Busy(vn->RxDone);
if (vn->rxIndex != end) {
#ifndef NDEBUG
bool dirty = vn->rxPacketOffset > 0;
const char *status;
if (busy && dirty)
status = "busy,dirty";
else if (busy)
status = "busy";
else if (dirty)
status = "dirty";
else
status = "mapped";
DPRINTF(EthernetSM,
"vnic %d %s (rxunique %d), packet %d, slack %d\n",
i, status, vn->rxUnique,
rxFifo.countPacketsBefore(vn->rxIndex),
vn->rxIndex->slack);
#endif
} else if (busy) {
DPRINTF(EthernetSM, "vnic %d unmapped (rxunique %d)\n",
i, vn->rxUnique);
}
}
}
if (!rxBusy.empty()) {
rxActive = rxBusy.front();
rxBusy.pop_front();
vnic = &virtualRegs[rxActive];
if (vnic->rxIndex == rxFifo.end())
panic("continuing vnic without packet\n");
DPRINTF(EthernetSM,
"continue processing for vnic %d (rxunique %d)\n",
rxActive, vnic->rxUnique);
rxState = rxBeginCopy;
int vnic_distance = rxFifo.countPacketsBefore(vnic->rxIndex);
totalVnicDistance += vnic_distance;
numVnicDistance += 1;
if (vnic_distance > _maxVnicDistance) {
maxVnicDistance = vnic_distance;
_maxVnicDistance = vnic_distance;
}
break;
}
if (rxFifoPtr == rxFifo.end()) {
DPRINTF(EthernetSM, "receive waiting for data. Nothing to do.\n");
goto exit;
}
if (rxList.empty())
panic("Not idle, but nothing to do!");
assert(!rxFifo.empty());
rxActive = rxList.front();
rxList.pop_front();
vnic = &virtualRegs[rxActive];
DPRINTF(EthernetSM,
"processing new packet for vnic %d (rxunique %d)\n",
rxActive, vnic->rxUnique);
// Grab a new packet from the fifo.
vnic->rxIndex = rxFifoPtr++;
vnic->rxIndex->priv = rxActive;
vnic->rxPacketOffset = 0;
vnic->rxPacketBytes = vnic->rxIndex->packet->length;
assert(vnic->rxPacketBytes);
rxMappedCount++;
vnic->rxDoneData = 0;
/* scope for variables */ {
IpPtr ip(vnic->rxIndex->packet);
if (ip) {
DPRINTF(Ethernet, "ID is %d\n", ip->id());
vnic->rxDoneData |= Regs::RxDone_IpPacket;
rxIpChecksums++;
if (cksum(ip) != 0) {
DPRINTF(EthernetCksum, "Rx IP Checksum Error\n");
vnic->rxDoneData |= Regs::RxDone_IpError;
}
TcpPtr tcp(ip);
UdpPtr udp(ip);
if (tcp) {
DPRINTF(Ethernet,
"Src Port=%d, Dest Port=%d, Seq=%d, Ack=%d\n",
tcp->sport(), tcp->dport(), tcp->seq(),
tcp->ack());
vnic->rxDoneData |= Regs::RxDone_TcpPacket;
rxTcpChecksums++;
if (cksum(tcp) != 0) {
DPRINTF(EthernetCksum, "Rx TCP Checksum Error\n");
vnic->rxDoneData |= Regs::RxDone_TcpError;
}
} else if (udp) {
vnic->rxDoneData |= Regs::RxDone_UdpPacket;
rxUdpChecksums++;
if (cksum(udp) != 0) {
DPRINTF(EthernetCksum, "Rx UDP Checksum Error\n");
vnic->rxDoneData |= Regs::RxDone_UdpError;
}
}
}
}
rxState = rxBeginCopy;
break;
case rxBeginCopy:
if (dmaPending() || drainState() != DrainState::Running)
goto exit;
rxDmaAddr = pciToDma(Regs::get_RxData_Addr(vnic->RxData));
rxDmaLen = min<unsigned>(Regs::get_RxData_Len(vnic->RxData),
vnic->rxPacketBytes);
/*
* if we're doing zero/delay copy and we're below the fifo
* threshold, see if we should try to do the zero/defer copy
*/
if ((Regs::get_Config_ZeroCopy(regs.Config) ||
Regs::get_Config_DelayCopy(regs.Config)) &&
!Regs::get_RxData_NoDelay(vnic->RxData) && rxLow) {
if (rxDmaLen > regs.ZeroCopyMark)
rxDmaLen = regs.ZeroCopySize;
}
rxDmaData = vnic->rxIndex->packet->data + vnic->rxPacketOffset;
rxState = rxCopy;
if (rxDmaAddr == 1LL) {
rxState = rxCopyDone;
break;
}
dmaWrite(rxDmaAddr, rxDmaLen, &rxDmaEvent, rxDmaData);
break;
case rxCopy:
DPRINTF(EthernetSM, "receive machine still copying\n");
goto exit;
case rxCopyDone:
vnic->RxDone = vnic->rxDoneData;
vnic->RxDone |= Regs::RxDone_Complete;
rxBusyCount--;
if (vnic->rxPacketBytes == rxDmaLen) {
if (vnic->rxPacketOffset)
rxDirtyCount--;
// Packet is complete. Indicate how many bytes were copied
vnic->RxDone = Regs::set_RxDone_CopyLen(vnic->RxDone, rxDmaLen);
DPRINTF(EthernetSM,
"rxKick: packet complete on vnic %d (rxunique %d)\n",
rxActive, vnic->rxUnique);
rxFifo.remove(vnic->rxIndex);
vnic->rxIndex = rxFifo.end();
rxMappedCount--;
} else {
if (!vnic->rxPacketOffset)
rxDirtyCount++;
vnic->rxPacketBytes -= rxDmaLen;
vnic->rxPacketOffset += rxDmaLen;
vnic->RxDone |= Regs::RxDone_More;
vnic->RxDone = Regs::set_RxDone_CopyLen(vnic->RxDone,
vnic->rxPacketBytes);
DPRINTF(EthernetSM,
"rxKick: packet not complete on vnic %d (rxunique %d): "
"%d bytes left\n",
rxActive, vnic->rxUnique, vnic->rxPacketBytes);
}
rxActive = -1;
rxState = rxBusy.empty() && rxList.empty() ? rxIdle : rxFifoBlock;
if (rxFifo.empty()) {
devIntrPost(Regs::Intr_RxEmpty);
rxEmpty = true;
}
if (rxFifo.size() < regs.RxFifoLow)
rxLow = true;
if (rxFifo.size() > regs.RxFifoHigh)
rxLow = false;
devIntrPost(Regs::Intr_RxDMA);
break;
default:
panic("Invalid rxState!");
}
DPRINTF(EthernetSM, "entering next rxState=%s\n",
RxStateStrings[rxState]);
goto next;
exit:
/**
* @todo do we want to schedule a future kick?
*/
DPRINTF(EthernetSM, "rx state machine exited rxState=%s\n",
RxStateStrings[rxState]);
}
void
Device::txDmaDone()
{
assert(txState == txCopy);
txState = txCopyDone;
DPRINTF(EthernetDMA, "tx dma read paddr=%#x len=%d\n",
txDmaAddr, txDmaLen);
DDUMP(EthernetData, txDmaData, txDmaLen);
// If the receive state machine has a pending DMA, let it go first
if (rxState == rxBeginCopy)
rxKick();
txKick();
}
void
Device::transmit()
{
if (txFifo.empty()) {
DPRINTF(Ethernet, "nothing to transmit\n");
return;
}
uint32_t interrupts;
EthPacketPtr packet = txFifo.front();
if (!interface->sendPacket(packet)) {
DPRINTF(Ethernet, "Packet Transmit: failed txFifo available %d\n",
txFifo.avail());
return;
}
txFifo.pop();
#if TRACING_ON
if (DTRACE(Ethernet)) {
IpPtr ip(packet);
if (ip) {
DPRINTF(Ethernet, "ID is %d\n", ip->id());
TcpPtr tcp(ip);
if (tcp) {
DPRINTF(Ethernet,
"Src Port=%d, Dest Port=%d, Seq=%d, Ack=%d\n",
tcp->sport(), tcp->dport(), tcp->seq(),
tcp->ack());
}
}
}
#endif
DDUMP(EthernetData, packet->data, packet->length);
txBytes += packet->length;
txPackets++;
DPRINTF(Ethernet, "Packet Transmit: successful txFifo Available %d\n",
txFifo.avail());
interrupts = Regs::Intr_TxPacket;
if (txFifo.size() < regs.TxFifoLow)
interrupts |= Regs::Intr_TxLow;
devIntrPost(interrupts);
}
void
Device::txKick()
{
VirtualReg *vnic;
DPRINTF(EthernetSM, "txKick: txState=%s (txFifo.size=%d)\n",
TxStateStrings[txState], txFifo.size());
if (txKickTick > curTick()) {
DPRINTF(EthernetSM, "txKick: exiting, can't run till %d\n",
txKickTick);
return;
}
next:
if (txState == txIdle)
goto exit;
assert(!txList.empty());
vnic = &virtualRegs[txList.front()];
switch (txState) {
case txFifoBlock:
assert(Regs::get_TxDone_Busy(vnic->TxDone));
if (!txPacket) {
// Grab a new packet from the fifo.
txPacket = make_shared<EthPacketData>(16384);
txPacketOffset = 0;
}
if (txFifo.avail() - txPacket->length <
Regs::get_TxData_Len(vnic->TxData)) {
DPRINTF(EthernetSM, "transmit fifo full. Nothing to do.\n");
goto exit;
}
txState = txBeginCopy;
break;
case txBeginCopy:
if (dmaPending() || drainState() != DrainState::Running)
goto exit;
txDmaAddr = pciToDma(Regs::get_TxData_Addr(vnic->TxData));
txDmaLen = Regs::get_TxData_Len(vnic->TxData);
txDmaData = txPacket->data + txPacketOffset;
txState = txCopy;
dmaRead(txDmaAddr, txDmaLen, &txDmaEvent, txDmaData);
break;
case txCopy:
DPRINTF(EthernetSM, "transmit machine still copying\n");
goto exit;
case txCopyDone:
vnic->TxDone = txDmaLen | Regs::TxDone_Complete;
txPacket->simLength += txDmaLen;
txPacket->length += txDmaLen;
if ((vnic->TxData & Regs::TxData_More)) {
txPacketOffset += txDmaLen;
txState = txIdle;
devIntrPost(Regs::Intr_TxDMA);
break;
}
assert(txPacket->length <= txFifo.avail());
if ((vnic->TxData & Regs::TxData_Checksum)) {
IpPtr ip(txPacket);
if (ip) {
TcpPtr tcp(ip);
if (tcp) {
tcp->sum(0);
tcp->sum(cksum(tcp));
txTcpChecksums++;
}
UdpPtr udp(ip);
if (udp) {
udp->sum(0);
udp->sum(cksum(udp));
txUdpChecksums++;
}
ip->sum(0);
ip->sum(cksum(ip));
txIpChecksums++;
}
}
txFifo.push(txPacket);
if (txFifo.avail() < regs.TxMaxCopy) {
devIntrPost(Regs::Intr_TxFull);
txFull = true;
}
txPacket = 0;
transmit();
txList.pop_front();
txState = txList.empty() ? txIdle : txFifoBlock;
devIntrPost(Regs::Intr_TxDMA);
break;
default:
panic("Invalid txState!");
}
DPRINTF(EthernetSM, "entering next txState=%s\n",
TxStateStrings[txState]);
goto next;
exit:
/**
* @todo do we want to schedule a future kick?
*/
DPRINTF(EthernetSM, "tx state machine exited txState=%s\n",
TxStateStrings[txState]);
}
void
Device::transferDone()
{
if (txFifo.empty()) {
DPRINTF(Ethernet, "transfer complete: txFifo empty...nothing to do\n");
return;
}
DPRINTF(Ethernet, "transfer complete: data in txFifo...schedule xmit\n");
reschedule(txEvent, clockEdge(Cycles(1)), true);
}
bool
Device::rxFilter(const EthPacketPtr &packet)
{
if (!Regs::get_Config_Filter(regs.Config))
return false;
panic("receive filter not implemented\n");
bool drop = true;
#if 0
string type;
EthHdr *eth = packet->eth();
if (eth->unicast()) {
// If we're accepting all unicast addresses
if (acceptUnicast)
drop = false;
// If we make a perfect match
if (acceptPerfect && params->eaddr == eth.dst())
drop = false;
if (acceptArp && eth->type() == ETH_TYPE_ARP)
drop = false;
} else if (eth->broadcast()) {
// if we're accepting broadcasts
if (acceptBroadcast)
drop = false;
} else if (eth->multicast()) {
// if we're accepting all multicasts
if (acceptMulticast)
drop = false;
}
if (drop) {
DPRINTF(Ethernet, "rxFilter drop\n");
DDUMP(EthernetData, packet->data, packet->length);
}
#endif
return drop;
}
bool
Device::recvPacket(EthPacketPtr packet)
{
rxBytes += packet->length;
rxPackets++;
DPRINTF(Ethernet, "Receiving packet from wire, rxFifo Available is %d\n",
rxFifo.avail());
if (!rxEnable) {
DPRINTF(Ethernet, "receive disabled...packet dropped\n");
return true;
}
if (rxFilter(packet)) {
DPRINTF(Ethernet, "packet filtered...dropped\n");
return true;
}
if (rxFifo.size() >= regs.RxFifoHigh)
devIntrPost(Regs::Intr_RxHigh);
if (!rxFifo.push(packet)) {
DPRINTF(Ethernet,
"packet will not fit in receive buffer...packet dropped\n");
return false;
}
// If we were at the last element, back up one ot go to the new
// last element of the list.
if (rxFifoPtr == rxFifo.end())
--rxFifoPtr;
devIntrPost(Regs::Intr_RxPacket);
rxKick();
return true;
}
void
Device::drainResume()
{
Drainable::drainResume();
// During drain we could have left the state machines in a waiting state and
// they wouldn't get out until some other event occured to kick them.
// This way they'll get out immediately
txKick();
rxKick();
}
//=====================================================================
//
//
void
Base::serialize(CheckpointOut &cp) const
{
// Serialize the PciDevice base class
PciDevice::serialize(cp);
SERIALIZE_SCALAR(rxEnable);
SERIALIZE_SCALAR(txEnable);
SERIALIZE_SCALAR(cpuIntrEnable);
/*
* Keep track of pending interrupt status.
*/
SERIALIZE_SCALAR(intrTick);
SERIALIZE_SCALAR(cpuPendingIntr);
Tick intrEventTick = 0;
if (intrEvent)
intrEventTick = intrEvent->when();
SERIALIZE_SCALAR(intrEventTick);
}
void
Base::unserialize(CheckpointIn &cp)
{
// Unserialize the PciDevice base class
PciDevice::unserialize(cp);
UNSERIALIZE_SCALAR(rxEnable);
UNSERIALIZE_SCALAR(txEnable);
UNSERIALIZE_SCALAR(cpuIntrEnable);
/*
* Keep track of pending interrupt status.
*/
UNSERIALIZE_SCALAR(intrTick);
UNSERIALIZE_SCALAR(cpuPendingIntr);
Tick intrEventTick;
UNSERIALIZE_SCALAR(intrEventTick);
if (intrEventTick) {
intrEvent = new IntrEvent(this, true);
schedule(intrEvent, intrEventTick);
}
}
void
Device::serialize(CheckpointOut &cp) const
{
int count;
// Serialize the PciDevice base class
Base::serialize(cp);
if (rxState == rxCopy)
panic("can't serialize with an in flight dma request rxState=%s",
RxStateStrings[rxState]);
if (txState == txCopy)
panic("can't serialize with an in flight dma request txState=%s",
TxStateStrings[txState]);
/*
* Serialize the device registers that could be modified by the OS.
*/
SERIALIZE_SCALAR(regs.Config);
SERIALIZE_SCALAR(regs.IntrStatus);
SERIALIZE_SCALAR(regs.IntrMask);
SERIALIZE_SCALAR(regs.RxData);
SERIALIZE_SCALAR(regs.TxData);
/*
* Serialize the virtual nic state
*/
int virtualRegsSize = virtualRegs.size();
SERIALIZE_SCALAR(virtualRegsSize);
for (int i = 0; i < virtualRegsSize; ++i) {
const VirtualReg *vnic = &virtualRegs[i];
std::string reg = csprintf("vnic%d", i);
paramOut(cp, reg + ".RxData", vnic->RxData);
paramOut(cp, reg + ".RxDone", vnic->RxDone);
paramOut(cp, reg + ".TxData", vnic->TxData);
paramOut(cp, reg + ".TxDone", vnic->TxDone);
bool rxPacketExists = vnic->rxIndex != rxFifo.end();
paramOut(cp, reg + ".rxPacketExists", rxPacketExists);
if (rxPacketExists) {
int rxPacket = 0;
auto i = rxFifo.begin();
while (i != vnic->rxIndex) {
assert(i != rxFifo.end());
++i;
++rxPacket;
}
paramOut(cp, reg + ".rxPacket", rxPacket);
paramOut(cp, reg + ".rxPacketOffset", vnic->rxPacketOffset);
paramOut(cp, reg + ".rxPacketBytes", vnic->rxPacketBytes);
}
paramOut(cp, reg + ".rxDoneData", vnic->rxDoneData);
}
int rxFifoPtr = -1;
if (this->rxFifoPtr != rxFifo.end())
rxFifoPtr = rxFifo.countPacketsBefore(this->rxFifoPtr);
SERIALIZE_SCALAR(rxFifoPtr);
SERIALIZE_SCALAR(rxActive);
SERIALIZE_SCALAR(rxBusyCount);
SERIALIZE_SCALAR(rxDirtyCount);
SERIALIZE_SCALAR(rxMappedCount);
VirtualList::const_iterator i, end;
for (count = 0, i = rxList.begin(), end = rxList.end(); i != end; ++i)
paramOut(cp, csprintf("rxList%d", count++), *i);
int rxListSize = count;
SERIALIZE_SCALAR(rxListSize);
for (count = 0, i = rxBusy.begin(), end = rxBusy.end(); i != end; ++i)
paramOut(cp, csprintf("rxBusy%d", count++), *i);
int rxBusySize = count;
SERIALIZE_SCALAR(rxBusySize);
for (count = 0, i = txList.begin(), end = txList.end(); i != end; ++i)
paramOut(cp, csprintf("txList%d", count++), *i);
int txListSize = count;
SERIALIZE_SCALAR(txListSize);
/*
* Serialize rx state machine
*/
int rxState = this->rxState;
SERIALIZE_SCALAR(rxState);
SERIALIZE_SCALAR(rxEmpty);
SERIALIZE_SCALAR(rxLow);
rxFifo.serialize("rxFifo", cp);
/*
* Serialize tx state machine
*/
int txState = this->txState;
SERIALIZE_SCALAR(txState);
SERIALIZE_SCALAR(txFull);
txFifo.serialize("txFifo", cp);
bool txPacketExists = txPacket != nullptr;
SERIALIZE_SCALAR(txPacketExists);
if (txPacketExists) {
txPacket->serialize("txPacket", cp);
SERIALIZE_SCALAR(txPacketOffset);
SERIALIZE_SCALAR(txPacketBytes);
}
/*
* If there's a pending transmit, store the time so we can
* reschedule it later
*/
Tick transmitTick = txEvent.scheduled() ? txEvent.when() - curTick() : 0;
SERIALIZE_SCALAR(transmitTick);
}
void
Device::unserialize(CheckpointIn &cp)
{
// Unserialize the PciDevice base class
Base::unserialize(cp);
/*
* Unserialize the device registers that may have been written by the OS.
*/
UNSERIALIZE_SCALAR(regs.Config);
UNSERIALIZE_SCALAR(regs.IntrStatus);
UNSERIALIZE_SCALAR(regs.IntrMask);
UNSERIALIZE_SCALAR(regs.RxData);
UNSERIALIZE_SCALAR(regs.TxData);
UNSERIALIZE_SCALAR(rxActive);
UNSERIALIZE_SCALAR(rxBusyCount);
UNSERIALIZE_SCALAR(rxDirtyCount);
UNSERIALIZE_SCALAR(rxMappedCount);
int rxListSize;
UNSERIALIZE_SCALAR(rxListSize);
rxList.clear();
for (int i = 0; i < rxListSize; ++i) {
int value;
paramIn(cp, csprintf("rxList%d", i), value);
rxList.push_back(value);
}
int rxBusySize;
UNSERIALIZE_SCALAR(rxBusySize);
rxBusy.clear();
for (int i = 0; i < rxBusySize; ++i) {
int value;
paramIn(cp, csprintf("rxBusy%d", i), value);
rxBusy.push_back(value);
}
int txListSize;
UNSERIALIZE_SCALAR(txListSize);
txList.clear();
for (int i = 0; i < txListSize; ++i) {
int value;
paramIn(cp, csprintf("txList%d", i), value);
txList.push_back(value);
}
/*
* Unserialize rx state machine
*/
int rxState;
UNSERIALIZE_SCALAR(rxState);
UNSERIALIZE_SCALAR(rxEmpty);
UNSERIALIZE_SCALAR(rxLow);
this->rxState = (RxState) rxState;
rxFifo.unserialize("rxFifo", cp);
int rxFifoPtr;
UNSERIALIZE_SCALAR(rxFifoPtr);
if (rxFifoPtr >= 0) {
this->rxFifoPtr = rxFifo.begin();
for (int i = 0; i < rxFifoPtr; ++i)
++this->rxFifoPtr;
} else {
this->rxFifoPtr = rxFifo.end();
}
/*
* Unserialize tx state machine
*/
int txState;
UNSERIALIZE_SCALAR(txState);
UNSERIALIZE_SCALAR(txFull);
this->txState = (TxState) txState;
txFifo.unserialize("txFifo", cp);
bool txPacketExists;
UNSERIALIZE_SCALAR(txPacketExists);
txPacket = 0;
if (txPacketExists) {
txPacket = make_shared<EthPacketData>();
txPacket->unserialize("txPacket", cp);
UNSERIALIZE_SCALAR(txPacketOffset);
UNSERIALIZE_SCALAR(txPacketBytes);
}
/*
* unserialize the virtual nic registers/state
*
* this must be done after the unserialization of the rxFifo
* because the packet iterators depend on the fifo being populated
*/
int virtualRegsSize;
UNSERIALIZE_SCALAR(virtualRegsSize);
virtualRegs.clear();
virtualRegs.resize(virtualRegsSize);
for (int i = 0; i < virtualRegsSize; ++i) {
VirtualReg *vnic = &virtualRegs[i];
std::string reg = csprintf("vnic%d", i);
paramIn(cp, reg + ".RxData", vnic->RxData);
paramIn(cp, reg + ".RxDone", vnic->RxDone);
paramIn(cp, reg + ".TxData", vnic->TxData);
paramIn(cp, reg + ".TxDone", vnic->TxDone);
vnic->rxUnique = rxUnique++;
vnic->txUnique = txUnique++;
bool rxPacketExists;
paramIn(cp, reg + ".rxPacketExists", rxPacketExists);
if (rxPacketExists) {
int rxPacket;
paramIn(cp, reg + ".rxPacket", rxPacket);
vnic->rxIndex = rxFifo.begin();
while (rxPacket--)
++vnic->rxIndex;
paramIn(cp, reg + ".rxPacketOffset",
vnic->rxPacketOffset);
paramIn(cp, reg + ".rxPacketBytes", vnic->rxPacketBytes);
} else {
vnic->rxIndex = rxFifo.end();
}
paramIn(cp, reg + ".rxDoneData", vnic->rxDoneData);
}
/*
* If there's a pending transmit, reschedule it now
*/
Tick transmitTick;
UNSERIALIZE_SCALAR(transmitTick);
if (transmitTick)
schedule(txEvent, curTick() + transmitTick);
pioPort.sendRangeChange();
}
} // namespace Sinic
Sinic::Device *
SinicParams::create()
{
return new Sinic::Device(this);
}