03a2aca9a9
System object now exists for both fullsys and syscall emulation, as the latter needs it so that Process objects can find the shared PhysicalMemory for initialization. Changes are incomplete: still need to fix up Process (& EioProcess) memory initialization and syscall emulation code for new mem interface. arch/alpha/alpha_linux_process.cc: arch/alpha/alpha_linux_process.hh: arch/alpha/alpha_tru64_process.cc: arch/alpha/alpha_tru64_process.hh: cpu/base.cc: cpu/base.hh: Take System argument in constructor. cpu/exec_context.cc: Take System argument in constructor. Merge two constructors into a single one. cpu/exec_context.hh: Take System argument in constructor. Merge two constructors into a single one. Replace dummy translation with lookup in Process object's page table. python/m5/objects/Process.py: Add System parameter to Process object (& subobjects). python/m5/objects/System.py: Segregate full-system only Process parameters (most of them!). sim/process.cc: Take System argument in constructor. Move initialization to startup() callback to occur after system & cpus are initialized. Generate ProxyMemory object to pass to loader for transparent virtual page allocation. sim/process.hh: Take System argument in constructor. Move initialization to startup() callback to occur after system & cpus are initialized. sim/system.cc: sim/system.hh: Enable System object for non-full-system too. Basically involved putting most of the existing code inside '#ifdef FULL_SYSTEM'. Key thing needed for syscall emulation at this point is the PhysicalMemory object (for Process initialization). --HG-- extra : convert_revision : f0f34b47bd4f77b502191affd3d03b4d6d9bcdd8
234 lines
6.8 KiB
C++
234 lines
6.8 KiB
C++
/*
|
|
* Copyright (c) 2002-2005 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __CPU_BASE_HH__
|
|
#define __CPU_BASE_HH__
|
|
|
|
#include <vector>
|
|
|
|
#include "base/statistics.hh"
|
|
#include "config/full_system.hh"
|
|
#include "cpu/sampler/sampler.hh"
|
|
#include "sim/eventq.hh"
|
|
#include "sim/sim_object.hh"
|
|
#include "targetarch/isa_traits.hh"
|
|
|
|
class System;
|
|
class BranchPred;
|
|
class ExecContext;
|
|
|
|
class BaseCPU : public SimObject
|
|
{
|
|
protected:
|
|
// CPU's clock period in terms of the number of ticks of curTime.
|
|
Tick clock;
|
|
|
|
public:
|
|
inline Tick frequency() const { return Clock::Frequency / clock; }
|
|
inline Tick cycles(int numCycles) const { return clock * numCycles; }
|
|
inline Tick curCycle() const { return curTick / clock; }
|
|
|
|
#if FULL_SYSTEM
|
|
protected:
|
|
uint64_t interrupts[NumInterruptLevels];
|
|
uint64_t intstatus;
|
|
|
|
public:
|
|
virtual void post_interrupt(int int_num, int index);
|
|
virtual void clear_interrupt(int int_num, int index);
|
|
virtual void clear_interrupts();
|
|
bool checkInterrupts;
|
|
|
|
bool check_interrupt(int int_num) const {
|
|
if (int_num > NumInterruptLevels)
|
|
panic("int_num out of bounds\n");
|
|
|
|
return interrupts[int_num] != 0;
|
|
}
|
|
|
|
bool check_interrupts() const { return intstatus != 0; }
|
|
uint64_t intr_status() const { return intstatus; }
|
|
|
|
class ProfileEvent : public Event
|
|
{
|
|
private:
|
|
BaseCPU *cpu;
|
|
int interval;
|
|
|
|
public:
|
|
ProfileEvent(BaseCPU *cpu, int interval);
|
|
void process();
|
|
};
|
|
ProfileEvent *profileEvent;
|
|
#endif
|
|
|
|
protected:
|
|
std::vector<ExecContext *> execContexts;
|
|
|
|
public:
|
|
|
|
/// Notify the CPU that the indicated context is now active. The
|
|
/// delay parameter indicates the number of ticks to wait before
|
|
/// executing (typically 0 or 1).
|
|
virtual void activateContext(int thread_num, int delay) {}
|
|
|
|
/// Notify the CPU that the indicated context is now suspended.
|
|
virtual void suspendContext(int thread_num) {}
|
|
|
|
/// Notify the CPU that the indicated context is now deallocated.
|
|
virtual void deallocateContext(int thread_num) {}
|
|
|
|
/// Notify the CPU that the indicated context is now halted.
|
|
virtual void haltContext(int thread_num) {}
|
|
|
|
public:
|
|
struct Params
|
|
{
|
|
std::string name;
|
|
int numberOfThreads;
|
|
bool deferRegistration;
|
|
Counter max_insts_any_thread;
|
|
Counter max_insts_all_threads;
|
|
Counter max_loads_any_thread;
|
|
Counter max_loads_all_threads;
|
|
Tick clock;
|
|
bool functionTrace;
|
|
Tick functionTraceStart;
|
|
System *system;
|
|
#if FULL_SYSTEM
|
|
int cpu_id;
|
|
Tick profile;
|
|
#endif
|
|
|
|
Params();
|
|
};
|
|
|
|
const Params *params;
|
|
|
|
BaseCPU(Params *params);
|
|
virtual ~BaseCPU();
|
|
|
|
virtual void init();
|
|
virtual void startup();
|
|
virtual void regStats();
|
|
|
|
void registerExecContexts();
|
|
|
|
/// Prepare for another CPU to take over execution. When it is
|
|
/// is ready (drained pipe) it signals the sampler.
|
|
virtual void switchOut(Sampler *);
|
|
|
|
/// Take over execution from the given CPU. Used for warm-up and
|
|
/// sampling.
|
|
virtual void takeOverFrom(BaseCPU *);
|
|
|
|
/**
|
|
* Number of threads we're actually simulating (<= SMT_MAX_THREADS).
|
|
* This is a constant for the duration of the simulation.
|
|
*/
|
|
int number_of_threads;
|
|
|
|
/**
|
|
* Vector of per-thread instruction-based event queues. Used for
|
|
* scheduling events based on number of instructions committed by
|
|
* a particular thread.
|
|
*/
|
|
EventQueue **comInstEventQueue;
|
|
|
|
/**
|
|
* Vector of per-thread load-based event queues. Used for
|
|
* scheduling events based on number of loads committed by
|
|
*a particular thread.
|
|
*/
|
|
EventQueue **comLoadEventQueue;
|
|
|
|
System *system;
|
|
|
|
#if FULL_SYSTEM
|
|
/**
|
|
* Serialize this object to the given output stream.
|
|
* @param os The stream to serialize to.
|
|
*/
|
|
virtual void serialize(std::ostream &os);
|
|
|
|
/**
|
|
* Reconstruct the state of this object from a checkpoint.
|
|
* @param cp The checkpoint use.
|
|
* @param section The section name of this object
|
|
*/
|
|
virtual void unserialize(Checkpoint *cp, const std::string §ion);
|
|
|
|
#endif
|
|
|
|
/**
|
|
* Return pointer to CPU's branch predictor (NULL if none).
|
|
* @return Branch predictor pointer.
|
|
*/
|
|
virtual BranchPred *getBranchPred() { return NULL; };
|
|
|
|
virtual Counter totalInstructions() const { return 0; }
|
|
|
|
// Function tracing
|
|
private:
|
|
bool functionTracingEnabled;
|
|
std::ostream *functionTraceStream;
|
|
Addr currentFunctionStart;
|
|
Addr currentFunctionEnd;
|
|
Tick functionEntryTick;
|
|
void enableFunctionTrace();
|
|
void traceFunctionsInternal(Addr pc);
|
|
|
|
protected:
|
|
void traceFunctions(Addr pc)
|
|
{
|
|
if (functionTracingEnabled)
|
|
traceFunctionsInternal(pc);
|
|
}
|
|
|
|
private:
|
|
static std::vector<BaseCPU *> cpuList; //!< Static global cpu list
|
|
|
|
public:
|
|
static int numSimulatedCPUs() { return cpuList.size(); }
|
|
static Counter numSimulatedInstructions()
|
|
{
|
|
Counter total = 0;
|
|
|
|
int size = cpuList.size();
|
|
for (int i = 0; i < size; ++i)
|
|
total += cpuList[i]->totalInstructions();
|
|
|
|
return total;
|
|
}
|
|
|
|
public:
|
|
// Number of CPU cycles simulated
|
|
Stats::Scalar<> numCycles;
|
|
};
|
|
|
|
#endif // __CPU_BASE_HH__
|