gem5/configs/example/memtest.py
Andreas Hansson 337774e192 config: Update memtest to stress test clean writebacks
This patch adds yet another twist to the memtest cache hierarchy, in that
the writeback_clean option is toggled at every level to match the
clusivity of the downstream cache.
2015-11-06 03:26:44 -05:00

319 lines
12 KiB
Python

# Copyright (c) 2015 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2006-2007 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Ron Dreslinski
# Andreas Hansson
import optparse
import random
import sys
import m5
from m5.objects import *
# This example script stress tests the memory system by creating false
# sharing in a tree topology. At the bottom of the tree is a shared
# memory, and then at each level a number of testers are attached,
# along with a number of caches that them selves fan out to subtrees
# of testers and caches. Thus, it is possible to create a system with
# arbitrarily deep cache hierarchies, sharing or no sharing of caches,
# and testers not only at the L1s, but also at the L2s, L3s etc.
parser = optparse.OptionParser()
parser.add_option("-a", "--atomic", action="store_true",
help="Use atomic (non-timing) mode")
parser.add_option("-b", "--blocking", action="store_true",
help="Use blocking caches")
parser.add_option("-l", "--maxloads", metavar="N", default=0,
help="Stop after N loads")
parser.add_option("-m", "--maxtick", type="int", default=m5.MaxTick,
metavar="T",
help="Stop after T ticks")
# The tree specification consists of two colon-separated lists of one
# or more integers, one for the caches, and one for the testers. The
# first integer is the number of caches/testers closest to main
# memory. Each cache then fans out to a subtree. The last integer in
# the list is the number of caches/testers associated with the
# uppermost level of memory. The other integers (if any) specify the
# number of caches/testers connected at each level of the crossbar
# hierarchy. The tester string should have one element more than the
# cache string as there should always be testers attached to the
# uppermost caches.
parser.add_option("-c", "--caches", type="string", default="2:2:1",
help="Colon-separated cache hierarchy specification, "
"see script comments for details "
"[default: %default]")
parser.add_option("-t", "--testers", type="string", default="1:1:0:2",
help="Colon-separated tester hierarchy specification, "
"see script comments for details "
"[default: %default]")
parser.add_option("-f", "--functional", type="int", default=0,
metavar="PCT",
help="Target percentage of functional accesses "
"[default: %default]")
parser.add_option("-u", "--uncacheable", type="int", default=0,
metavar="PCT",
help="Target percentage of uncacheable accesses "
"[default: %default]")
parser.add_option("-r", "--random", action="store_true",
help="Generate a random tree topology")
parser.add_option("--progress", type="int", default=100000,
metavar="NLOADS",
help="Progress message interval "
"[default: %default]")
parser.add_option("--sys-clock", action="store", type="string",
default='1GHz',
help = """Top-level clock for blocks running at system
speed""")
(options, args) = parser.parse_args()
if args:
print "Error: script doesn't take any positional arguments"
sys.exit(1)
# Get the total number of testers
def numtesters(cachespec, testerspec):
# Determine the tester multiplier for each level as the
# elements are per subsystem and it fans out
multiplier = [1]
for c in cachespec:
multiplier.append(multiplier[-1] * c)
total = 0
for t, m in zip(testerspec, multiplier):
total += t * m
return total
block_size = 64
# Start by parsing the command line options and do some basic sanity
# checking
if options.random:
# Generate a tree with a valid number of testers
while True:
tree_depth = random.randint(1, 4)
cachespec = [random.randint(1, 3) for i in range(tree_depth)]
testerspec = [random.randint(1, 3) for i in range(tree_depth + 1)]
if numtesters(cachespec, testerspec) < block_size:
break
print "Generated random tree -c", ':'.join(map(str, cachespec)), \
"-t", ':'.join(map(str, testerspec))
else:
try:
cachespec = [int(x) for x in options.caches.split(':')]
testerspec = [int(x) for x in options.testers.split(':')]
except:
print "Error: Unable to parse caches or testers option"
sys.exit(1)
if len(cachespec) < 1:
print "Error: Must have at least one level of caches"
sys.exit(1)
if len(cachespec) != len(testerspec) - 1:
print "Error: Testers must have one element more than caches"
sys.exit(1)
if testerspec[-1] == 0:
print "Error: Must have testers at the uppermost level"
sys.exit(1)
for t in testerspec:
if t < 0:
print "Error: Cannot have a negative number of testers"
sys.exit(1)
for c in cachespec:
if c < 1:
print "Error: Must have 1 or more caches at each level"
sys.exit(1)
if numtesters(cachespec, testerspec) > block_size:
print "Error: Limited to %s testers because of false sharing" \
% (block_size)
sys.exit(1)
# Define a prototype L1 cache that we scale for all successive levels
proto_l1 = Cache(size = '32kB', assoc = 4,
hit_latency = 1, response_latency = 1,
tgts_per_mshr = 8, clusivity = 'mostly_incl',
writeback_clean = True)
if options.blocking:
proto_l1.mshrs = 1
else:
proto_l1.mshrs = 4
cache_proto = [proto_l1]
# Now add additional cache levels (if any) by scaling L1 params, the
# first element is Ln, and the last element L1
for scale in cachespec[:-1]:
# Clone previous level and update params
prev = cache_proto[0]
next = prev()
next.size = prev.size * scale
next.hit_latency = prev.hit_latency * 10
next.response_latency = prev.response_latency * 10
next.assoc = prev.assoc * scale
next.mshrs = prev.mshrs * scale
# Swap the inclusivity/exclusivity at each level. L2 is mostly
# exclusive with respect to L1, L3 mostly inclusive, L4 mostly
# exclusive etc.
next.writeback_clean = not prev.writeback_clean
if (prev.clusivity.value == 'mostly_incl'):
next.clusivity = 'mostly_excl'
else:
next.clusivity = 'mostly_incl'
cache_proto.insert(0, next)
# Make a prototype for the tester to be used throughout
proto_tester = MemTest(max_loads = options.maxloads,
percent_functional = options.functional,
percent_uncacheable = options.uncacheable,
progress_interval = options.progress)
# Set up the system along with a simple memory and reference memory
system = System(physmem = SimpleMemory(),
cache_line_size = block_size)
system.voltage_domain = VoltageDomain(voltage = '1V')
system.clk_domain = SrcClockDomain(clock = options.sys_clock,
voltage_domain = system.voltage_domain)
# For each level, track the next subsys index to use
next_subsys_index = [0] * (len(cachespec) + 1)
# Recursive function to create a sub-tree of the cache and tester
# hierarchy
def make_cache_level(ncaches, prototypes, level, next_cache):
global next_subsys_index, proto_l1, testerspec, proto_tester
index = next_subsys_index[level]
next_subsys_index[level] += 1
# Create a subsystem to contain the crossbar and caches, and
# any testers
subsys = SubSystem()
setattr(system, 'l%dsubsys%d' % (level, index), subsys)
# The levels are indexing backwards through the list
ntesters = testerspec[len(cachespec) - level]
# Scale the progress threshold as testers higher up in the tree
# (smaller level) get a smaller portion of the overall bandwidth,
# and also make the interval of packet injection longer for the
# testers closer to the memory (larger level) to prevent them
# hogging all the bandwidth
limit = (len(cachespec) - level + 1) * 100000000
testers = [proto_tester(interval = 10 * (level * level + 1),
progress_check = limit) \
for i in xrange(ntesters)]
if ntesters:
subsys.tester = testers
if level != 0:
# Create a crossbar and add it to the subsystem, note that
# we do this even with a single element on this level
xbar = L2XBar()
subsys.xbar = xbar
if next_cache:
xbar.master = next_cache.cpu_side
# Create and connect the caches, both the ones fanning out
# to create the tree, and the ones used to connect testers
# on this level
tree_caches = [prototypes[0]() for i in xrange(ncaches[0])]
tester_caches = [proto_l1() for i in xrange(ntesters)]
subsys.cache = tester_caches + tree_caches
for cache in tree_caches:
cache.mem_side = xbar.slave
make_cache_level(ncaches[1:], prototypes[1:], level - 1, cache)
for tester, cache in zip(testers, tester_caches):
tester.port = cache.cpu_side
cache.mem_side = xbar.slave
else:
if not next_cache:
print "Error: No next-level cache at top level"
sys.exit(1)
if ntesters > 1:
# Create a crossbar and add it to the subsystem
xbar = L2XBar()
subsys.xbar = xbar
xbar.master = next_cache.cpu_side
for tester in testers:
tester.port = xbar.slave
else:
# Single tester
testers[0].port = next_cache.cpu_side
# Top level call to create the cache hierarchy, bottom up
make_cache_level(cachespec, cache_proto, len(cachespec), None)
# Connect the lowest level crossbar to the memory
last_subsys = getattr(system, 'l%dsubsys0' % len(cachespec))
last_subsys.xbar.master = system.physmem.port
root = Root(full_system = False, system = system)
if options.atomic:
root.system.mem_mode = 'atomic'
else:
root.system.mem_mode = 'timing'
# The system port is never used in the tester so merely connect it
# to avoid problems
root.system.system_port = last_subsys.xbar.slave
# Instantiate configuration
m5.instantiate()
# Simulate until program terminates
exit_event = m5.simulate(options.maxtick)
print 'Exiting @ tick', m5.curTick(), 'because', exit_event.getCause()