gem5/cpu/simple/base.cc
Steve Reinhardt 935ba67b4f Get basic full-system working with AtomicSimpleCPU.
SConscript:
    Comment out sinic for now... needs to be fixed to compile under newmem.
configs/test/SysPaths.py:
    Fix paths.
configs/test/fs.py:
    SimpleCPU -> AtomicSimpleCPU
    Fix vmlinux path
cpu/simple/atomic.cc:
    Fix suspendContext() so quiesce works.
    Don't forget to checkForInterrupts().
cpu/simple/base.cc:
    Minor fix to interrupt check code.
dev/ide_disk.hh:
    Don't declare regStats() in header since it's not in
    .cc file anymore (will need to add it back in when
    stats are added back).
dev/io_device.cc:
    Set packet dest to Packet::Broadcast.
dev/pciconfigall.cc:
    Set PCI config packet result to Success.
python/m5/objects/Root.py:
    Add debug object to Root so things like break_cycles
    can be set from command line.

--HG--
extra : convert_revision : aa1c652fe589784e753e13ad9acb0cd5f3b6eafb
2006-05-17 22:08:44 -04:00

478 lines
12 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/utility.hh"
#include "base/cprintf.hh"
#include "base/inifile.hh"
#include "base/loader/symtab.hh"
#include "base/misc.hh"
#include "base/pollevent.hh"
#include "base/range.hh"
#include "base/stats/events.hh"
#include "base/trace.hh"
#include "cpu/base.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/exec_context.hh"
#include "cpu/exetrace.hh"
#include "cpu/profile.hh"
#include "cpu/sampler/sampler.hh"
#include "cpu/simple/base.hh"
#include "cpu/smt.hh"
#include "cpu/static_inst.hh"
#include "kern/kernel_stats.hh"
#include "mem/packet_impl.hh"
#include "sim/byteswap.hh"
#include "sim/builder.hh"
#include "sim/debug.hh"
#include "sim/host.hh"
#include "sim/sim_events.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"
#if FULL_SYSTEM
#include "base/remote_gdb.hh"
#include "sim/system.hh"
#include "arch/tlb.hh"
#include "arch/stacktrace.hh"
#include "arch/vtophys.hh"
#else // !FULL_SYSTEM
#include "mem/mem_object.hh"
#endif // FULL_SYSTEM
using namespace std;
using namespace TheISA;
BaseSimpleCPU::BaseSimpleCPU(Params *p)
: BaseCPU(p), mem(p->mem), cpuXC(NULL)
{
#if FULL_SYSTEM
cpuXC = new CPUExecContext(this, 0, p->system, p->itb, p->dtb);
#else
cpuXC = new CPUExecContext(this, /* thread_num */ 0, p->process,
/* asid */ 0, mem);
#endif // !FULL_SYSTEM
xcProxy = cpuXC->getProxy();
numInst = 0;
startNumInst = 0;
numLoad = 0;
startNumLoad = 0;
lastIcacheStall = 0;
lastDcacheStall = 0;
execContexts.push_back(xcProxy);
}
BaseSimpleCPU::~BaseSimpleCPU()
{
}
void
BaseSimpleCPU::deallocateContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
BaseSimpleCPU::haltContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
BaseSimpleCPU::regStats()
{
using namespace Stats;
BaseCPU::regStats();
numInsts
.name(name() + ".num_insts")
.desc("Number of instructions executed")
;
numMemRefs
.name(name() + ".num_refs")
.desc("Number of memory references")
;
notIdleFraction
.name(name() + ".not_idle_fraction")
.desc("Percentage of non-idle cycles")
;
idleFraction
.name(name() + ".idle_fraction")
.desc("Percentage of idle cycles")
;
icacheStallCycles
.name(name() + ".icache_stall_cycles")
.desc("ICache total stall cycles")
.prereq(icacheStallCycles)
;
dcacheStallCycles
.name(name() + ".dcache_stall_cycles")
.desc("DCache total stall cycles")
.prereq(dcacheStallCycles)
;
icacheRetryCycles
.name(name() + ".icache_retry_cycles")
.desc("ICache total retry cycles")
.prereq(icacheRetryCycles)
;
dcacheRetryCycles
.name(name() + ".dcache_retry_cycles")
.desc("DCache total retry cycles")
.prereq(dcacheRetryCycles)
;
idleFraction = constant(1.0) - notIdleFraction;
}
void
BaseSimpleCPU::resetStats()
{
startNumInst = numInst;
// notIdleFraction = (_status != Idle);
}
void
BaseSimpleCPU::serialize(ostream &os)
{
BaseCPU::serialize(os);
SERIALIZE_SCALAR(inst);
nameOut(os, csprintf("%s.xc", name()));
cpuXC->serialize(os);
}
void
BaseSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
BaseCPU::unserialize(cp, section);
UNSERIALIZE_SCALAR(inst);
cpuXC->unserialize(cp, csprintf("%s.xc", section));
}
void
change_thread_state(int thread_number, int activate, int priority)
{
}
Fault
BaseSimpleCPU::copySrcTranslate(Addr src)
{
#if 0
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
int offset = src & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(src & PageMask) != ((src + blk_size) & PageMask) &&
(src >> 40) != 0xfffffc) {
warn("Copied block source spans pages %x.", src);
no_warn = false;
}
memReq->reset(src & ~(blk_size - 1), blk_size);
// translate to physical address
Fault fault = cpuXC->translateDataReadReq(req);
if (fault == NoFault) {
cpuXC->copySrcAddr = src;
cpuXC->copySrcPhysAddr = memReq->paddr + offset;
} else {
assert(!fault->isAlignmentFault());
cpuXC->copySrcAddr = 0;
cpuXC->copySrcPhysAddr = 0;
}
return fault;
#else
return NoFault;
#endif
}
Fault
BaseSimpleCPU::copy(Addr dest)
{
#if 0
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
uint8_t data[blk_size];
//assert(cpuXC->copySrcAddr);
int offset = dest & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(dest & PageMask) != ((dest + blk_size) & PageMask) &&
(dest >> 40) != 0xfffffc) {
no_warn = false;
warn("Copied block destination spans pages %x. ", dest);
}
memReq->reset(dest & ~(blk_size -1), blk_size);
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(req);
if (fault == NoFault) {
Addr dest_addr = memReq->paddr + offset;
// Need to read straight from memory since we have more than 8 bytes.
memReq->paddr = cpuXC->copySrcPhysAddr;
cpuXC->mem->read(memReq, data);
memReq->paddr = dest_addr;
cpuXC->mem->write(memReq, data);
if (dcacheInterface) {
memReq->cmd = Copy;
memReq->completionEvent = NULL;
memReq->paddr = cpuXC->copySrcPhysAddr;
memReq->dest = dest_addr;
memReq->size = 64;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
dcacheInterface->access(memReq);
}
}
else
assert(!fault->isAlignmentFault());
return fault;
#else
panic("copy not implemented");
return NoFault;
#endif
}
#if FULL_SYSTEM
Addr
BaseSimpleCPU::dbg_vtophys(Addr addr)
{
return vtophys(xcProxy, addr);
}
#endif // FULL_SYSTEM
#if FULL_SYSTEM
void
BaseSimpleCPU::post_interrupt(int int_num, int index)
{
BaseCPU::post_interrupt(int_num, index);
if (cpuXC->status() == ExecContext::Suspended) {
DPRINTF(IPI,"Suspended Processor awoke\n");
cpuXC->activate();
}
}
#endif // FULL_SYSTEM
void
BaseSimpleCPU::checkForInterrupts()
{
#if FULL_SYSTEM
if (checkInterrupts && check_interrupts() && !cpuXC->inPalMode()) {
int ipl = 0;
int summary = 0;
checkInterrupts = false;
if (cpuXC->readMiscReg(IPR_SIRR)) {
for (int i = INTLEVEL_SOFTWARE_MIN;
i < INTLEVEL_SOFTWARE_MAX; i++) {
if (cpuXC->readMiscReg(IPR_SIRR) & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1;
summary |= (ULL(1) << i);
}
}
}
uint64_t interrupts = cpuXC->cpu->intr_status();
for (int i = INTLEVEL_EXTERNAL_MIN;
i < INTLEVEL_EXTERNAL_MAX; i++) {
if (interrupts & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = i;
summary |= (ULL(1) << i);
}
}
if (cpuXC->readMiscReg(IPR_ASTRR))
panic("asynchronous traps not implemented\n");
if (ipl && ipl > cpuXC->readMiscReg(IPR_IPLR)) {
cpuXC->setMiscReg(IPR_ISR, summary);
cpuXC->setMiscReg(IPR_INTID, ipl);
Fault(new InterruptFault)->invoke(xcProxy);
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
cpuXC->readMiscReg(IPR_IPLR), ipl, summary);
}
}
#endif
}
Fault
BaseSimpleCPU::setupFetchPacket(Packet *ifetch_pkt)
{
// Try to fetch an instruction
// set up memory request for instruction fetch
DPRINTF(Fetch,"Fetch: PC:%08p NPC:%08p NNPC:%08p\n",cpuXC->readPC(),
cpuXC->readNextPC(),cpuXC->readNextNPC());
Request *ifetch_req = ifetch_pkt->req;
ifetch_req->setVaddr(cpuXC->readPC() & ~3);
ifetch_req->setTime(curTick);
#if FULL_SYSTEM
ifetch_req->setFlags((cpuXC->readPC() & 1) ? PHYSICAL : 0);
#else
ifetch_req->setFlags(0);
#endif
Fault fault = cpuXC->translateInstReq(ifetch_req);
if (fault == NoFault) {
ifetch_pkt->addr = ifetch_req->getPaddr();
}
return fault;
}
void
BaseSimpleCPU::preExecute()
{
// maintain $r0 semantics
cpuXC->setIntReg(ZeroReg, 0);
#if THE_ISA == ALPHA_ISA
cpuXC->setFloatReg(ZeroReg, 0.0);
#endif // ALPHA_ISA
// keep an instruction count
numInst++;
numInsts++;
cpuXC->func_exe_inst++;
// check for instruction-count-based events
comInstEventQueue[0]->serviceEvents(numInst);
// decode the instruction
inst = gtoh(inst);
curStaticInst = StaticInst::decode(makeExtMI(inst, cpuXC->readPC()));
traceData = Trace::getInstRecord(curTick, xcProxy, this, curStaticInst,
cpuXC->readPC());
DPRINTF(Decode,"Decode: Decoded %s instruction (opcode: 0x%x): 0x%x\n",
curStaticInst->getName(), curStaticInst->getOpcode(),
curStaticInst->machInst);
#if FULL_SYSTEM
cpuXC->setInst(inst);
#endif // FULL_SYSTEM
}
void
BaseSimpleCPU::postExecute()
{
#if FULL_SYSTEM
if (system->kernelBinning->fnbin) {
assert(kernelStats);
system->kernelBinning->execute(xcProxy, inst);
}
if (cpuXC->profile) {
bool usermode =
(cpuXC->readMiscReg(AlphaISA::IPR_DTB_CM) & 0x18) != 0;
cpuXC->profilePC = usermode ? 1 : cpuXC->readPC();
ProfileNode *node = cpuXC->profile->consume(xcProxy, inst);
if (node)
cpuXC->profileNode = node;
}
#endif
if (curStaticInst->isMemRef()) {
numMemRefs++;
}
if (curStaticInst->isLoad()) {
++numLoad;
comLoadEventQueue[0]->serviceEvents(numLoad);
}
traceFunctions(cpuXC->readPC());
}
void
BaseSimpleCPU::advancePC(Fault fault)
{
if (fault != NoFault) {
#if FULL_SYSTEM
fault->invoke(xcProxy);
#else // !FULL_SYSTEM
fatal("fault (%s) detected @ PC %08p", fault->name(), cpuXC->readPC());
#endif // FULL_SYSTEM
}
else {
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
#if THE_ISA == ALPHA_ISA
cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst));
#else
cpuXC->setNextPC(cpuXC->readNextNPC());
cpuXC->setNextNPC(cpuXC->readNextNPC() + sizeof(MachInst));
#endif
}
#if FULL_SYSTEM
Addr oldpc;
do {
oldpc = cpuXC->readPC();
system->pcEventQueue.service(xcProxy);
} while (oldpc != cpuXC->readPC());
#endif
}