gem5/src/mem/ruby/network/orion/OrionRouter.cc
Andreas Hansson b6aa6d55eb clang/gcc: Fix compilation issues with clang 3.0 and gcc 4.6
This patch addresses a number of minor issues that cause problems when
compiling with clang >= 3.0 and gcc >= 4.6. Most importantly, it
avoids using the deprecated ext/hash_map and instead uses
unordered_map (and similarly so for the hash_set). To make use of the
new STL containers, g++ and clang has to be invoked with "-std=c++0x",
and this is now added for all gcc versions >= 4.6, and for clang >=
3.0. For gcc >= 4.3 and <= 4.5 and clang <= 3.0 we use the tr1
unordered_map to avoid the deprecation warning.

The addition of c++0x in turn causes a few problems, as the
compiler is more stringent and adds a number of new warnings. Below,
the most important issues are enumerated:

1) the use of namespaces is more strict, e.g. for isnan, and all
   headers opening the entire namespace std are now fixed.

2) another other issue caused by the more stringent compiler is the
   narrowing of the embedded python, which used to be a char array,
   and is now unsigned char since there were values larger than 128.

3) a particularly odd issue that arose with the new c++0x behaviour is
   found in range.hh, where the operator< causes gcc to complain about
   the template type parsing (the "<" is interpreted as the beginning
   of a template argument), and the problem seems to be related to the
   begin/end members introduced for the range-type iteration, which is
   a new feature in c++11.

As a minor update, this patch also fixes the build flags for the clang
debug target that used to be shared with gcc and incorrectly use
"-ggdb".
2012-04-14 05:43:31 -04:00

497 lines
14 KiB
C++

/*
* Copyright (c) 2009 Princeton University
* Copyright (c) 2009 The Regents of the University of California
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Hangsheng Wang (Orion 1.0, Princeton)
* Xinping Zhu (Orion 1.0, Princeton)
* Xuning Chen (Orion 1.0, Princeton)
* Bin Li (Orion 2.0, Princeton)
* Kambiz Samadi (Orion 2.0, UC San Diego)
*/
#include <cassert>
#include "mem/ruby/network/orion/Allocator/SWAllocator.hh"
#include "mem/ruby/network/orion/Allocator/VCAllocator.hh"
#include "mem/ruby/network/orion/Buffer/Buffer.hh"
#include "mem/ruby/network/orion/Crossbar/Crossbar.hh"
#include "mem/ruby/network/orion/Clock.hh"
#include "mem/ruby/network/orion/OrionConfig.hh"
#include "OrionRouter.hh"
using namespace std;
OrionRouter::OrionRouter(
uint32_t num_in_port_,
uint32_t num_out_port_,
uint32_t num_vclass_,
std::vector<uint32_t > vclass_type_ary_,
uint32_t num_vc_per_vclass_,
uint32_t in_buf_per_data_vc_,
uint32_t in_buf_per_ctrl_vc_,
uint32_t flit_width_,
OrionConfig* orion_cfg_ptr_
)
{
assert((num_in_port_ == num_in_port_) && (num_in_port_ != 0));
assert((num_out_port_ == num_out_port_) && (num_out_port_ != 0));
assert((num_vclass_ == num_vclass_) && (num_vclass_ != 0));
assert((num_vc_per_vclass_ == num_vc_per_vclass_) && (num_vc_per_vclass_ != 0));
assert(in_buf_per_data_vc_ != 0);
assert(in_buf_per_ctrl_vc_ != 0);
assert((flit_width_ == flit_width_) && (flit_width_ != 0));
orion_cfg_ptr_->set_num_in_port(num_in_port_);
orion_cfg_ptr_->set_num_out_port(num_out_port_);
orion_cfg_ptr_->set_num_vclass(num_vclass_);
orion_cfg_ptr_->set_flit_width(flit_width_);
m_orion_cfg_ptr = orion_cfg_ptr_;
m_num_in_port = m_orion_cfg_ptr->get<uint32_t>("NUM_INPUT_PORT");
m_num_out_port = m_orion_cfg_ptr->get<uint32_t>("NUM_OUTPUT_PORT");
m_flit_width = m_orion_cfg_ptr->get<uint32_t>("FLIT_WIDTH");
m_num_vclass = m_orion_cfg_ptr->get<uint32_t>("NUM_VIRTUAL_CLASS");
m_num_vc_per_vclass_ary = new uint32_t [m_num_vclass];
m_in_buf_num_set_ary = new uint32_t [m_num_vclass];
for (int i = 0; i < m_num_vclass; i++)
{
// can also suppport different vcs per vclass
m_num_vc_per_vclass_ary[i] = num_vc_per_vclass_;
if (vclass_type_ary_[i] == 0) // ctrl
m_in_buf_num_set_ary[i] = in_buf_per_ctrl_vc_;
else if (vclass_type_ary_[i] == 1) // data
m_in_buf_num_set_ary[i] = in_buf_per_data_vc_;
else
assert(0);
}
init();
}
OrionRouter::~OrionRouter()
{
delete[] m_num_vc_per_vclass_ary;
delete[] m_in_buf_num_set_ary;
if (m_in_buf_ary_ptr)
{
for (uint32_t i = 0; i < m_num_vclass; i++)
{
delete m_in_buf_ary_ptr[i];
}
delete[] m_in_buf_ary_ptr;
}
if (m_va_ary_ptr)
{
for (uint32_t i = 0; i < m_num_vclass; i++)
{
delete m_va_ary_ptr[i];
}
delete[] m_va_ary_ptr;
}
delete m_xbar_ptr;
delete m_sa_ptr;
delete m_clk_ptr;
}
double OrionRouter::calc_dynamic_energy_buf(uint32_t vclass_id_, bool is_read_, bool is_max_) const
{
assert(vclass_id_ < m_num_vclass);
if (m_in_buf_ary_ptr)
{
if (m_in_buf_ary_ptr[vclass_id_])
{
return m_in_buf_ary_ptr[vclass_id_]->get_dynamic_energy(is_read_, is_max_);
}
else
{
return 0;
}
}
else
{
return 0;
}
}
double OrionRouter::calc_dynamic_energy_xbar(bool is_max_) const
{
if (m_xbar_ptr)
{
return m_xbar_ptr->get_dynamic_energy(is_max_);
}
else
{
return 0;
}
}
double OrionRouter::calc_dynamic_energy_local_vc_arb(uint32_t vclass_id_, double num_req_, bool is_max_) const
{
assert(vclass_id_ < m_num_vclass);
if (m_va_ary_ptr)
{
if (m_va_ary_ptr[vclass_id_])
{
return m_va_ary_ptr[vclass_id_]->get_dynamic_energy_local_vc_arb(num_req_, is_max_);
}
else
{
return 0;
}
}
else
{
return 0;
}
}
double OrionRouter::calc_dynamic_energy_global_vc_arb(uint32_t vclass_id_, double num_req_, bool is_max_) const
{
assert(vclass_id_ < m_num_vclass);
if (m_va_ary_ptr)
{
if (m_va_ary_ptr[vclass_id_])
{
return m_va_ary_ptr[vclass_id_]->get_dynamic_energy_global_vc_arb(num_req_, is_max_);
}
else
{
return 0;
}
}
else
{
return 0;
}
}
//double OrionRouter::calc_dynamic_energy_vc_select(bool is_read_, bool is_max_) const
//{
// if (m_vc_select_ptr)
// {
// return m_vc_select_ptr->get_dynamic_energy_vc_select(is_read_, is_max_);
// }
// else
// {
// return 0;
// }
//}
double OrionRouter::calc_dynamic_energy_local_sw_arb(double num_req_, bool is_max_) const
{
if (m_sa_ptr)
{
return m_sa_ptr->get_dynamic_energy_local_sw_arb(num_req_, is_max_);
}
else
{
return 0;
}
}
double OrionRouter::calc_dynamic_energy_global_sw_arb(double num_req_, bool is_max_) const
{
if (m_sa_ptr)
{
return m_sa_ptr->get_dynamic_energy_global_sw_arb(num_req_, is_max_);
}
else
{
return 0;
}
}
double OrionRouter::calc_dynamic_energy_clock() const
{
if (m_clk_ptr)
{
return m_clk_ptr->get_dynamic_energy();
}
else
{
return 0;
}
}
double OrionRouter::get_static_power_buf() const
{
if (m_in_buf_ary_ptr)
{
double total_static_power = 0;
for (uint32_t i = 0; i < m_num_vclass; i++)
{
uint32_t num_in_buf;
if (m_is_in_shared_buf)
{
num_in_buf = m_num_in_port;
}
else
{
num_in_buf = m_num_vc_per_vclass_ary[i]*m_num_in_port;
}
total_static_power += m_in_buf_ary_ptr[i]->get_static_power()*(double)num_in_buf;
}
return total_static_power;
}
else
{
return 0;
}
}
double OrionRouter::get_static_power_xbar() const
{
if (m_xbar_ptr)
{
return m_xbar_ptr->get_static_power();
}
else
{
return 0;
}
}
double OrionRouter::get_static_power_va() const
{
if (m_va_ary_ptr)
{
double total_static_power = 0;
for (uint32_t i = 0; i < m_num_vclass; i++)
{
total_static_power += m_va_ary_ptr[i]->get_static_power();
}
return total_static_power;
}
else
{
return 0;
}
}
//double OrionRouter::get_static_power_vc_select() const
//{
// if (m_vc_select_ptr)
// {
// return m_vc_select_ptr->get_static_power();
// }
// else
// {
// return 0;
// }
//}
double OrionRouter::get_static_power_sa() const
{
if (m_sa_ptr)
{
return m_sa_ptr->get_static_power();
}
else
{
return 0;
}
}
double OrionRouter::get_static_power_clock() const
{
if (m_clk_ptr)
{
return m_clk_ptr->get_static_power();
}
else
{
return 0;
}
}
void OrionRouter::init()
{
m_total_num_vc = 0;
for (uint32_t i = 0; i < m_num_vclass; i++)
{
m_total_num_vc += m_num_vc_per_vclass_ary[i];
}
if (m_total_num_vc > 1)
{
m_is_in_shared_buf = m_orion_cfg_ptr->get<bool>("IS_IN_SHARED_BUFFER");
m_is_out_shared_buf = m_orion_cfg_ptr->get<bool>("IS_OUT_SHARED_BUFFER");
m_is_in_shared_switch = m_orion_cfg_ptr->get<bool>("IS_IN_SHARED_SWITCH");
m_is_out_shared_switch = m_orion_cfg_ptr->get<bool>("IS_OUT_SHARED_SWITCH");
}
else
{
m_is_in_shared_buf = false;
m_is_out_shared_buf = false;
m_is_in_shared_switch = false;
m_is_out_shared_switch = false;
}
//input buffer
bool is_in_buf = m_orion_cfg_ptr->get<bool>("IS_INPUT_BUFFER");
if (is_in_buf)
{
bool is_fifo = true;
bool is_outdrv = (!m_is_in_shared_buf) && (m_is_in_shared_switch);
const string& in_buf_model_str = m_orion_cfg_ptr->get<string>("IN_BUF_MODEL");
m_in_buf_ary_ptr = new Buffer* [m_num_vclass];
for (uint32_t i = 0; i < m_num_vclass; i++)
{
uint32_t in_buf_num_read_port = m_orion_cfg_ptr->get<uint32_t>("IN_BUF_NUM_READ_PORT");
uint32_t in_buf_num_set = m_in_buf_num_set_ary[i];
m_in_buf_ary_ptr[i] = new Buffer(in_buf_model_str, is_fifo, is_outdrv,
in_buf_num_set, m_flit_width, in_buf_num_read_port, 1, m_orion_cfg_ptr);
}
}
else
{
m_in_buf_ary_ptr = NULL;
}
bool is_out_buf = m_orion_cfg_ptr->get<bool>("IS_OUTPUT_BUFFER");
//crossbar
uint32_t num_switch_in;
if (is_in_buf)
{
if (m_is_in_shared_buf)
{
uint32_t in_buf_num_read_port = m_orion_cfg_ptr->get<uint32_t>("IN_BUF_NUM_READ_PORT");
num_switch_in = in_buf_num_read_port*m_num_in_port;
}
else if (m_is_in_shared_switch)
{
num_switch_in = 1*m_num_in_port;
}
else
{
num_switch_in = m_total_num_vc*m_num_in_port;
}
}
else
{
num_switch_in = 1*m_num_in_port;
}
uint32_t num_switch_out;
if (is_out_buf)
{
if (m_is_out_shared_buf)
{
uint32_t out_buf_num_write_port = m_orion_cfg_ptr->get<uint32_t>("OUT_BUF_NUM_WRITE_PORT");
num_switch_out = out_buf_num_write_port*m_num_out_port;
}
else if (m_is_out_shared_switch)
{
num_switch_out = 1*m_num_out_port;
}
else
{
num_switch_out = m_total_num_vc*m_num_out_port;
}
}
else
{
num_switch_out = 1*m_num_out_port;
}
const string& xbar_model_str = m_orion_cfg_ptr->get<string>("CROSSBAR_MODEL");
m_xbar_ptr = Crossbar::create_crossbar(xbar_model_str,
num_switch_in, num_switch_out, m_flit_width, m_orion_cfg_ptr);
//vc allocator
const string& va_model_str = m_orion_cfg_ptr->get<string>("VA_MODEL");
m_va_ary_ptr = new VCAllocator* [m_num_vclass];
//m_vc_select_ary_ptr = new VCAllocator* [m_num_vclass];
for (uint32_t i = 0; i < m_num_vclass; i++)
{
m_va_ary_ptr[i] = VCAllocator::create_vcallocator(va_model_str,
m_num_in_port, m_num_out_port, 1, m_num_vc_per_vclass_ary[i],
m_orion_cfg_ptr);
//m_vc_select_ary_ptr[i] = VCAllocator::create_vcallocator("VC_SELECT",
// m_num_in_port, m_num_out_port, 1, m_num_vc_per_vclass_ary[i], m_orion_cfg_ptr);
}
//sw allocator
m_sa_ptr = SWAllocator::create_swallocator(
m_num_in_port, m_num_out_port, 1, m_total_num_vc,
m_xbar_ptr, m_orion_cfg_ptr);
//cloc
m_clk_ptr = new Clock(is_in_buf, m_is_in_shared_switch, is_out_buf, m_is_out_shared_switch, m_orion_cfg_ptr);
return;
}
void OrionRouter::print() const
{
if (m_in_buf_ary_ptr)
{
for (uint32_t i = 0; i < m_num_vclass; i++)
{
cout << "VClass " << i << endl;
if (m_in_buf_ary_ptr[i]) m_in_buf_ary_ptr[i]->print_all();
}
}
m_xbar_ptr->print_all();
for (uint32_t i = 0; i < m_num_vclass; i++)
{
cout << "VClass " << i << endl;
m_va_ary_ptr[i]->print_all();
//m_vc_select_ary_ptr[i]->print_all();
}
m_sa_ptr->print_all();
//cout << "Router - Dynamic Energy" << endl;
//cout << "\t" << "Buffer Read = " << calc_dynamic_energy_buf(true) << endl;
//cout << "\t" << "Buffer Write = " << calc_dynamic_energy_buf(false) << endl;
//cout << "\t" << "Crossbar = " << calc_dynamic_energy_xbar() << endl;
//cout << "\t" << "Local VC Allocator(1) = " << calc_dynamic_energy_local_vc_arb(1) << endl;
//cout << "\t" << "Global VC Allocator(1) = " << calc_dynamic_energy_global_vc_arb(1) << endl;
//cout << "\t" << "VC Select Read = " << calc_dynamic_energy_vc_select(true) << endl;
//cout << "\t" << "VC Select Write = " << calc_dynamic_energy_vc_select(false) << endl;
//cout << "\t" << "Local SW Allocator(2) = " << calc_dynamic_energy_local_sw_arb(1) << endl;
//cout << "\t" << "Global SW Allocator(2) = " << calc_dynamic_energy_global_sw_arb(1) << endl;
//cout << "\t" << "Clock = " << calc_dynamic_energy_clock() << endl;
//cout << endl;
//cout << "Router - Static Power" << endl;
//cout << "\t" << "Buffer = " << get_static_power_buf() << endl;
//cout << "\t" << "Crossbar = " << get_static_power_xbar() << endl;
//cout << "\t" << "VC Allocator = " << get_static_power_va() << endl;
//cout << "\t" << "SW Allocator = " << get_static_power_sa() << endl;
//cout << "\t" << "Clock = " << get_static_power_clock() << endl;
//cout << endl;
return;
}