6c954de33e
a p4 memory/cpu config arch/alpha/alpha_memory.cc: Added code to fault on an unaligned access arch/alpha/isa_desc: arch/alpha/pseudo_inst.cc: arch/alpha/pseudo_inst.hh: Added m5debug break and m5switchcpu (the latter doesn't work) --HG-- extra : convert_revision : 409e73adb151600a4fea49f35bf6f503f66fa916
2582 lines
71 KiB
C++
2582 lines
71 KiB
C++
// -*- mode:c++ -*-
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Alpha ISA description file.
|
|
//
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Output include file directives.
|
|
//
|
|
|
|
output header {{
|
|
#include <sstream>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
|
|
#include "cpu/static_inst.hh"
|
|
#include "mem/mem_req.hh" // some constructors use MemReq flags
|
|
}};
|
|
|
|
output decoder {{
|
|
#include "base/cprintf.hh"
|
|
#include "base/loader/symtab.hh"
|
|
#include "cpu/exec_context.hh" // for Jump::branchTarget()
|
|
|
|
#include <math.h>
|
|
#if defined(linux)
|
|
#include <fenv.h>
|
|
#endif
|
|
}};
|
|
|
|
output exec {{
|
|
#include <math.h>
|
|
#if defined(linux)
|
|
#include <fenv.h>
|
|
#endif
|
|
|
|
#include "cpu/base_cpu.hh"
|
|
#include "cpu/exetrace.hh"
|
|
#include "sim/sim_exit.hh"
|
|
|
|
#ifdef FULL_SYSTEM
|
|
#include "arch/alpha/ev5.hh"
|
|
#include "arch/alpha/pseudo_inst.hh"
|
|
#endif
|
|
}};
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Namespace statement. Everything below this line will be in the
|
|
// AlphaISAInst namespace.
|
|
//
|
|
|
|
|
|
namespace AlphaISA;
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Bitfield definitions.
|
|
//
|
|
|
|
// Universal (format-independent) fields
|
|
def bitfield OPCODE <31:26>;
|
|
def bitfield RA <25:21>;
|
|
def bitfield RB <20:16>;
|
|
|
|
// Memory format
|
|
def signed bitfield MEMDISP <15: 0>; // displacement
|
|
def bitfield MEMFUNC <15: 0>; // function code (same field, unsigned)
|
|
|
|
// Memory-format jumps
|
|
def bitfield JMPFUNC <15:14>; // function code (disp<15:14>)
|
|
def bitfield JMPHINT <13: 0>; // tgt Icache idx hint (disp<13:0>)
|
|
|
|
// Branch format
|
|
def signed bitfield BRDISP <20: 0>; // displacement
|
|
|
|
// Integer operate format(s>;
|
|
def bitfield INTIMM <20:13>; // integer immediate (literal)
|
|
def bitfield IMM <12:12>; // immediate flag
|
|
def bitfield INTFUNC <11: 5>; // function code
|
|
def bitfield RC < 4: 0>; // dest reg
|
|
|
|
// Floating-point operate format
|
|
def bitfield FA <25:21>;
|
|
def bitfield FB <20:16>;
|
|
def bitfield FP_FULLFUNC <15: 5>; // complete function code
|
|
def bitfield FP_TRAPMODE <15:13>; // trapping mode
|
|
def bitfield FP_ROUNDMODE <12:11>; // rounding mode
|
|
def bitfield FP_TYPEFUNC <10: 5>; // type+func: handiest for decoding
|
|
def bitfield FP_SRCTYPE <10: 9>; // source reg type
|
|
def bitfield FP_SHORTFUNC < 8: 5>; // short function code
|
|
def bitfield FP_SHORTFUNC_TOP2 <8:7>; // top 2 bits of short func code
|
|
def bitfield FC < 4: 0>; // dest reg
|
|
|
|
// PALcode format
|
|
def bitfield PALFUNC <25: 0>; // function code
|
|
|
|
// EV5 PAL instructions:
|
|
// HW_LD/HW_ST
|
|
def bitfield HW_LDST_PHYS <15>; // address is physical
|
|
def bitfield HW_LDST_ALT <14>; // use ALT_MODE IPR
|
|
def bitfield HW_LDST_WRTCK <13>; // HW_LD only: fault if no write acc
|
|
def bitfield HW_LDST_QUAD <12>; // size: 0=32b, 1=64b
|
|
def bitfield HW_LDST_VPTE <11>; // HW_LD only: is PTE fetch
|
|
def bitfield HW_LDST_LOCK <10>; // HW_LD only: is load locked
|
|
def bitfield HW_LDST_COND <10>; // HW_ST only: is store conditional
|
|
def signed bitfield HW_LDST_DISP <9:0>; // signed displacement
|
|
|
|
// HW_REI
|
|
def bitfield HW_REI_TYP <15:14>; // type: stalling vs. non-stallingk
|
|
def bitfield HW_REI_MBZ <13: 0>; // must be zero
|
|
|
|
// HW_MTPR/MW_MFPR
|
|
def bitfield HW_IPR_IDX <15:0>; // IPR index
|
|
|
|
// M5 instructions
|
|
def bitfield M5FUNC <7:0>;
|
|
|
|
def operand_types {{
|
|
'sb' : ('signed int', 8),
|
|
'ub' : ('unsigned int', 8),
|
|
'sw' : ('signed int', 16),
|
|
'uw' : ('unsigned int', 16),
|
|
'sl' : ('signed int', 32),
|
|
'ul' : ('unsigned int', 32),
|
|
'sq' : ('signed int', 64),
|
|
'uq' : ('unsigned int', 64),
|
|
'sf' : ('float', 32),
|
|
'df' : ('float', 64)
|
|
}};
|
|
|
|
def operands {{
|
|
# Int regs default to unsigned, but code should not count on this.
|
|
# For clarity, descriptions that depend on unsigned behavior should
|
|
# explicitly specify '.uq'.
|
|
'Ra': IntRegOperandTraits('uq', 'RA', 'IsInteger', 1),
|
|
'Rb': IntRegOperandTraits('uq', 'RB', 'IsInteger', 2),
|
|
'Rc': IntRegOperandTraits('uq', 'RC', 'IsInteger', 3),
|
|
'Fa': FloatRegOperandTraits('df', 'FA', 'IsFloating', 1),
|
|
'Fb': FloatRegOperandTraits('df', 'FB', 'IsFloating', 2),
|
|
'Fc': FloatRegOperandTraits('df', 'FC', 'IsFloating', 3),
|
|
'Mem': MemOperandTraits('uq', None,
|
|
('IsMemRef', 'IsLoad', 'IsStore'), 4),
|
|
'NPC': NPCOperandTraits('uq', None, ( None, None, 'IsControl' ), 4),
|
|
'Runiq': ControlRegOperandTraits('uq', 'Uniq', None, 1),
|
|
'FPCR': ControlRegOperandTraits('uq', 'Fpcr', None, 1),
|
|
# The next two are hacks for non-full-system call-pal emulation
|
|
'R0': IntRegOperandTraits('uq', '0', None, 1),
|
|
'R16': IntRegOperandTraits('uq', '16', None, 1)
|
|
}};
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Basic instruction classes/templates/formats etc.
|
|
//
|
|
|
|
output header {{
|
|
// uncomment the following to get SimpleScalar-compatible disassembly
|
|
// (useful for diffing output traces).
|
|
// #define SS_COMPATIBLE_DISASSEMBLY
|
|
|
|
/**
|
|
* Base class for all Alpha static instructions.
|
|
*/
|
|
class AlphaStaticInst : public StaticInst<AlphaISA>
|
|
{
|
|
protected:
|
|
|
|
/// Make AlphaISA register dependence tags directly visible in
|
|
/// this class and derived classes. Maybe these should really
|
|
/// live here and not in the AlphaISA namespace.
|
|
enum DependenceTags {
|
|
FP_Base_DepTag = AlphaISA::FP_Base_DepTag,
|
|
Fpcr_DepTag = AlphaISA::Fpcr_DepTag,
|
|
Uniq_DepTag = AlphaISA::Uniq_DepTag,
|
|
IPR_Base_DepTag = AlphaISA::IPR_Base_DepTag
|
|
};
|
|
|
|
/// Constructor.
|
|
AlphaStaticInst(const char *mnem, MachInst _machInst,
|
|
OpClass __opClass)
|
|
: StaticInst<AlphaISA>(mnem, _machInst, __opClass)
|
|
{
|
|
}
|
|
|
|
/// Print a register name for disassembly given the unique
|
|
/// dependence tag number (FP or int).
|
|
void printReg(std::ostream &os, int reg);
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
}};
|
|
|
|
output decoder {{
|
|
void
|
|
AlphaStaticInst::printReg(std::ostream &os, int reg)
|
|
{
|
|
if (reg < FP_Base_DepTag) {
|
|
ccprintf(os, "r%d", reg);
|
|
}
|
|
else {
|
|
ccprintf(os, "f%d", reg - FP_Base_DepTag);
|
|
}
|
|
}
|
|
|
|
std::string
|
|
AlphaStaticInst::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
std::stringstream ss;
|
|
|
|
ccprintf(ss, "%-10s ", mnemonic);
|
|
|
|
// just print the first two source regs... if there's
|
|
// a third one, it's a read-modify-write dest (Rc),
|
|
// e.g. for CMOVxx
|
|
if (_numSrcRegs > 0) {
|
|
printReg(ss, _srcRegIdx[0]);
|
|
}
|
|
if (_numSrcRegs > 1) {
|
|
ss << ",";
|
|
printReg(ss, _srcRegIdx[1]);
|
|
}
|
|
|
|
// just print the first dest... if there's a second one,
|
|
// it's generally implicit
|
|
if (_numDestRegs > 0) {
|
|
if (_numSrcRegs > 0)
|
|
ss << ",";
|
|
printReg(ss, _destRegIdx[0]);
|
|
}
|
|
|
|
return ss.str();
|
|
}
|
|
}};
|
|
|
|
// Declarations for execute() methods.
|
|
def template BasicExecDeclare {{
|
|
Fault execute(%(CPU_exec_context)s *, Trace::InstRecord *);
|
|
}};
|
|
|
|
// Basic instruction class declaration template.
|
|
def template BasicDeclare {{
|
|
/**
|
|
* Static instruction class for "%(mnemonic)s".
|
|
*/
|
|
class %(class_name)s : public %(base_class)s
|
|
{
|
|
public:
|
|
/// Constructor.
|
|
%(class_name)s(MachInst machInst);
|
|
|
|
%(BasicExecDeclare)s
|
|
};
|
|
}};
|
|
|
|
// Basic instruction class constructor template.
|
|
def template BasicConstructor {{
|
|
inline %(class_name)s::%(class_name)s(MachInst machInst)
|
|
: %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
|
|
{
|
|
%(constructor)s;
|
|
}
|
|
}};
|
|
|
|
// Basic instruction class execute method template.
|
|
def template BasicExecute {{
|
|
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
|
|
Trace::InstRecord *traceData)
|
|
{
|
|
Fault fault = No_Fault;
|
|
|
|
%(fp_enable_check)s;
|
|
%(op_decl)s;
|
|
%(op_rd)s;
|
|
%(code)s;
|
|
|
|
if (fault == No_Fault) {
|
|
%(op_wb)s;
|
|
}
|
|
|
|
return fault;
|
|
}
|
|
}};
|
|
|
|
// Basic decode template.
|
|
def template BasicDecode {{
|
|
return new %(class_name)s(machInst);
|
|
}};
|
|
|
|
// Basic decode template, passing mnemonic in as string arg to constructor.
|
|
def template BasicDecodeWithMnemonic {{
|
|
return new %(class_name)s("%(mnemonic)s", machInst);
|
|
}};
|
|
|
|
// The most basic instruction format... used only for a few misc. insts
|
|
def format BasicOperate(code, *flags) {{
|
|
iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code), flags)
|
|
header_output = BasicDeclare.subst(iop)
|
|
decoder_output = BasicConstructor.subst(iop)
|
|
decode_block = BasicDecode.subst(iop)
|
|
exec_output = BasicExecute.subst(iop)
|
|
}};
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Nop
|
|
//
|
|
|
|
output header {{
|
|
/**
|
|
* Static instruction class for no-ops. This is a leaf class.
|
|
*/
|
|
class Nop : public AlphaStaticInst
|
|
{
|
|
/// Disassembly of original instruction.
|
|
const std::string originalDisassembly;
|
|
|
|
public:
|
|
/// Constructor
|
|
Nop(const std::string _originalDisassembly, MachInst _machInst)
|
|
: AlphaStaticInst("nop", _machInst, No_OpClass),
|
|
originalDisassembly(_originalDisassembly)
|
|
{
|
|
flags[IsNop] = true;
|
|
}
|
|
|
|
~Nop() { }
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
|
|
%(BasicExecDeclare)s
|
|
};
|
|
}};
|
|
|
|
output decoder {{
|
|
std::string Nop::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
#ifdef SS_COMPATIBLE_DISASSEMBLY
|
|
return originalDisassembly;
|
|
#else
|
|
return csprintf("%-10s (%s)", "nop", originalDisassembly);
|
|
#endif
|
|
}
|
|
|
|
/// Helper function for decoding nops. Substitute Nop object
|
|
/// for original inst passed in as arg (and delete latter).
|
|
inline
|
|
AlphaStaticInst *
|
|
makeNop(AlphaStaticInst *inst)
|
|
{
|
|
AlphaStaticInst *nop = new Nop(inst->disassemble(0), inst->machInst);
|
|
delete inst;
|
|
return nop;
|
|
}
|
|
}};
|
|
|
|
output exec {{
|
|
Fault
|
|
Nop::execute(%(CPU_exec_context)s *, Trace::InstRecord *)
|
|
{
|
|
return No_Fault;
|
|
}
|
|
}};
|
|
|
|
// integer & FP operate instructions use Rc as dest, so check for
|
|
// Rc == 31 to detect nops
|
|
def template OperateNopCheckDecode {{
|
|
{
|
|
AlphaStaticInst *i = new %(class_name)s(machInst);
|
|
if (RC == 31) {
|
|
i = makeNop(i);
|
|
}
|
|
return i;
|
|
}
|
|
}};
|
|
|
|
// Like BasicOperate format, but generates NOP if RC/FC == 31
|
|
def format BasicOperateWithNopCheck(code, *opt_args) {{
|
|
iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code),
|
|
opt_args)
|
|
header_output = BasicDeclare.subst(iop)
|
|
decoder_output = BasicConstructor.subst(iop)
|
|
decode_block = OperateNopCheckDecode.subst(iop)
|
|
exec_output = BasicExecute.subst(iop)
|
|
}};
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Integer operate instructions
|
|
//
|
|
|
|
output header {{
|
|
/**
|
|
* Base class for integer immediate instructions.
|
|
*/
|
|
class IntegerImm : public AlphaStaticInst
|
|
{
|
|
protected:
|
|
/// Immediate operand value (unsigned 8-bit int).
|
|
uint8_t imm;
|
|
|
|
/// Constructor
|
|
IntegerImm(const char *mnem, MachInst _machInst, OpClass __opClass)
|
|
: AlphaStaticInst(mnem, _machInst, __opClass), imm(INTIMM)
|
|
{
|
|
}
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
}};
|
|
|
|
output decoder {{
|
|
std::string
|
|
IntegerImm::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
std::stringstream ss;
|
|
|
|
ccprintf(ss, "%-10s ", mnemonic);
|
|
|
|
// just print the first source reg... if there's
|
|
// a second one, it's a read-modify-write dest (Rc),
|
|
// e.g. for CMOVxx
|
|
if (_numSrcRegs > 0) {
|
|
printReg(ss, _srcRegIdx[0]);
|
|
ss << ",";
|
|
}
|
|
|
|
ss << (int)imm;
|
|
|
|
if (_numDestRegs > 0) {
|
|
ss << ",";
|
|
printReg(ss, _destRegIdx[0]);
|
|
}
|
|
|
|
return ss.str();
|
|
}
|
|
}};
|
|
|
|
|
|
def template RegOrImmDecode {{
|
|
{
|
|
AlphaStaticInst *i =
|
|
(IMM) ? (AlphaStaticInst *)new %(class_name)sImm(machInst)
|
|
: (AlphaStaticInst *)new %(class_name)s(machInst);
|
|
if (RC == 31) {
|
|
i = makeNop(i);
|
|
}
|
|
return i;
|
|
}
|
|
}};
|
|
|
|
// Primary format for integer operate instructions:
|
|
// - Generates both reg-reg and reg-imm versions if Rb_or_imm is used.
|
|
// - Generates NOP if RC == 31.
|
|
def format IntegerOperate(code, *opt_flags) {{
|
|
# If the code block contains 'Rb_or_imm', we define two instructions,
|
|
# one using 'Rb' and one using 'imm', and have the decoder select
|
|
# the right one.
|
|
uses_imm = (code.find('Rb_or_imm') != -1)
|
|
if uses_imm:
|
|
orig_code = code
|
|
# base code is reg version:
|
|
# rewrite by substituting 'Rb' for 'Rb_or_imm'
|
|
code = re.sub(r'Rb_or_imm', 'Rb', orig_code)
|
|
# generate immediate version by substituting 'imm'
|
|
# note that imm takes no extenstion, so we extend
|
|
# the regexp to replace any extension as well
|
|
imm_code = re.sub(r'Rb_or_imm(\.\w+)?', 'imm', orig_code)
|
|
|
|
# generate declaration for register version
|
|
cblk = CodeBlock(code)
|
|
iop = InstObjParams(name, Name, 'AlphaStaticInst', cblk, opt_flags)
|
|
header_output = BasicDeclare.subst(iop)
|
|
decoder_output = BasicConstructor.subst(iop)
|
|
exec_output = BasicExecute.subst(iop)
|
|
|
|
if uses_imm:
|
|
# append declaration for imm version
|
|
imm_cblk = CodeBlock(imm_code)
|
|
imm_iop = InstObjParams(name, Name + 'Imm', 'IntegerImm', imm_cblk,
|
|
opt_flags)
|
|
header_output += BasicDeclare.subst(imm_iop)
|
|
decoder_output += BasicConstructor.subst(imm_iop)
|
|
exec_output += BasicExecute.subst(imm_iop)
|
|
# decode checks IMM bit to pick correct version
|
|
decode_block = RegOrImmDecode.subst(iop)
|
|
else:
|
|
# no imm version: just check for nop
|
|
decode_block = OperateNopCheckDecode.subst(iop)
|
|
}};
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Floating-point instructions
|
|
//
|
|
// Note that many FP-type instructions which do not support all the
|
|
// various rounding & trapping modes use the simpler format
|
|
// BasicOperateWithNopCheck.
|
|
//
|
|
|
|
output exec {{
|
|
/// Check "FP enabled" machine status bit. Called when executing any FP
|
|
/// instruction in full-system mode.
|
|
/// @retval Full-system mode: No_Fault if FP is enabled, Fen_Fault
|
|
/// if not. Non-full-system mode: always returns No_Fault.
|
|
#ifdef FULL_SYSTEM
|
|
inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc)
|
|
{
|
|
Fault fault = No_Fault; // dummy... this ipr access should not fault
|
|
if (!ICSR_FPE(xc->readIpr(AlphaISA::IPR_ICSR, fault))) {
|
|
fault = Fen_Fault;
|
|
}
|
|
return fault;
|
|
}
|
|
#else
|
|
inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc)
|
|
{
|
|
return No_Fault;
|
|
}
|
|
#endif
|
|
}};
|
|
|
|
output header {{
|
|
/**
|
|
* Base class for general floating-point instructions. Includes
|
|
* support for various Alpha rounding and trapping modes. Only FP
|
|
* instructions that require this support are derived from this
|
|
* class; the rest derive directly from AlphaStaticInst.
|
|
*/
|
|
class AlphaFP : public AlphaStaticInst
|
|
{
|
|
public:
|
|
/// Alpha FP rounding modes.
|
|
enum RoundingMode {
|
|
Chopped = 0, ///< round toward zero
|
|
Minus_Infinity = 1, ///< round toward minus infinity
|
|
Normal = 2, ///< round to nearest (default)
|
|
Dynamic = 3, ///< use FPCR setting (in instruction)
|
|
Plus_Infinity = 3 ///< round to plus inifinity (in FPCR)
|
|
};
|
|
|
|
/// Alpha FP trapping modes.
|
|
/// For instructions that produce integer results, the
|
|
/// "Underflow Enable" modes really mean "Overflow Enable", and
|
|
/// the assembly modifier is V rather than U.
|
|
enum TrappingMode {
|
|
/// default: nothing enabled
|
|
Imprecise = 0, ///< no modifier
|
|
/// underflow/overflow traps enabled, inexact disabled
|
|
Underflow_Imprecise = 1, ///< /U or /V
|
|
Underflow_Precise = 5, ///< /SU or /SV
|
|
/// underflow/overflow and inexact traps enabled
|
|
Underflow_Inexact_Precise = 7 ///< /SUI or /SVI
|
|
};
|
|
|
|
protected:
|
|
#if defined(linux)
|
|
static const int alphaToC99RoundingMode[];
|
|
#endif
|
|
|
|
/// Map enum RoundingMode values to disassembly suffixes.
|
|
static const char *roundingModeSuffix[];
|
|
/// Map enum TrappingMode values to FP disassembly suffixes.
|
|
static const char *fpTrappingModeSuffix[];
|
|
/// Map enum TrappingMode values to integer disassembly suffixes.
|
|
static const char *intTrappingModeSuffix[];
|
|
|
|
/// This instruction's rounding mode.
|
|
RoundingMode roundingMode;
|
|
/// This instruction's trapping mode.
|
|
TrappingMode trappingMode;
|
|
|
|
/// Constructor
|
|
AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass)
|
|
: AlphaStaticInst(mnem, _machInst, __opClass),
|
|
roundingMode((enum RoundingMode)FP_ROUNDMODE),
|
|
trappingMode((enum TrappingMode)FP_TRAPMODE)
|
|
{
|
|
if (trappingMode != Imprecise) {
|
|
warn("precise FP traps unimplemented\n");
|
|
}
|
|
}
|
|
|
|
#if defined(linux)
|
|
int getC99RoundingMode(uint64_t fpcr_val);
|
|
#endif
|
|
|
|
// This differs from the AlphaStaticInst version only in
|
|
// printing suffixes for non-default rounding & trapping modes.
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
|
|
}};
|
|
|
|
|
|
def template FloatingPointDecode {{
|
|
{
|
|
bool fast = (FP_TRAPMODE == AlphaFP::Imprecise
|
|
&& FP_ROUNDMODE == AlphaFP::Normal);
|
|
AlphaStaticInst *i =
|
|
fast ? (AlphaStaticInst *)new %(class_name)sFast(machInst) :
|
|
(AlphaStaticInst *)new %(class_name)sGeneral(machInst);
|
|
|
|
if (FC == 31) {
|
|
i = makeNop(i);
|
|
}
|
|
|
|
return i;
|
|
}
|
|
}};
|
|
|
|
output decoder {{
|
|
#if defined(linux)
|
|
int
|
|
AlphaFP::getC99RoundingMode(uint64_t fpcr_val)
|
|
{
|
|
if (roundingMode == Dynamic) {
|
|
return alphaToC99RoundingMode[bits(fpcr_val, 59, 58)];
|
|
}
|
|
else {
|
|
return alphaToC99RoundingMode[roundingMode];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
std::string
|
|
AlphaFP::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
std::string mnem_str(mnemonic);
|
|
|
|
#ifndef SS_COMPATIBLE_DISASSEMBLY
|
|
std::string suffix("");
|
|
suffix += ((_destRegIdx[0] >= FP_Base_DepTag)
|
|
? fpTrappingModeSuffix[trappingMode]
|
|
: intTrappingModeSuffix[trappingMode]);
|
|
suffix += roundingModeSuffix[roundingMode];
|
|
|
|
if (suffix != "") {
|
|
mnem_str = csprintf("%s/%s", mnemonic, suffix);
|
|
}
|
|
#endif
|
|
|
|
std::stringstream ss;
|
|
ccprintf(ss, "%-10s ", mnem_str.c_str());
|
|
|
|
// just print the first two source regs... if there's
|
|
// a third one, it's a read-modify-write dest (Rc),
|
|
// e.g. for CMOVxx
|
|
if (_numSrcRegs > 0) {
|
|
printReg(ss, _srcRegIdx[0]);
|
|
}
|
|
if (_numSrcRegs > 1) {
|
|
ss << ",";
|
|
printReg(ss, _srcRegIdx[1]);
|
|
}
|
|
|
|
// just print the first dest... if there's a second one,
|
|
// it's generally implicit
|
|
if (_numDestRegs > 0) {
|
|
if (_numSrcRegs > 0)
|
|
ss << ",";
|
|
printReg(ss, _destRegIdx[0]);
|
|
}
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
#if defined(linux)
|
|
const int AlphaFP::alphaToC99RoundingMode[] = {
|
|
FE_TOWARDZERO, // Chopped
|
|
FE_DOWNWARD, // Minus_Infinity
|
|
FE_TONEAREST, // Normal
|
|
FE_UPWARD // Dynamic in inst, Plus_Infinity in FPCR
|
|
};
|
|
#endif
|
|
|
|
const char *AlphaFP::roundingModeSuffix[] = { "c", "m", "", "d" };
|
|
// mark invalid trapping modes, but don't fail on them, because
|
|
// you could decode anything on a misspeculated path
|
|
const char *AlphaFP::fpTrappingModeSuffix[] =
|
|
{ "", "u", "INVTM2", "INVTM3", "INVTM4", "su", "INVTM6", "sui" };
|
|
const char *AlphaFP::intTrappingModeSuffix[] =
|
|
{ "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" };
|
|
}};
|
|
|
|
// General format for floating-point operate instructions:
|
|
// - Checks trapping and rounding mode flags. Trapping modes
|
|
// currently unimplemented (will fail).
|
|
// - Generates NOP if FC == 31.
|
|
def format FloatingPointOperate(code, *opt_args) {{
|
|
iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args)
|
|
decode_block = FloatingPointDecode.subst(iop)
|
|
|
|
fast_iop = InstObjParams(name, Name + 'Fast', 'AlphaFP',
|
|
CodeBlock(code), opt_args)
|
|
header_output = BasicDeclare.subst(fast_iop)
|
|
decoder_output = BasicConstructor.subst(fast_iop)
|
|
exec_output = BasicExecute.subst(fast_iop)
|
|
|
|
gen_code_prefix = r'''
|
|
#if defined(linux)
|
|
fesetround(getC99RoundingMode(xc->readFpcr()));
|
|
#endif
|
|
'''
|
|
gen_code_suffix = r'''
|
|
#if defined(linux)
|
|
fesetround(FE_TONEAREST);
|
|
#endif
|
|
'''
|
|
|
|
gen_iop = InstObjParams(name, Name + 'General', 'AlphaFP',
|
|
CodeBlock(gen_code_prefix + code + gen_code_suffix), opt_args)
|
|
header_output += BasicDeclare.subst(gen_iop)
|
|
decoder_output += BasicConstructor.subst(gen_iop)
|
|
exec_output += BasicExecute.subst(gen_iop)
|
|
}};
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Memory-format instructions: LoadAddress, Load, Store
|
|
//
|
|
|
|
output header {{
|
|
/**
|
|
* Base class for general Alpha memory-format instructions.
|
|
*/
|
|
class Memory : public AlphaStaticInst
|
|
{
|
|
protected:
|
|
|
|
/// Memory request flags. See mem_req_base.hh.
|
|
unsigned memAccessFlags;
|
|
/// Pointer to EAComp object.
|
|
const StaticInstPtr<AlphaISA> eaCompPtr;
|
|
/// Pointer to MemAcc object.
|
|
const StaticInstPtr<AlphaISA> memAccPtr;
|
|
|
|
/// Constructor
|
|
Memory(const char *mnem, MachInst _machInst, OpClass __opClass,
|
|
StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
|
|
StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
|
|
: AlphaStaticInst(mnem, _machInst, __opClass),
|
|
memAccessFlags(0), eaCompPtr(_eaCompPtr), memAccPtr(_memAccPtr)
|
|
{
|
|
}
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
|
|
public:
|
|
|
|
const StaticInstPtr<AlphaISA> &eaCompInst() const { return eaCompPtr; }
|
|
const StaticInstPtr<AlphaISA> &memAccInst() const { return memAccPtr; }
|
|
};
|
|
|
|
/**
|
|
* Base class for memory-format instructions using a 32-bit
|
|
* displacement (i.e. most of them).
|
|
*/
|
|
class MemoryDisp32 : public Memory
|
|
{
|
|
protected:
|
|
/// Displacement for EA calculation (signed).
|
|
int32_t disp;
|
|
|
|
/// Constructor.
|
|
MemoryDisp32(const char *mnem, MachInst _machInst, OpClass __opClass,
|
|
StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
|
|
StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
|
|
: Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr),
|
|
disp(MEMDISP)
|
|
{
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Base class for a few miscellaneous memory-format insts
|
|
* that don't interpret the disp field: wh64, fetch, fetch_m, ecb.
|
|
* None of these instructions has a destination register either.
|
|
*/
|
|
class MemoryNoDisp : public Memory
|
|
{
|
|
protected:
|
|
/// Constructor
|
|
MemoryNoDisp(const char *mnem, MachInst _machInst, OpClass __opClass,
|
|
StaticInstPtr<AlphaISA> _eaCompPtr,
|
|
StaticInstPtr<AlphaISA> _memAccPtr)
|
|
: Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr)
|
|
{
|
|
}
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
|
|
|
|
/**
|
|
* Base class for "fake" effective-address computation
|
|
* instructions returnded by eaCompInst().
|
|
*/
|
|
class EACompBase : public AlphaStaticInst
|
|
{
|
|
public:
|
|
/// Constructor
|
|
EACompBase(MachInst machInst)
|
|
: AlphaStaticInst("(eacomp)", machInst, IntAluOp)
|
|
{
|
|
}
|
|
|
|
%(BasicExecDeclare)s
|
|
};
|
|
|
|
/**
|
|
* Base class for "fake" memory-access instructions returnded by
|
|
* memAccInst().
|
|
*/
|
|
class MemAccBase : public AlphaStaticInst
|
|
{
|
|
public:
|
|
/// Constructor
|
|
MemAccBase(MachInst machInst, OpClass __opClass)
|
|
: AlphaStaticInst("(memacc)", machInst, __opClass)
|
|
{
|
|
}
|
|
|
|
%(BasicExecDeclare)s
|
|
};
|
|
|
|
}};
|
|
|
|
|
|
output decoder {{
|
|
std::string
|
|
Memory::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
return csprintf("%-10s %c%d,%d(r%d)", mnemonic,
|
|
flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB);
|
|
}
|
|
|
|
std::string
|
|
MemoryNoDisp::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
return csprintf("%-10s (r%d)", mnemonic, RB);
|
|
}
|
|
}};
|
|
|
|
output exec {{
|
|
Fault
|
|
EACompBase::execute(%(CPU_exec_context)s *, Trace::InstRecord *)
|
|
{
|
|
panic("attempt to execute eacomp");
|
|
}
|
|
|
|
Fault
|
|
MemAccBase::execute(%(CPU_exec_context)s *, Trace::InstRecord *)
|
|
{
|
|
panic("attempt to execute memacc");
|
|
}
|
|
}};
|
|
|
|
|
|
def format LoadAddress(code) {{
|
|
iop = InstObjParams(name, Name, 'MemoryDisp32', CodeBlock(code))
|
|
header_output = BasicDeclare.subst(iop)
|
|
decoder_output = BasicConstructor.subst(iop)
|
|
decode_block = BasicDecode.subst(iop)
|
|
exec_output = BasicExecute.subst(iop)
|
|
}};
|
|
|
|
|
|
def template LoadStoreDeclare {{
|
|
/**
|
|
* Static instruction class for "%(mnemonic)s".
|
|
*/
|
|
class %(class_name)s : public %(base_class)s
|
|
{
|
|
protected:
|
|
|
|
/**
|
|
* "Fake" effective address computation class for "%(mnemonic)s".
|
|
*/
|
|
class EAComp : public EACompBase
|
|
{
|
|
public:
|
|
/// Constructor
|
|
EAComp(MachInst machInst);
|
|
};
|
|
|
|
/**
|
|
* "Fake" memory access instruction class for "%(mnemonic)s".
|
|
*/
|
|
class MemAcc : public MemAccBase
|
|
{
|
|
public:
|
|
/// Constructor
|
|
MemAcc(MachInst machInst);
|
|
};
|
|
|
|
public:
|
|
|
|
/// Constructor.
|
|
%(class_name)s(MachInst machInst);
|
|
|
|
%(BasicExecDeclare)s
|
|
};
|
|
}};
|
|
|
|
def template LoadStoreConstructor {{
|
|
inline %(class_name)s::EAComp::EAComp(MachInst machInst)
|
|
: EACompBase(machInst)
|
|
{
|
|
%(ea_constructor)s;
|
|
}
|
|
|
|
inline %(class_name)s::MemAcc::MemAcc(MachInst machInst)
|
|
: MemAccBase(machInst, %(op_class)s)
|
|
{
|
|
%(memacc_constructor)s;
|
|
}
|
|
|
|
inline %(class_name)s::%(class_name)s(MachInst machInst)
|
|
: %(base_class)s("%(mnemonic)s", machInst, %(op_class)s,
|
|
new EAComp(machInst), new MemAcc(machInst))
|
|
{
|
|
%(constructor)s;
|
|
}
|
|
}};
|
|
|
|
def template LoadStoreExecute {{
|
|
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
|
|
Trace::InstRecord *traceData)
|
|
{
|
|
Addr EA;
|
|
Fault fault = No_Fault;
|
|
|
|
%(fp_enable_check)s;
|
|
%(op_decl)s;
|
|
%(op_nonmem_rd)s;
|
|
%(ea_code)s;
|
|
|
|
if (fault == No_Fault) {
|
|
%(op_mem_rd)s;
|
|
%(memacc_code)s;
|
|
}
|
|
|
|
if (fault == No_Fault) {
|
|
%(op_mem_wb)s;
|
|
}
|
|
|
|
if (fault == No_Fault) {
|
|
%(postacc_code)s;
|
|
}
|
|
|
|
if (fault == No_Fault) {
|
|
%(op_nonmem_wb)s;
|
|
}
|
|
|
|
return fault;
|
|
}
|
|
}};
|
|
|
|
|
|
def template PrefetchExecute {{
|
|
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
|
|
Trace::InstRecord *traceData)
|
|
{
|
|
Addr EA;
|
|
Fault fault = No_Fault;
|
|
|
|
%(fp_enable_check)s;
|
|
%(op_decl)s;
|
|
%(op_nonmem_rd)s;
|
|
%(ea_code)s;
|
|
|
|
if (fault == No_Fault) {
|
|
xc->prefetch(EA, memAccessFlags);
|
|
}
|
|
|
|
return No_Fault;
|
|
}
|
|
}};
|
|
|
|
// load instructions use Ra as dest, so check for
|
|
// Ra == 31 to detect nops
|
|
def template LoadNopCheckDecode {{
|
|
{
|
|
AlphaStaticInst *i = new %(class_name)s(machInst);
|
|
if (RA == 31) {
|
|
i = makeNop(i);
|
|
}
|
|
return i;
|
|
}
|
|
}};
|
|
|
|
|
|
// for some load instructions, Ra == 31 indicates a prefetch (not a nop)
|
|
def template LoadPrefetchCheckDecode {{
|
|
{
|
|
if (RA != 31) {
|
|
return new %(class_name)s(machInst);
|
|
}
|
|
else {
|
|
return new %(class_name)sPrefetch(machInst);
|
|
}
|
|
}
|
|
}};
|
|
|
|
|
|
let {{
|
|
def LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code = '',
|
|
base_class = 'MemoryDisp32', flags = [],
|
|
decode_template = BasicDecode,
|
|
exec_template = LoadStoreExecute):
|
|
# Segregate flags into instruction flags (handled by InstObjParams)
|
|
# and memory access flags (handled here).
|
|
|
|
# Would be nice to autogenerate this list, but oh well.
|
|
valid_mem_flags = ['LOCKED', 'NO_FAULT', 'EVICT_NEXT', 'PF_EXCLUSIVE']
|
|
inst_flags = []
|
|
mem_flags = []
|
|
for f in flags:
|
|
if f in valid_mem_flags:
|
|
mem_flags.append(f)
|
|
else:
|
|
inst_flags.append(f)
|
|
|
|
ea_cblk = CodeBlock(ea_code)
|
|
memacc_cblk = CodeBlock(memacc_code)
|
|
postacc_cblk = CodeBlock(postacc_code)
|
|
|
|
cblk = CodeBlock(ea_code + memacc_code + postacc_code)
|
|
iop = InstObjParams(name, Name, base_class, cblk, inst_flags)
|
|
|
|
iop.ea_constructor = ea_cblk.constructor
|
|
iop.ea_code = ea_cblk.code
|
|
iop.memacc_constructor = memacc_cblk.constructor
|
|
iop.memacc_code = memacc_cblk.code
|
|
iop.postacc_code = postacc_cblk.code
|
|
|
|
mem_flags = string.join(mem_flags, '|')
|
|
if mem_flags != '':
|
|
iop.constructor += '\n\tmemAccessFlags = ' + mem_flags + ';'
|
|
|
|
# (header_output, decoder_output, decode_block, exec_output)
|
|
return (LoadStoreDeclare.subst(iop), LoadStoreConstructor.subst(iop),
|
|
decode_template.subst(iop), exec_template.subst(iop))
|
|
}};
|
|
|
|
|
|
def format LoadOrNop(ea_code, memacc_code, *flags) {{
|
|
(header_output, decoder_output, decode_block, exec_output) = \
|
|
LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags,
|
|
decode_template = LoadNopCheckDecode)
|
|
}};
|
|
|
|
|
|
// Note that the flags passed in apply only to the prefetch version
|
|
def format LoadOrPrefetch(ea_code, memacc_code, *pf_flags) {{
|
|
# declare the load instruction object and generate the decode block
|
|
(header_output, decoder_output, decode_block, exec_output) = \
|
|
LoadStoreBase(name, Name, ea_code, memacc_code,
|
|
decode_template = LoadPrefetchCheckDecode)
|
|
|
|
# Declare the prefetch instruction object.
|
|
|
|
# convert flags from tuple to list to make them mutable
|
|
pf_flags = list(pf_flags) + ['IsMemRef', 'IsLoad', 'IsDataPrefetch', 'MemReadOp', 'NO_FAULT']
|
|
|
|
(pf_header_output, pf_decoder_output, _, pf_exec_output) = \
|
|
LoadStoreBase(name, Name + 'Prefetch', ea_code, '',
|
|
flags = pf_flags, exec_template = PrefetchExecute)
|
|
|
|
header_output += pf_header_output
|
|
decoder_output += pf_decoder_output
|
|
exec_output += pf_exec_output
|
|
}};
|
|
|
|
|
|
def format Store(ea_code, memacc_code, *flags) {{
|
|
(header_output, decoder_output, decode_block, exec_output) = \
|
|
LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags)
|
|
}};
|
|
|
|
|
|
def format StoreCond(ea_code, memacc_code, postacc_code, *flags) {{
|
|
(header_output, decoder_output, decode_block, exec_output) = \
|
|
LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code,
|
|
flags = flags)
|
|
}};
|
|
|
|
|
|
// Use 'MemoryNoDisp' as base: for wh64, fetch, ecb
|
|
def format MiscPrefetch(ea_code, memacc_code, *flags) {{
|
|
(header_output, decoder_output, decode_block, exec_output) = \
|
|
LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags,
|
|
base_class = 'MemoryNoDisp')
|
|
}};
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Control transfer instructions
|
|
//
|
|
|
|
output header {{
|
|
|
|
/**
|
|
* Base class for instructions whose disassembly is not purely a
|
|
* function of the machine instruction (i.e., it depends on the
|
|
* PC). This class overrides the disassemble() method to check
|
|
* the PC and symbol table values before re-using a cached
|
|
* disassembly string. This is necessary for branches and jumps,
|
|
* where the disassembly string includes the target address (which
|
|
* may depend on the PC and/or symbol table).
|
|
*/
|
|
class PCDependentDisassembly : public AlphaStaticInst
|
|
{
|
|
protected:
|
|
/// Cached program counter from last disassembly
|
|
Addr cachedPC;
|
|
/// Cached symbol table pointer from last disassembly
|
|
const SymbolTable *cachedSymtab;
|
|
|
|
/// Constructor
|
|
PCDependentDisassembly(const char *mnem, MachInst _machInst,
|
|
OpClass __opClass)
|
|
: AlphaStaticInst(mnem, _machInst, __opClass),
|
|
cachedPC(0), cachedSymtab(0)
|
|
{
|
|
}
|
|
|
|
const std::string &disassemble(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
|
|
/**
|
|
* Base class for branches (PC-relative control transfers),
|
|
* conditional or unconditional.
|
|
*/
|
|
class Branch : public PCDependentDisassembly
|
|
{
|
|
protected:
|
|
/// Displacement to target address (signed).
|
|
int32_t disp;
|
|
|
|
/// Constructor.
|
|
Branch(const char *mnem, MachInst _machInst, OpClass __opClass)
|
|
: PCDependentDisassembly(mnem, _machInst, __opClass),
|
|
disp(BRDISP << 2)
|
|
{
|
|
}
|
|
|
|
Addr branchTarget(Addr branchPC) const;
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
|
|
/**
|
|
* Base class for jumps (register-indirect control transfers). In
|
|
* the Alpha ISA, these are always unconditional.
|
|
*/
|
|
class Jump : public PCDependentDisassembly
|
|
{
|
|
protected:
|
|
|
|
/// Displacement to target address (signed).
|
|
int32_t disp;
|
|
|
|
public:
|
|
/// Constructor
|
|
Jump(const char *mnem, MachInst _machInst, OpClass __opClass)
|
|
: PCDependentDisassembly(mnem, _machInst, __opClass),
|
|
disp(BRDISP)
|
|
{
|
|
}
|
|
|
|
Addr branchTarget(ExecContext *xc) const;
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
}};
|
|
|
|
output decoder {{
|
|
Addr
|
|
Branch::branchTarget(Addr branchPC) const
|
|
{
|
|
return branchPC + 4 + disp;
|
|
}
|
|
|
|
Addr
|
|
Jump::branchTarget(ExecContext *xc) const
|
|
{
|
|
Addr NPC = xc->readPC() + 4;
|
|
uint64_t Rb = xc->readIntReg(_srcRegIdx[0]);
|
|
return (Rb & ~3) | (NPC & 1);
|
|
}
|
|
|
|
const std::string &
|
|
PCDependentDisassembly::disassemble(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
if (!cachedDisassembly ||
|
|
pc != cachedPC || symtab != cachedSymtab)
|
|
{
|
|
if (cachedDisassembly)
|
|
delete cachedDisassembly;
|
|
|
|
cachedDisassembly =
|
|
new std::string(generateDisassembly(pc, symtab));
|
|
cachedPC = pc;
|
|
cachedSymtab = symtab;
|
|
}
|
|
|
|
return *cachedDisassembly;
|
|
}
|
|
|
|
std::string
|
|
Branch::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
std::stringstream ss;
|
|
|
|
ccprintf(ss, "%-10s ", mnemonic);
|
|
|
|
// There's only one register arg (RA), but it could be
|
|
// either a source (the condition for conditional
|
|
// branches) or a destination (the link reg for
|
|
// unconditional branches)
|
|
if (_numSrcRegs > 0) {
|
|
printReg(ss, _srcRegIdx[0]);
|
|
ss << ",";
|
|
}
|
|
else if (_numDestRegs > 0) {
|
|
printReg(ss, _destRegIdx[0]);
|
|
ss << ",";
|
|
}
|
|
|
|
#ifdef SS_COMPATIBLE_DISASSEMBLY
|
|
if (_numSrcRegs == 0 && _numDestRegs == 0) {
|
|
printReg(ss, 31);
|
|
ss << ",";
|
|
}
|
|
#endif
|
|
|
|
Addr target = pc + 4 + disp;
|
|
|
|
std::string str;
|
|
if (symtab && symtab->findSymbol(target, str))
|
|
ss << str;
|
|
else
|
|
ccprintf(ss, "0x%x", target);
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
std::string
|
|
Jump::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
std::stringstream ss;
|
|
|
|
ccprintf(ss, "%-10s ", mnemonic);
|
|
|
|
#ifdef SS_COMPATIBLE_DISASSEMBLY
|
|
if (_numDestRegs == 0) {
|
|
printReg(ss, 31);
|
|
ss << ",";
|
|
}
|
|
#endif
|
|
|
|
if (_numDestRegs > 0) {
|
|
printReg(ss, _destRegIdx[0]);
|
|
ss << ",";
|
|
}
|
|
|
|
ccprintf(ss, "(r%d)", RB);
|
|
|
|
return ss.str();
|
|
}
|
|
}};
|
|
|
|
def template JumpOrBranchDecode {{
|
|
return (RA == 31)
|
|
? (StaticInst<AlphaISA> *)new %(class_name)s(machInst)
|
|
: (StaticInst<AlphaISA> *)new %(class_name)sAndLink(machInst);
|
|
}};
|
|
|
|
def format CondBranch(code) {{
|
|
code = 'bool cond;\n' + code + '\nif (cond) NPC = NPC + disp;\n';
|
|
iop = InstObjParams(name, Name, 'Branch', CodeBlock(code),
|
|
('IsDirectControl', 'IsCondControl'))
|
|
header_output = BasicDeclare.subst(iop)
|
|
decoder_output = BasicConstructor.subst(iop)
|
|
decode_block = BasicDecode.subst(iop)
|
|
exec_output = BasicExecute.subst(iop)
|
|
}};
|
|
|
|
let {{
|
|
def UncondCtrlBase(name, Name, base_class, npc_expr, flags):
|
|
# Declare basic control transfer w/o link (i.e. link reg is R31)
|
|
nolink_code = 'NPC = %s;\n' % npc_expr
|
|
nolink_iop = InstObjParams(name, Name, base_class,
|
|
CodeBlock(nolink_code), flags)
|
|
header_output = BasicDeclare.subst(nolink_iop)
|
|
decoder_output = BasicConstructor.subst(nolink_iop)
|
|
exec_output = BasicExecute.subst(nolink_iop)
|
|
|
|
# Generate declaration of '*AndLink' version, append to decls
|
|
link_code = 'Ra = NPC & ~3;\n' + nolink_code
|
|
link_iop = InstObjParams(name, Name + 'AndLink', base_class,
|
|
CodeBlock(link_code), flags)
|
|
header_output += BasicDeclare.subst(link_iop)
|
|
decoder_output += BasicConstructor.subst(link_iop)
|
|
exec_output += BasicExecute.subst(link_iop)
|
|
|
|
# need to use link_iop for the decode template since it is expecting
|
|
# the shorter version of class_name (w/o "AndLink")
|
|
|
|
return (header_output, decoder_output,
|
|
JumpOrBranchDecode.subst(nolink_iop), exec_output)
|
|
}};
|
|
|
|
def format UncondBranch(*flags) {{
|
|
flags += ('IsUncondControl', 'IsDirectControl')
|
|
(header_output, decoder_output, decode_block, exec_output) = \
|
|
UncondCtrlBase(name, Name, 'Branch', 'NPC + disp', flags)
|
|
}};
|
|
|
|
def format Jump(*flags) {{
|
|
flags += ('IsUncondControl', 'IsIndirectControl')
|
|
(header_output, decoder_output, decode_block, exec_output) = \
|
|
UncondCtrlBase(name, Name, 'Jump', '(Rb & ~3) | (NPC & 1)', flags)
|
|
}};
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// PAL calls
|
|
//
|
|
|
|
output header {{
|
|
/**
|
|
* Base class for emulated call_pal calls (used only in
|
|
* non-full-system mode).
|
|
*/
|
|
class EmulatedCallPal : public AlphaStaticInst
|
|
{
|
|
protected:
|
|
|
|
/// Constructor.
|
|
EmulatedCallPal(const char *mnem, MachInst _machInst,
|
|
OpClass __opClass)
|
|
: AlphaStaticInst(mnem, _machInst, __opClass)
|
|
{
|
|
}
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
}};
|
|
|
|
output decoder {{
|
|
std::string
|
|
EmulatedCallPal::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
#ifdef SS_COMPATIBLE_DISASSEMBLY
|
|
return csprintf("%s %s", "call_pal", mnemonic);
|
|
#else
|
|
return csprintf("%-10s %s", "call_pal", mnemonic);
|
|
#endif
|
|
}
|
|
}};
|
|
|
|
def format EmulatedCallPal(code, *flags) {{
|
|
iop = InstObjParams(name, Name, 'EmulatedCallPal', CodeBlock(code), flags)
|
|
header_output = BasicDeclare.subst(iop)
|
|
decoder_output = BasicConstructor.subst(iop)
|
|
decode_block = BasicDecode.subst(iop)
|
|
exec_output = BasicExecute.subst(iop)
|
|
}};
|
|
|
|
output header {{
|
|
/**
|
|
* Base class for full-system-mode call_pal instructions.
|
|
* Probably could turn this into a leaf class and get rid of the
|
|
* parser template.
|
|
*/
|
|
class CallPalBase : public AlphaStaticInst
|
|
{
|
|
protected:
|
|
int palFunc; ///< Function code part of instruction
|
|
int palOffset; ///< Target PC, offset from IPR_PAL_BASE
|
|
bool palValid; ///< is the function code valid?
|
|
bool palPriv; ///< is this call privileged?
|
|
|
|
/// Constructor.
|
|
CallPalBase(const char *mnem, MachInst _machInst,
|
|
OpClass __opClass);
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
}};
|
|
|
|
output decoder {{
|
|
inline
|
|
CallPalBase::CallPalBase(const char *mnem, MachInst _machInst,
|
|
OpClass __opClass)
|
|
: AlphaStaticInst(mnem, _machInst, __opClass),
|
|
palFunc(PALFUNC)
|
|
{
|
|
// From the 21164 HRM (paraphrased):
|
|
// Bit 7 of the function code (mask 0x80) indicates
|
|
// whether the call is privileged (bit 7 == 0) or
|
|
// unprivileged (bit 7 == 1). The privileged call table
|
|
// starts at 0x2000, the unprivielged call table starts at
|
|
// 0x3000. Bits 5-0 (mask 0x3f) are used to calculate the
|
|
// offset.
|
|
const int palPrivMask = 0x80;
|
|
const int palOffsetMask = 0x3f;
|
|
|
|
// Pal call is invalid unless all other bits are 0
|
|
palValid = ((machInst & ~(palPrivMask | palOffsetMask)) == 0);
|
|
palPriv = ((machInst & palPrivMask) == 0);
|
|
int shortPalFunc = (machInst & palOffsetMask);
|
|
// Add 1 to base to set pal-mode bit
|
|
palOffset = (palPriv ? 0x2001 : 0x3001) + (shortPalFunc << 6);
|
|
}
|
|
|
|
std::string
|
|
CallPalBase::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
return csprintf("%-10s %#x", "call_pal", palFunc);
|
|
}
|
|
}};
|
|
|
|
def format CallPal(code, *flags) {{
|
|
iop = InstObjParams(name, Name, 'CallPalBase', CodeBlock(code), flags)
|
|
header_output = BasicDeclare.subst(iop)
|
|
decoder_output = BasicConstructor.subst(iop)
|
|
decode_block = BasicDecode.subst(iop)
|
|
exec_output = BasicExecute.subst(iop)
|
|
}};
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// hw_ld, hw_st
|
|
//
|
|
|
|
output header {{
|
|
/**
|
|
* Base class for hw_ld and hw_st.
|
|
*/
|
|
class HwLoadStore : public Memory
|
|
{
|
|
protected:
|
|
|
|
/// Displacement for EA calculation (signed).
|
|
int16_t disp;
|
|
|
|
/// Constructor
|
|
HwLoadStore(const char *mnem, MachInst _machInst, OpClass __opClass,
|
|
StaticInstPtr<AlphaISA> _eaCompPtr,
|
|
StaticInstPtr<AlphaISA> _memAccPtr);
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
}};
|
|
|
|
|
|
output decoder {{
|
|
inline
|
|
HwLoadStore::HwLoadStore(const char *mnem, MachInst _machInst,
|
|
OpClass __opClass,
|
|
StaticInstPtr<AlphaISA> _eaCompPtr,
|
|
StaticInstPtr<AlphaISA> _memAccPtr)
|
|
: Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr),
|
|
disp(HW_LDST_DISP)
|
|
{
|
|
memAccessFlags = 0;
|
|
if (HW_LDST_PHYS) memAccessFlags |= PHYSICAL;
|
|
if (HW_LDST_ALT) memAccessFlags |= ALTMODE;
|
|
if (HW_LDST_VPTE) memAccessFlags |= VPTE;
|
|
if (HW_LDST_LOCK) memAccessFlags |= LOCKED;
|
|
}
|
|
|
|
std::string
|
|
HwLoadStore::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
#ifdef SS_COMPATIBLE_DISASSEMBLY
|
|
return csprintf("%-10s r%d,%d(r%d)", mnemonic, RA, disp, RB);
|
|
#else
|
|
// HW_LDST_LOCK and HW_LDST_COND are the same bit.
|
|
const char *lock_str =
|
|
(HW_LDST_LOCK) ? (flags[IsLoad] ? ",LOCK" : ",COND") : "";
|
|
|
|
return csprintf("%-10s r%d,%d(r%d)%s%s%s%s%s",
|
|
mnemonic, RA, disp, RB,
|
|
HW_LDST_PHYS ? ",PHYS" : "",
|
|
HW_LDST_ALT ? ",ALT" : "",
|
|
HW_LDST_QUAD ? ",QUAD" : "",
|
|
HW_LDST_VPTE ? ",VPTE" : "",
|
|
lock_str);
|
|
#endif
|
|
}
|
|
}};
|
|
|
|
def format HwLoadStore(ea_code, memacc_code, class_ext, *flags) {{
|
|
(header_output, decoder_output, decode_block, exec_output) = \
|
|
LoadStoreBase(name, Name + class_ext, ea_code, memacc_code,
|
|
flags = flags, base_class = 'HwLoadStore')
|
|
}};
|
|
|
|
|
|
def format HwStoreCond(ea_code, memacc_code, postacc_code, class_ext, *flags) {{
|
|
(header_output, decoder_output, decode_block, exec_output) = \
|
|
LoadStoreBase(name, Name + class_ext, ea_code, memacc_code,
|
|
postacc_code, flags = flags, base_class = 'HwLoadStore')
|
|
}};
|
|
|
|
|
|
output header {{
|
|
/**
|
|
* Base class for hw_mfpr and hw_mtpr.
|
|
*/
|
|
class HwMoveIPR : public AlphaStaticInst
|
|
{
|
|
protected:
|
|
/// Index of internal processor register.
|
|
int ipr_index;
|
|
|
|
/// Constructor
|
|
HwMoveIPR(const char *mnem, MachInst _machInst, OpClass __opClass)
|
|
: AlphaStaticInst(mnem, _machInst, __opClass),
|
|
ipr_index(HW_IPR_IDX)
|
|
{
|
|
}
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
}};
|
|
|
|
output decoder {{
|
|
std::string
|
|
HwMoveIPR::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
if (_numSrcRegs > 0) {
|
|
// must be mtpr
|
|
return csprintf("%-10s r%d,IPR(%#x)",
|
|
mnemonic, RA, ipr_index);
|
|
}
|
|
else {
|
|
// must be mfpr
|
|
return csprintf("%-10s IPR(%#x),r%d",
|
|
mnemonic, ipr_index, RA);
|
|
}
|
|
}
|
|
}};
|
|
|
|
def format HwMoveIPR(code) {{
|
|
iop = InstObjParams(name, Name, 'HwMoveIPR', CodeBlock(code))
|
|
header_output = BasicDeclare.subst(iop)
|
|
decoder_output = BasicConstructor.subst(iop)
|
|
decode_block = BasicDecode.subst(iop)
|
|
exec_output = BasicExecute.subst(iop)
|
|
}};
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Unimplemented instructions
|
|
//
|
|
|
|
output header {{
|
|
/**
|
|
* Static instruction class for unimplemented instructions that
|
|
* cause simulator termination. Note that these are recognized
|
|
* (legal) instructions that the simulator does not support; the
|
|
* 'Unknown' class is used for unrecognized/illegal instructions.
|
|
* This is a leaf class.
|
|
*/
|
|
class FailUnimplemented : public AlphaStaticInst
|
|
{
|
|
public:
|
|
/// Constructor
|
|
FailUnimplemented(const char *_mnemonic, MachInst _machInst)
|
|
: AlphaStaticInst(_mnemonic, _machInst, No_OpClass)
|
|
{
|
|
// don't call execute() (which panics) if we're on a
|
|
// speculative path
|
|
flags[IsNonSpeculative] = true;
|
|
}
|
|
|
|
%(BasicExecDeclare)s
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
|
|
/**
|
|
* Base class for unimplemented instructions that cause a warning
|
|
* to be printed (but do not terminate simulation). This
|
|
* implementation is a little screwy in that it will print a
|
|
* warning for each instance of a particular unimplemented machine
|
|
* instruction, not just for each unimplemented opcode. Should
|
|
* probably make the 'warned' flag a static member of the derived
|
|
* class.
|
|
*/
|
|
class WarnUnimplemented : public AlphaStaticInst
|
|
{
|
|
private:
|
|
/// Have we warned on this instruction yet?
|
|
bool warned;
|
|
|
|
public:
|
|
/// Constructor
|
|
WarnUnimplemented(const char *_mnemonic, MachInst _machInst)
|
|
: AlphaStaticInst(_mnemonic, _machInst, No_OpClass), warned(false)
|
|
{
|
|
// don't call execute() (which panics) if we're on a
|
|
// speculative path
|
|
flags[IsNonSpeculative] = true;
|
|
}
|
|
|
|
%(BasicExecDeclare)s
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
}};
|
|
|
|
output decoder {{
|
|
std::string
|
|
FailUnimplemented::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
return csprintf("%-10s (unimplemented)", mnemonic);
|
|
}
|
|
|
|
std::string
|
|
WarnUnimplemented::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
#ifdef SS_COMPATIBLE_DISASSEMBLY
|
|
return csprintf("%-10s", mnemonic);
|
|
#else
|
|
return csprintf("%-10s (unimplemented)", mnemonic);
|
|
#endif
|
|
}
|
|
}};
|
|
|
|
output exec {{
|
|
Fault
|
|
FailUnimplemented::execute(%(CPU_exec_context)s *xc,
|
|
Trace::InstRecord *traceData)
|
|
{
|
|
panic("attempt to execute unimplemented instruction '%s' "
|
|
"(inst 0x%08x, opcode 0x%x)", mnemonic, machInst, OPCODE);
|
|
return Unimplemented_Opcode_Fault;
|
|
}
|
|
|
|
Fault
|
|
WarnUnimplemented::execute(%(CPU_exec_context)s *xc,
|
|
Trace::InstRecord *traceData)
|
|
{
|
|
if (!warned) {
|
|
warn("instruction '%s' unimplemented\n", mnemonic);
|
|
warned = true;
|
|
}
|
|
|
|
return No_Fault;
|
|
}
|
|
}};
|
|
|
|
|
|
def format FailUnimpl() {{
|
|
iop = InstObjParams(name, 'FailUnimplemented')
|
|
decode_block = BasicDecodeWithMnemonic.subst(iop)
|
|
}};
|
|
|
|
def format WarnUnimpl() {{
|
|
iop = InstObjParams(name, 'WarnUnimplemented')
|
|
decode_block = BasicDecodeWithMnemonic.subst(iop)
|
|
}};
|
|
|
|
output header {{
|
|
/**
|
|
* Static instruction class for unknown (illegal) instructions.
|
|
* These cause simulator termination if they are executed in a
|
|
* non-speculative mode. This is a leaf class.
|
|
*/
|
|
class Unknown : public AlphaStaticInst
|
|
{
|
|
public:
|
|
/// Constructor
|
|
Unknown(MachInst _machInst)
|
|
: AlphaStaticInst("unknown", _machInst, No_OpClass)
|
|
{
|
|
// don't call execute() (which panics) if we're on a
|
|
// speculative path
|
|
flags[IsNonSpeculative] = true;
|
|
}
|
|
|
|
%(BasicExecDeclare)s
|
|
|
|
std::string generateDisassembly(Addr pc, const SymbolTable *symtab);
|
|
};
|
|
}};
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Unknown instructions
|
|
//
|
|
|
|
output decoder {{
|
|
std::string
|
|
Unknown::generateDisassembly(Addr pc, const SymbolTable *symtab)
|
|
{
|
|
return csprintf("%-10s (inst 0x%x, opcode 0x%x)",
|
|
"unknown", machInst, OPCODE);
|
|
}
|
|
}};
|
|
|
|
output exec {{
|
|
Fault
|
|
Unknown::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData)
|
|
{
|
|
panic("attempt to execute unknown instruction "
|
|
"(inst 0x%08x, opcode 0x%x)", machInst, OPCODE);
|
|
return Unimplemented_Opcode_Fault;
|
|
}
|
|
}};
|
|
|
|
def format Unknown() {{
|
|
decode_block = 'return new Unknown(machInst);\n'
|
|
}};
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Utility functions for execute methods
|
|
//
|
|
|
|
output exec {{
|
|
|
|
/// Return opa + opb, summing carry into third arg.
|
|
inline uint64_t
|
|
addc(uint64_t opa, uint64_t opb, int &carry)
|
|
{
|
|
uint64_t res = opa + opb;
|
|
if (res < opa || res < opb)
|
|
++carry;
|
|
return res;
|
|
}
|
|
|
|
/// Multiply two 64-bit values (opa * opb), returning the 128-bit
|
|
/// product in res_hi and res_lo.
|
|
inline void
|
|
mul128(uint64_t opa, uint64_t opb, uint64_t &res_hi, uint64_t &res_lo)
|
|
{
|
|
// do a 64x64 --> 128 multiply using four 32x32 --> 64 multiplies
|
|
uint64_t opa_hi = opa<63:32>;
|
|
uint64_t opa_lo = opa<31:0>;
|
|
uint64_t opb_hi = opb<63:32>;
|
|
uint64_t opb_lo = opb<31:0>;
|
|
|
|
res_lo = opa_lo * opb_lo;
|
|
|
|
// The middle partial products logically belong in bit
|
|
// positions 95 to 32. Thus the lower 32 bits of each product
|
|
// sum into the upper 32 bits of the low result, while the
|
|
// upper 32 sum into the low 32 bits of the upper result.
|
|
uint64_t partial1 = opa_hi * opb_lo;
|
|
uint64_t partial2 = opa_lo * opb_hi;
|
|
|
|
uint64_t partial1_lo = partial1<31:0> << 32;
|
|
uint64_t partial1_hi = partial1<63:32>;
|
|
uint64_t partial2_lo = partial2<31:0> << 32;
|
|
uint64_t partial2_hi = partial2<63:32>;
|
|
|
|
// Add partial1_lo and partial2_lo to res_lo, keeping track
|
|
// of any carries out
|
|
int carry_out = 0;
|
|
res_lo = addc(partial1_lo, res_lo, carry_out);
|
|
res_lo = addc(partial2_lo, res_lo, carry_out);
|
|
|
|
// Now calculate the high 64 bits...
|
|
res_hi = (opa_hi * opb_hi) + partial1_hi + partial2_hi + carry_out;
|
|
}
|
|
|
|
/// Map 8-bit S-floating exponent to 11-bit T-floating exponent.
|
|
/// See Table 2-2 of Alpha AHB.
|
|
inline int
|
|
map_s(int old_exp)
|
|
{
|
|
int hibit = old_exp<7:>;
|
|
int lobits = old_exp<6:0>;
|
|
|
|
if (hibit == 1) {
|
|
return (lobits == 0x7f) ? 0x7ff : (0x400 | lobits);
|
|
}
|
|
else {
|
|
return (lobits == 0) ? 0 : (0x380 | lobits);
|
|
}
|
|
}
|
|
|
|
/// Convert a 32-bit S-floating value to the equivalent 64-bit
|
|
/// representation to be stored in an FP reg.
|
|
inline uint64_t
|
|
s_to_t(uint32_t s_val)
|
|
{
|
|
uint64_t tmp = s_val;
|
|
return (tmp<31:> << 63 // sign bit
|
|
| (uint64_t)map_s(tmp<30:23>) << 52 // exponent
|
|
| tmp<22:0> << 29); // fraction
|
|
}
|
|
|
|
/// Convert a 64-bit T-floating value to the equivalent 32-bit
|
|
/// S-floating representation to be stored in memory.
|
|
inline int32_t
|
|
t_to_s(uint64_t t_val)
|
|
{
|
|
return (t_val<63:62> << 30 // sign bit & hi exp bit
|
|
| t_val<58:29>); // rest of exp & fraction
|
|
}
|
|
}};
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// The actual decoder specification
|
|
//
|
|
|
|
decode OPCODE default Unknown::unknown() {
|
|
|
|
format LoadAddress {
|
|
0x08: lda({{ Ra = Rb + disp; }});
|
|
0x09: ldah({{ Ra = Rb + (disp << 16); }});
|
|
}
|
|
|
|
format LoadOrNop {
|
|
0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }});
|
|
0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }});
|
|
0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }});
|
|
0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }});
|
|
0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED);
|
|
0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED);
|
|
0x20: copy_load({{EA = Ra;}},
|
|
{{ fault = xc->copySrcTranslate(EA);}},
|
|
IsMemRef, IsLoad, IsCopy);
|
|
}
|
|
|
|
format LoadOrPrefetch {
|
|
0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }});
|
|
0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT);
|
|
// IsFloating flag on lds gets the prefetch to disassemble
|
|
// using f31 instead of r31... funcitonally it's unnecessary
|
|
0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }},
|
|
PF_EXCLUSIVE, IsFloating);
|
|
}
|
|
|
|
format Store {
|
|
0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }});
|
|
0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }});
|
|
0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }});
|
|
0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }});
|
|
0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }});
|
|
0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }});
|
|
0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }});
|
|
0x24: copy_store({{EA = Rb;}},
|
|
{{ fault = xc->copy(EA);}},
|
|
IsMemRef, IsStore, IsCopy);
|
|
}
|
|
|
|
format StoreCond {
|
|
0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }},
|
|
{{
|
|
uint64_t tmp = Mem_write_result;
|
|
// see stq_c
|
|
Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
|
|
}}, LOCKED);
|
|
0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }},
|
|
{{
|
|
uint64_t tmp = Mem_write_result;
|
|
// If the write operation returns 0 or 1, then
|
|
// this was a conventional store conditional,
|
|
// and the value indicates the success/failure
|
|
// of the operation. If another value is
|
|
// returned, then this was a Turbolaser
|
|
// mailbox access, and we don't update the
|
|
// result register at all.
|
|
Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
|
|
}}, LOCKED);
|
|
}
|
|
|
|
format IntegerOperate {
|
|
|
|
0x10: decode INTFUNC { // integer arithmetic operations
|
|
|
|
0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
|
|
0x40: addlv({{
|
|
uint32_t tmp = Ra.sl + Rb_or_imm.sl;
|
|
// signed overflow occurs when operands have same sign
|
|
// and sign of result does not match.
|
|
if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
|
|
fault = Integer_Overflow_Fault;
|
|
Rc.sl = tmp;
|
|
}});
|
|
0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
|
|
0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
|
|
|
|
0x20: addq({{ Rc = Ra + Rb_or_imm; }});
|
|
0x60: addqv({{
|
|
uint64_t tmp = Ra + Rb_or_imm;
|
|
// signed overflow occurs when operands have same sign
|
|
// and sign of result does not match.
|
|
if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
|
|
fault = Integer_Overflow_Fault;
|
|
Rc = tmp;
|
|
}});
|
|
0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
|
|
0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
|
|
|
|
0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
|
|
0x49: sublv({{
|
|
uint32_t tmp = Ra.sl - Rb_or_imm.sl;
|
|
// signed overflow detection is same as for add,
|
|
// except we need to look at the *complemented*
|
|
// sign bit of the subtrahend (Rb), i.e., if the initial
|
|
// signs are the *same* then no overflow can occur
|
|
if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
|
|
fault = Integer_Overflow_Fault;
|
|
Rc.sl = tmp;
|
|
}});
|
|
0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
|
|
0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
|
|
|
|
0x29: subq({{ Rc = Ra - Rb_or_imm; }});
|
|
0x69: subqv({{
|
|
uint64_t tmp = Ra - Rb_or_imm;
|
|
// signed overflow detection is same as for add,
|
|
// except we need to look at the *complemented*
|
|
// sign bit of the subtrahend (Rb), i.e., if the initial
|
|
// signs are the *same* then no overflow can occur
|
|
if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
|
|
fault = Integer_Overflow_Fault;
|
|
Rc = tmp;
|
|
}});
|
|
0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
|
|
0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
|
|
|
|
0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
|
|
0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
|
|
0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
|
|
0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
|
|
0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
|
|
|
|
0x0f: cmpbge({{
|
|
int hi = 7;
|
|
int lo = 0;
|
|
uint64_t tmp = 0;
|
|
for (int i = 0; i < 8; ++i) {
|
|
tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
|
|
hi += 8;
|
|
lo += 8;
|
|
}
|
|
Rc = tmp;
|
|
}});
|
|
}
|
|
|
|
0x11: decode INTFUNC { // integer logical operations
|
|
|
|
0x00: and({{ Rc = Ra & Rb_or_imm; }});
|
|
0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
|
|
0x20: bis({{ Rc = Ra | Rb_or_imm; }});
|
|
0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
|
|
0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
|
|
0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
|
|
|
|
// conditional moves
|
|
0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
|
|
0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
|
|
0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
|
|
0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
|
|
0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
|
|
0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
|
|
0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
|
|
0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
|
|
|
|
// For AMASK, RA must be R31.
|
|
0x61: decode RA {
|
|
31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
|
|
}
|
|
|
|
// For IMPLVER, RA must be R31 and the B operand
|
|
// must be the immediate value 1.
|
|
0x6c: decode RA {
|
|
31: decode IMM {
|
|
1: decode INTIMM {
|
|
// return EV5 for FULL_SYSTEM and EV6 otherwise
|
|
1: implver({{
|
|
#ifdef FULL_SYSTEM
|
|
Rc = 1;
|
|
#else
|
|
Rc = 2;
|
|
#endif
|
|
}});
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef FULL_SYSTEM
|
|
// The mysterious 11.25...
|
|
0x25: WarnUnimpl::eleven25();
|
|
#endif
|
|
}
|
|
|
|
0x12: decode INTFUNC {
|
|
0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
|
|
0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
|
|
0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
|
|
|
|
0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
|
|
0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
|
|
0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
|
|
0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
|
|
|
|
0x52: mskwh({{
|
|
int bv = Rb_or_imm<2:0>;
|
|
Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
|
|
}});
|
|
0x62: msklh({{
|
|
int bv = Rb_or_imm<2:0>;
|
|
Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
|
|
}});
|
|
0x72: mskqh({{
|
|
int bv = Rb_or_imm<2:0>;
|
|
Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
|
|
}});
|
|
|
|
0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
|
|
0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
|
|
0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
|
|
0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
|
|
|
|
0x5a: extwh({{
|
|
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
|
|
0x6a: extlh({{
|
|
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
|
|
0x7a: extqh({{
|
|
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
|
|
|
|
0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
|
|
0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
|
|
0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
|
|
0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
|
|
|
|
0x57: inswh({{
|
|
int bv = Rb_or_imm<2:0>;
|
|
Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
|
|
}});
|
|
0x67: inslh({{
|
|
int bv = Rb_or_imm<2:0>;
|
|
Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
|
|
}});
|
|
0x77: insqh({{
|
|
int bv = Rb_or_imm<2:0>;
|
|
Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
|
|
}});
|
|
|
|
0x30: zap({{
|
|
uint64_t zapmask = 0;
|
|
for (int i = 0; i < 8; ++i) {
|
|
if (Rb_or_imm<i:>)
|
|
zapmask |= (mask(8) << (i * 8));
|
|
}
|
|
Rc = Ra & ~zapmask;
|
|
}});
|
|
0x31: zapnot({{
|
|
uint64_t zapmask = 0;
|
|
for (int i = 0; i < 8; ++i) {
|
|
if (!Rb_or_imm<i:>)
|
|
zapmask |= (mask(8) << (i * 8));
|
|
}
|
|
Rc = Ra & ~zapmask;
|
|
}});
|
|
}
|
|
|
|
0x13: decode INTFUNC { // integer multiplies
|
|
0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
|
|
0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
|
|
0x30: umulh({{
|
|
uint64_t hi, lo;
|
|
mul128(Ra, Rb_or_imm, hi, lo);
|
|
Rc = hi;
|
|
}}, IntMultOp);
|
|
0x40: mullv({{
|
|
// 32-bit multiply with trap on overflow
|
|
int64_t Rax = Ra.sl; // sign extended version of Ra.sl
|
|
int64_t Rbx = Rb_or_imm.sl;
|
|
int64_t tmp = Rax * Rbx;
|
|
// To avoid overflow, all the upper 32 bits must match
|
|
// the sign bit of the lower 32. We code this as
|
|
// checking the upper 33 bits for all 0s or all 1s.
|
|
uint64_t sign_bits = tmp<63:31>;
|
|
if (sign_bits != 0 && sign_bits != mask(33))
|
|
fault = Integer_Overflow_Fault;
|
|
Rc.sl = tmp<31:0>;
|
|
}}, IntMultOp);
|
|
0x60: mulqv({{
|
|
// 64-bit multiply with trap on overflow
|
|
uint64_t hi, lo;
|
|
mul128(Ra, Rb_or_imm, hi, lo);
|
|
// all the upper 64 bits must match the sign bit of
|
|
// the lower 64
|
|
if (!((hi == 0 && lo<63:> == 0) ||
|
|
(hi == mask(64) && lo<63:> == 1)))
|
|
fault = Integer_Overflow_Fault;
|
|
Rc = lo;
|
|
}}, IntMultOp);
|
|
}
|
|
|
|
0x1c: decode INTFUNC {
|
|
0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
|
|
0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
|
|
0x32: ctlz({{
|
|
uint64_t count = 0;
|
|
uint64_t temp = Rb;
|
|
if (temp<63:32>) temp >>= 32; else count += 32;
|
|
if (temp<31:16>) temp >>= 16; else count += 16;
|
|
if (temp<15:8>) temp >>= 8; else count += 8;
|
|
if (temp<7:4>) temp >>= 4; else count += 4;
|
|
if (temp<3:2>) temp >>= 2; else count += 2;
|
|
if (temp<1:1>) temp >>= 1; else count += 1;
|
|
if ((temp<0:0>) != 0x1) count += 1;
|
|
Rc = count;
|
|
}}, IntAluOp);
|
|
|
|
0x33: cttz({{
|
|
uint64_t count = 0;
|
|
uint64_t temp = Rb;
|
|
if (!(temp<31:0>)) { temp >>= 32; count += 32; }
|
|
if (!(temp<15:0>)) { temp >>= 16; count += 16; }
|
|
if (!(temp<7:0>)) { temp >>= 8; count += 8; }
|
|
if (!(temp<3:0>)) { temp >>= 4; count += 4; }
|
|
if (!(temp<1:0>)) { temp >>= 2; count += 2; }
|
|
if (!(temp<0:0> & ULL(0x1))) count += 1;
|
|
Rc = count;
|
|
}}, IntAluOp);
|
|
|
|
format FailUnimpl {
|
|
0x30: ctpop();
|
|
0x31: perr();
|
|
0x34: unpkbw();
|
|
0x35: unpkbl();
|
|
0x36: pkwb();
|
|
0x37: pklb();
|
|
0x38: minsb8();
|
|
0x39: minsw4();
|
|
0x3a: minub8();
|
|
0x3b: minuw4();
|
|
0x3c: maxub8();
|
|
0x3d: maxuw4();
|
|
0x3e: maxsb8();
|
|
0x3f: maxsw4();
|
|
}
|
|
|
|
format BasicOperateWithNopCheck {
|
|
0x70: decode RB {
|
|
31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
|
|
}
|
|
0x78: decode RB {
|
|
31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
|
|
FloatCvtOp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Conditional branches.
|
|
format CondBranch {
|
|
0x39: beq({{ cond = (Ra == 0); }});
|
|
0x3d: bne({{ cond = (Ra != 0); }});
|
|
0x3e: bge({{ cond = (Ra.sq >= 0); }});
|
|
0x3f: bgt({{ cond = (Ra.sq > 0); }});
|
|
0x3b: ble({{ cond = (Ra.sq <= 0); }});
|
|
0x3a: blt({{ cond = (Ra.sq < 0); }});
|
|
0x38: blbc({{ cond = ((Ra & 1) == 0); }});
|
|
0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
|
|
|
|
0x31: fbeq({{ cond = (Fa == 0); }});
|
|
0x35: fbne({{ cond = (Fa != 0); }});
|
|
0x36: fbge({{ cond = (Fa >= 0); }});
|
|
0x37: fbgt({{ cond = (Fa > 0); }});
|
|
0x33: fble({{ cond = (Fa <= 0); }});
|
|
0x32: fblt({{ cond = (Fa < 0); }});
|
|
}
|
|
|
|
// unconditional branches
|
|
format UncondBranch {
|
|
0x30: br();
|
|
0x34: bsr(IsCall);
|
|
}
|
|
|
|
// indirect branches
|
|
0x1a: decode JMPFUNC {
|
|
format Jump {
|
|
0: jmp();
|
|
1: jsr(IsCall);
|
|
2: ret(IsReturn);
|
|
3: jsr_coroutine(IsCall, IsReturn);
|
|
}
|
|
}
|
|
|
|
// IEEE floating point
|
|
0x14: decode FP_SHORTFUNC {
|
|
// Integer to FP register moves must have RB == 31
|
|
0x4: decode RB {
|
|
31: decode FP_FULLFUNC {
|
|
format BasicOperateWithNopCheck {
|
|
0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
|
|
0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
|
|
0x014: FailUnimpl::itoff(); // VAX-format conversion
|
|
}
|
|
}
|
|
}
|
|
|
|
// Square root instructions must have FA == 31
|
|
0xb: decode FA {
|
|
31: decode FP_TYPEFUNC {
|
|
format FloatingPointOperate {
|
|
#ifdef SS_COMPATIBLE_FP
|
|
0x0b: sqrts({{
|
|
if (Fb < 0.0)
|
|
fault = Arithmetic_Fault;
|
|
Fc = sqrt(Fb);
|
|
}}, FloatSqrtOp);
|
|
#else
|
|
0x0b: sqrts({{
|
|
if (Fb.sf < 0.0)
|
|
fault = Arithmetic_Fault;
|
|
Fc.sf = sqrt(Fb.sf);
|
|
}}, FloatSqrtOp);
|
|
#endif
|
|
0x2b: sqrtt({{
|
|
if (Fb < 0.0)
|
|
fault = Arithmetic_Fault;
|
|
Fc = sqrt(Fb);
|
|
}}, FloatSqrtOp);
|
|
}
|
|
}
|
|
}
|
|
|
|
// VAX-format sqrtf and sqrtg are not implemented
|
|
0xa: FailUnimpl::sqrtfg();
|
|
}
|
|
|
|
// IEEE floating point
|
|
0x16: decode FP_SHORTFUNC_TOP2 {
|
|
// The top two bits of the short function code break this space
|
|
// into four groups: binary ops, compares, reserved, and conversions.
|
|
// See Table 4-12 of AHB.
|
|
// Most of these instructions may have various trapping and
|
|
// rounding mode flags set; these are decoded in the
|
|
// FloatingPointDecode template used by the
|
|
// FloatingPointOperate format.
|
|
|
|
// add/sub/mul/div: just decode on the short function code
|
|
// and source type.
|
|
0: decode FP_TYPEFUNC {
|
|
format FloatingPointOperate {
|
|
#ifdef SS_COMPATIBLE_FP
|
|
0x00: adds({{ Fc = Fa + Fb; }});
|
|
0x01: subs({{ Fc = Fa - Fb; }});
|
|
0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
|
|
0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
|
|
#else
|
|
0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
|
|
0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
|
|
0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
|
|
0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
|
|
#endif
|
|
|
|
0x20: addt({{ Fc = Fa + Fb; }});
|
|
0x21: subt({{ Fc = Fa - Fb; }});
|
|
0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
|
|
0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
|
|
}
|
|
}
|
|
|
|
// Floating-point compare instructions must have the default
|
|
// rounding mode, and may use the default trapping mode or
|
|
// /SU. Both trapping modes are treated the same by M5; the
|
|
// only difference on the real hardware (as far a I can tell)
|
|
// is that without /SU you'd get an imprecise trap if you
|
|
// tried to compare a NaN with something else (instead of an
|
|
// "unordered" result).
|
|
1: decode FP_FULLFUNC {
|
|
format BasicOperateWithNopCheck {
|
|
0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
|
|
FloatCmpOp);
|
|
0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
|
|
FloatCmpOp);
|
|
0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
|
|
FloatCmpOp);
|
|
0x0a4, 0x5a4: cmptun({{ // unordered
|
|
Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
|
|
}}, FloatCmpOp);
|
|
}
|
|
}
|
|
|
|
// The FP-to-integer and integer-to-FP conversion insts
|
|
// require that FA be 31.
|
|
3: decode FA {
|
|
31: decode FP_TYPEFUNC {
|
|
format FloatingPointOperate {
|
|
0x2f: cvttq({{ Fc.sq = (int64_t)rint(Fb); }});
|
|
|
|
// The cvtts opcode is overloaded to be cvtst if the trap
|
|
// mode is 2 or 6 (which are not valid otherwise)
|
|
0x2c: decode FP_FULLFUNC {
|
|
format BasicOperateWithNopCheck {
|
|
// trap on denorm version "cvtst/s" is
|
|
// simulated same as cvtst
|
|
0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
|
|
}
|
|
default: cvtts({{ Fc.sf = Fb; }});
|
|
}
|
|
|
|
// The trapping mode for integer-to-FP conversions
|
|
// must be /SUI or nothing; /U and /SU are not
|
|
// allowed. The full set of rounding modes are
|
|
// supported though.
|
|
0x3c: decode FP_TRAPMODE {
|
|
0,7: cvtqs({{ Fc.sf = Fb.sq; }});
|
|
}
|
|
0x3e: decode FP_TRAPMODE {
|
|
0,7: cvtqt({{ Fc = Fb.sq; }});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// misc FP operate
|
|
0x17: decode FP_FULLFUNC {
|
|
format BasicOperateWithNopCheck {
|
|
0x010: cvtlq({{
|
|
Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
|
|
}});
|
|
0x030: cvtql({{
|
|
Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
|
|
}});
|
|
|
|
// We treat the precise & imprecise trapping versions of
|
|
// cvtql identically.
|
|
0x130, 0x530: cvtqlv({{
|
|
// To avoid overflow, all the upper 32 bits must match
|
|
// the sign bit of the lower 32. We code this as
|
|
// checking the upper 33 bits for all 0s or all 1s.
|
|
uint64_t sign_bits = Fb.uq<63:31>;
|
|
if (sign_bits != 0 && sign_bits != mask(33))
|
|
fault = Integer_Overflow_Fault;
|
|
Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
|
|
}});
|
|
|
|
0x020: cpys({{ // copy sign
|
|
Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
|
|
}});
|
|
0x021: cpysn({{ // copy sign negated
|
|
Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
|
|
}});
|
|
0x022: cpyse({{ // copy sign and exponent
|
|
Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
|
|
}});
|
|
|
|
0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
|
|
0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
|
|
0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
|
|
0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
|
|
0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
|
|
0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
|
|
|
|
0x024: mt_fpcr({{ FPCR = Fa.uq; }});
|
|
0x025: mf_fpcr({{ Fa.uq = FPCR; }});
|
|
}
|
|
}
|
|
|
|
// miscellaneous mem-format ops
|
|
0x18: decode MEMFUNC {
|
|
format WarnUnimpl {
|
|
0x8000: fetch();
|
|
0xa000: fetch_m();
|
|
0xe800: ecb();
|
|
}
|
|
|
|
format MiscPrefetch {
|
|
0xf800: wh64({{ EA = Rb & ~ULL(63); }},
|
|
{{ xc->writeHint(EA, 64, memAccessFlags); }},
|
|
IsMemRef, IsDataPrefetch, IsStore, MemWriteOp,
|
|
NO_FAULT);
|
|
}
|
|
|
|
format BasicOperate {
|
|
0xc000: rpcc({{
|
|
#ifdef FULL_SYSTEM
|
|
/* Rb is a fake dependency so here is a fun way to get
|
|
* the parser to understand that.
|
|
*/
|
|
Ra = xc->readIpr(AlphaISA::IPR_CC, fault) + (Rb & 0);
|
|
|
|
#else
|
|
Ra = curTick;
|
|
#endif
|
|
}});
|
|
|
|
// All of the barrier instructions below do nothing in
|
|
// their execute() methods (hence the empty code blocks).
|
|
// All of their functionality is hard-coded in the
|
|
// pipeline based on the flags IsSerializing,
|
|
// IsMemBarrier, and IsWriteBarrier. In the current
|
|
// detailed CPU model, the execute() function only gets
|
|
// called at fetch, so there's no way to generate pipeline
|
|
// behavior at any other stage. Once we go to an
|
|
// exec-in-exec CPU model we should be able to get rid of
|
|
// these flags and implement this behavior via the
|
|
// execute() methods.
|
|
|
|
// trapb is just a barrier on integer traps, where excb is
|
|
// a barrier on integer and FP traps. "EXCB is thus a
|
|
// superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
|
|
// them the same though.
|
|
0x0000: trapb({{ }}, IsSerializing, No_OpClass);
|
|
0x0400: excb({{ }}, IsSerializing, No_OpClass);
|
|
0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
|
|
0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
|
|
}
|
|
|
|
#ifdef FULL_SYSTEM
|
|
format BasicOperate {
|
|
0xe000: rc({{
|
|
Ra = xc->readIntrFlag();
|
|
xc->setIntrFlag(0);
|
|
}}, IsNonSpeculative);
|
|
0xf000: rs({{
|
|
Ra = xc->readIntrFlag();
|
|
xc->setIntrFlag(1);
|
|
}}, IsNonSpeculative);
|
|
}
|
|
#else
|
|
format FailUnimpl {
|
|
0xe000: rc();
|
|
0xf000: rs();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef FULL_SYSTEM
|
|
0x00: CallPal::call_pal({{
|
|
if (!palValid ||
|
|
(palPriv
|
|
&& xc->readIpr(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) {
|
|
// invalid pal function code, or attempt to do privileged
|
|
// PAL call in non-kernel mode
|
|
fault = Unimplemented_Opcode_Fault;
|
|
}
|
|
else {
|
|
// check to see if simulator wants to do something special
|
|
// on this PAL call (including maybe suppress it)
|
|
bool dopal = xc->simPalCheck(palFunc);
|
|
|
|
if (dopal) {
|
|
AlphaISA::swap_palshadow(&xc->xcBase()->regs, true);
|
|
xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC);
|
|
NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset;
|
|
}
|
|
}
|
|
}}, IsNonSpeculative);
|
|
#else
|
|
0x00: decode PALFUNC {
|
|
format EmulatedCallPal {
|
|
0x00: halt ({{
|
|
SimExit(curTick, "halt instruction encountered");
|
|
}}, IsNonSpeculative);
|
|
0x83: callsys({{
|
|
xc->syscall();
|
|
}}, IsNonSpeculative);
|
|
// Read uniq reg into ABI return value register (r0)
|
|
0x9e: rduniq({{ R0 = Runiq; }});
|
|
// Write uniq reg with value from ABI arg register (r16)
|
|
0x9f: wruniq({{ Runiq = R16; }});
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef FULL_SYSTEM
|
|
format HwLoadStore {
|
|
0x1b: decode HW_LDST_QUAD {
|
|
0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
|
|
1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
|
|
}
|
|
|
|
0x1f: decode HW_LDST_COND {
|
|
0: decode HW_LDST_QUAD {
|
|
0: hw_st({{ EA = (Rb + disp) & ~3; }},
|
|
{{ Mem.ul = Ra<31:0>; }}, L);
|
|
1: hw_st({{ EA = (Rb + disp) & ~7; }},
|
|
{{ Mem.uq = Ra.uq; }}, Q);
|
|
}
|
|
|
|
1: FailUnimpl::hw_st_cond();
|
|
}
|
|
}
|
|
|
|
format BasicOperate {
|
|
0x1e: hw_rei({{ xc->hwrei(); }});
|
|
|
|
// M5 special opcodes use the reserved 0x01 opcode space
|
|
0x01: decode M5FUNC {
|
|
0x00: arm({{
|
|
AlphaPseudo::arm(xc->xcBase());
|
|
}}, IsNonSpeculative);
|
|
0x01: quiesce({{
|
|
AlphaPseudo::quiesce(xc->xcBase());
|
|
}}, IsNonSpeculative);
|
|
0x10: ivlb({{
|
|
AlphaPseudo::ivlb(xc->xcBase());
|
|
}}, No_OpClass, IsNonSpeculative);
|
|
0x11: ivle({{
|
|
AlphaPseudo::ivle(xc->xcBase());
|
|
}}, No_OpClass, IsNonSpeculative);
|
|
0x20: m5exit_old({{
|
|
AlphaPseudo::m5exit_old(xc->xcBase());
|
|
}}, No_OpClass, IsNonSpeculative);
|
|
0x21: m5exit({{
|
|
AlphaPseudo::m5exit(xc->xcBase());
|
|
}}, No_OpClass, IsNonSpeculative);
|
|
0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }});
|
|
0x40: resetstats({{
|
|
AlphaPseudo::resetstats(xc->xcBase());
|
|
}}, IsNonSpeculative);
|
|
0x41: dumpstats({{
|
|
AlphaPseudo::dumpstats(xc->xcBase());
|
|
}}, IsNonSpeculative);
|
|
0x42: dumpresetstats({{
|
|
AlphaPseudo::dumpresetstats(xc->xcBase());
|
|
}}, IsNonSpeculative);
|
|
0x43: m5checkpoint({{
|
|
AlphaPseudo::m5checkpoint(xc->xcBase());
|
|
}}, IsNonSpeculative);
|
|
0x50: m5readfile({{
|
|
AlphaPseudo::readfile(xc->xcBase());
|
|
}}, IsNonSpeculative);
|
|
0x51: m5break({{
|
|
AlphaPseudo::debugbreak(xc->xcBase());
|
|
}}, IsNonSpeculative);
|
|
0x52: m5switchcpu({{
|
|
AlphaPseudo::switchcpu(xc->xcBase());
|
|
}}, IsNonSpeculative);
|
|
|
|
}
|
|
}
|
|
|
|
format HwMoveIPR {
|
|
0x19: hw_mfpr({{
|
|
// this instruction is only valid in PAL mode
|
|
if (!xc->inPalMode()) {
|
|
fault = Unimplemented_Opcode_Fault;
|
|
}
|
|
else {
|
|
Ra = xc->readIpr(ipr_index, fault);
|
|
}
|
|
}});
|
|
0x1d: hw_mtpr({{
|
|
// this instruction is only valid in PAL mode
|
|
if (!xc->inPalMode()) {
|
|
fault = Unimplemented_Opcode_Fault;
|
|
}
|
|
else {
|
|
xc->setIpr(ipr_index, Ra);
|
|
if (traceData) { traceData->setData(Ra); }
|
|
}
|
|
}});
|
|
}
|
|
#endif
|
|
}
|