gem5/src/mem/ruby/network/simple/Topology.cc
Nilay Vaish 658849d101 ruby: Converted old ruby debug calls to M5 debug calls
This patch developed by Nilay Vaish converts all the old GEMS-style ruby
debug calls to the appropriate M5 debug calls.
2010-12-01 11:30:04 -08:00

440 lines
15 KiB
C++

/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mem/protocol/MachineType.hh"
#include "mem/protocol/Protocol.hh"
#include "mem/protocol/TopologyType.hh"
#include "mem/ruby/common/NetDest.hh"
#include "mem/ruby/network/Network.hh"
#include "mem/ruby/network/simple/Topology.hh"
#include "mem/ruby/slicc_interface/AbstractController.hh"
#include "mem/ruby/system/System.hh"
using namespace std;
const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
const int DEFAULT_BW_MULTIPLIER = 1; // Just to be consistent with above :)
// Note: In this file, we use the first 2*m_nodes SwitchIDs to
// represent the input and output endpoint links. These really are
// not 'switches', as they will not have a Switch object allocated for
// them. The first m_nodes SwitchIDs are the links into the network,
// the second m_nodes set of SwitchIDs represent the the output queues
// of the network.
// Helper functions based on chapter 29 of Cormen et al.
void extend_shortest_path(Matrix& current_dist, Matrix& latencies,
Matrix& inter_switches);
Matrix shortest_path(const Matrix& weights, Matrix& latencies,
Matrix& inter_switches);
bool link_is_shortest_path_to_node(SwitchID src, SwitchID next,
SwitchID final, const Matrix& weights, const Matrix& dist);
NetDest shortest_path_to_node(SwitchID src, SwitchID next,
const Matrix& weights, const Matrix& dist);
Topology::Topology(const Params *p)
: SimObject(p)
{
m_print_config = p->print_config;
m_number_of_switches = p->num_int_nodes;
// initialize component latencies record
m_component_latencies.resize(0);
m_component_inter_switches.resize(0);
// Total nodes/controllers in network
// Must make sure this is called after the State Machine constructors
m_nodes = MachineType_base_number(MachineType_NUM);
assert(m_nodes > 1);
if (m_nodes != params()->ext_links.size() &&
m_nodes != params()->ext_links.size()) {
fatal("m_nodes (%d) != ext_links vector length (%d)\n",
m_nodes != params()->ext_links.size());
}
// First create the links between the endpoints (i.e. controllers)
// and the network.
for (vector<ExtLink*>::const_iterator i = params()->ext_links.begin();
i != params()->ext_links.end(); ++i) {
const ExtLinkParams *p = (*i)->params();
AbstractController *c = p->ext_node;
// Store the controller pointers for later
m_controller_vector.push_back(c);
int ext_idx1 =
MachineType_base_number(c->getMachineType()) + c->getVersion();
int ext_idx2 = ext_idx1 + m_nodes;
int int_idx = p->int_node + 2*m_nodes;
// create the links in both directions
addLink(ext_idx1, int_idx, p->latency, p->bw_multiplier, p->weight);
addLink(int_idx, ext_idx2, p->latency, p->bw_multiplier, p->weight);
}
for (vector<IntLink*>::const_iterator i = params()->int_links.begin();
i != params()->int_links.end(); ++i) {
const IntLinkParams *p = (*i)->params();
int a = p->node_a + 2*m_nodes;
int b = p->node_b + 2*m_nodes;
// create the links in both directions
addLink(a, b, p->latency, p->bw_multiplier, p->weight);
addLink(b, a, p->latency, p->bw_multiplier, p->weight);
}
}
void
Topology::initNetworkPtr(Network* net_ptr)
{
for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
m_controller_vector[cntrl]->initNetworkPtr(net_ptr);
}
}
void
Topology::createLinks(Network *net, bool isReconfiguration)
{
// Find maximum switchID
SwitchID max_switch_id = 0;
for (int i = 0; i < m_links_src_vector.size(); i++) {
max_switch_id = max(max_switch_id, m_links_src_vector[i]);
max_switch_id = max(max_switch_id, m_links_dest_vector[i]);
}
// Initialize weight vector
Matrix topology_weights;
Matrix topology_latency;
Matrix topology_bw_multis;
int num_switches = max_switch_id+1;
topology_weights.resize(num_switches);
topology_latency.resize(num_switches);
topology_bw_multis.resize(num_switches);
// FIXME setting the size of a member variable here is a HACK!
m_component_latencies.resize(num_switches);
// FIXME setting the size of a member variable here is a HACK!
m_component_inter_switches.resize(num_switches);
for (int i = 0; i < topology_weights.size(); i++) {
topology_weights[i].resize(num_switches);
topology_latency[i].resize(num_switches);
topology_bw_multis[i].resize(num_switches);
m_component_latencies[i].resize(num_switches);
// FIXME setting the size of a member variable here is a HACK!
m_component_inter_switches[i].resize(num_switches);
for (int j = 0; j < topology_weights[i].size(); j++) {
topology_weights[i][j] = INFINITE_LATENCY;
// initialize to invalid values
topology_latency[i][j] = -1;
topology_bw_multis[i][j] = -1;
m_component_latencies[i][j] = -1;
// initially assume direct connections / no intermediate
// switches between components
m_component_inter_switches[i][j] = 0;
}
}
// Set identity weights to zero
for (int i = 0; i < topology_weights.size(); i++) {
topology_weights[i][i] = 0;
}
// Fill in the topology weights and bandwidth multipliers
for (int i = 0; i < m_links_src_vector.size(); i++) {
int src = m_links_src_vector[i];
int dst = m_links_dest_vector[i];
topology_weights[src][dst] = m_links_weight_vector[i];
topology_latency[src][dst] = m_links_latency_vector[i];
m_component_latencies[src][dst] = m_links_latency_vector[i];
topology_bw_multis[src][dst] = m_bw_multiplier_vector[i];
}
// Walk topology and hookup the links
Matrix dist = shortest_path(topology_weights, m_component_latencies,
m_component_inter_switches);
for (int i = 0; i < topology_weights.size(); i++) {
for (int j = 0; j < topology_weights[i].size(); j++) {
int weight = topology_weights[i][j];
int bw_multiplier = topology_bw_multis[i][j];
int latency = topology_latency[i][j];
if (weight > 0 && weight != INFINITE_LATENCY) {
NetDest destination_set = shortest_path_to_node(i, j,
topology_weights, dist);
assert(latency != -1);
makeLink(net, i, j, destination_set, latency, weight,
bw_multiplier, isReconfiguration);
}
}
}
}
SwitchID
Topology::newSwitchID()
{
m_number_of_switches++;
return m_number_of_switches-1+m_nodes+m_nodes;
}
void
Topology::addLink(SwitchID src, SwitchID dest, int link_latency)
{
addLink(src, dest, link_latency, DEFAULT_BW_MULTIPLIER, link_latency);
}
void
Topology::addLink(SwitchID src, SwitchID dest, int link_latency,
int bw_multiplier)
{
addLink(src, dest, link_latency, bw_multiplier, link_latency);
}
void
Topology::addLink(SwitchID src, SwitchID dest, int link_latency,
int bw_multiplier, int link_weight)
{
ASSERT(src <= m_number_of_switches+m_nodes+m_nodes);
ASSERT(dest <= m_number_of_switches+m_nodes+m_nodes);
m_links_src_vector.push_back(src);
m_links_dest_vector.push_back(dest);
m_links_latency_vector.push_back(link_latency);
m_links_weight_vector.push_back(link_weight);
m_bw_multiplier_vector.push_back(bw_multiplier);
}
void
Topology::makeLink(Network *net, SwitchID src, SwitchID dest,
const NetDest& routing_table_entry, int link_latency, int link_weight,
int bw_multiplier, bool isReconfiguration)
{
// Make sure we're not trying to connect two end-point nodes
// directly together
assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
if (src < m_nodes) {
net->makeInLink(src, dest-(2*m_nodes), routing_table_entry,
link_latency, bw_multiplier, isReconfiguration);
} else if (dest < 2*m_nodes) {
assert(dest >= m_nodes);
NodeID node = dest-m_nodes;
net->makeOutLink(src-(2*m_nodes), node, routing_table_entry,
link_latency, link_weight, bw_multiplier, isReconfiguration);
} else {
assert((src >= 2*m_nodes) && (dest >= 2*m_nodes));
net->makeInternalLink(src-(2*m_nodes), dest-(2*m_nodes),
routing_table_entry, link_latency, link_weight, bw_multiplier,
isReconfiguration);
}
}
void
Topology::printStats(std::ostream& out) const
{
for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
m_controller_vector[cntrl]->printStats(out);
}
}
void
Topology::clearStats()
{
for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
m_controller_vector[cntrl]->clearStats();
}
}
void
Topology::printConfig(std::ostream& out) const
{
if (m_print_config == false)
return;
assert(m_component_latencies.size() > 0);
out << "--- Begin Topology Print ---" << endl
<< endl
<< "Topology print ONLY indicates the _NETWORK_ latency between two "
<< "machines" << endl
<< "It does NOT include the latency within the machines" << endl
<< endl;
for (int m = 0; m < MachineType_NUM; m++) {
int i_end = MachineType_base_count((MachineType)m);
for (int i = 0; i < i_end; i++) {
MachineID cur_mach = {(MachineType)m, i};
out << cur_mach << " Network Latencies" << endl;
for (int n = 0; n < MachineType_NUM; n++) {
int j_end = MachineType_base_count((MachineType)n);
for (int j = 0; j < j_end; j++) {
MachineID dest_mach = {(MachineType)n, j};
if (cur_mach == dest_mach)
continue;
int src = MachineType_base_number((MachineType)m) + i;
int dst = MachineType_base_number(MachineType_NUM) +
MachineType_base_number((MachineType)n) + j;
int link_latency = m_component_latencies[src][dst];
int intermediate_switches =
m_component_inter_switches[src][dst];
// NOTE switches are assumed to have single
// cycle latency
out << " " << cur_mach << " -> " << dest_mach
<< " net_lat: "
<< link_latency + intermediate_switches << endl;
}
}
out << endl;
}
}
out << "--- End Topology Print ---" << endl;
}
// The following all-pairs shortest path algorithm is based on the
// discussion from Cormen et al., Chapter 26.1.
void
extend_shortest_path(Matrix& current_dist, Matrix& latencies,
Matrix& inter_switches)
{
bool change = true;
int nodes = current_dist.size();
while (change) {
change = false;
for (int i = 0; i < nodes; i++) {
for (int j = 0; j < nodes; j++) {
int minimum = current_dist[i][j];
int previous_minimum = minimum;
int intermediate_switch = -1;
for (int k = 0; k < nodes; k++) {
minimum = min(minimum,
current_dist[i][k] + current_dist[k][j]);
if (previous_minimum != minimum) {
intermediate_switch = k;
inter_switches[i][j] =
inter_switches[i][k] +
inter_switches[k][j] + 1;
}
previous_minimum = minimum;
}
if (current_dist[i][j] != minimum) {
change = true;
current_dist[i][j] = minimum;
assert(intermediate_switch >= 0);
assert(intermediate_switch < latencies[i].size());
latencies[i][j] = latencies[i][intermediate_switch] +
latencies[intermediate_switch][j];
}
}
}
}
}
Matrix
shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches)
{
Matrix dist = weights;
extend_shortest_path(dist, latencies, inter_switches);
return dist;
}
bool
link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final,
const Matrix& weights, const Matrix& dist)
{
return weights[src][next] + dist[next][final] == dist[src][final];
}
NetDest
shortest_path_to_node(SwitchID src, SwitchID next, const Matrix& weights,
const Matrix& dist)
{
NetDest result;
int d = 0;
int machines;
int max_machines;
machines = MachineType_NUM;
max_machines = MachineType_base_number(MachineType_NUM);
for (int m = 0; m < machines; m++) {
for (int i = 0; i < MachineType_base_count((MachineType)m); i++) {
// we use "d+max_machines" below since the "destination"
// switches for the machines are numbered
// [MachineType_base_number(MachineType_NUM)...
// 2*MachineType_base_number(MachineType_NUM)-1] for the
// component network
if (link_is_shortest_path_to_node(src, next, d + max_machines,
weights, dist)) {
MachineID mach = {(MachineType)m, i};
result.add(mach);
}
d++;
}
}
DPRINTF(RubyNetwork, "Returning shortest path\n"
"(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
"src: %d, next: %d, result: %s\n",
(src-(2*max_machines)), (next-(2*max_machines)),
src, next, result);
return result;
}
Topology *
TopologyParams::create()
{
return new Topology(this);
}
Link *
LinkParams::create()
{
return new Link(this);
}
ExtLink *
ExtLinkParams::create()
{
return new ExtLink(this);
}
IntLink *
IntLinkParams::create()
{
return new IntLink(this);
}