gem5/src/dev/arm/generic_timer.cc
Andreas Sandberg 8c5df4be2e dev, arm: Make GenericTimer param handling more robust
The generic timer needs a pointer to an ArmSystem to wire itself to the
system register handler. This was previously specified as an instance
of System that was later cast to ArmSystem. Make this more robust by
specifying it as an ArmSystem in the Python interface and add a check
to make sure that it is non-NULL.

Change-Id: I989455e666f4ea324df28124edbbadfd094b0d02
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
2016-10-07 14:14:44 +01:00

821 lines
22 KiB
C++

/*
* Copyright (c) 2013, 2015 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Giacomo Gabrielli
* Andreas Sandberg
*/
#include "dev/arm/generic_timer.hh"
#include "arch/arm/system.hh"
#include "debug/Timer.hh"
#include "dev/arm/base_gic.hh"
#include "mem/packet_access.hh"
#include "params/GenericTimer.hh"
#include "params/GenericTimerMem.hh"
SystemCounter::SystemCounter()
: _freq(0), _period(0), _resetTick(0), _regCntkctl(0)
{
setFreq(0x01800000);
}
void
SystemCounter::setFreq(uint32_t freq)
{
if (_freq != 0) {
// Altering the frequency after boot shouldn't be done in practice.
warn_once("The frequency of the system counter has already been set");
}
_freq = freq;
_period = (1.0 / freq) * SimClock::Frequency;
_resetTick = curTick();
}
void
SystemCounter::serialize(CheckpointOut &cp) const
{
SERIALIZE_SCALAR(_regCntkctl);
SERIALIZE_SCALAR(_freq);
SERIALIZE_SCALAR(_period);
SERIALIZE_SCALAR(_resetTick);
}
void
SystemCounter::unserialize(CheckpointIn &cp)
{
// We didn't handle CNTKCTL in this class before, assume it's zero
// if it isn't present.
if (!UNSERIALIZE_OPT_SCALAR(_regCntkctl))
_regCntkctl = 0;
UNSERIALIZE_SCALAR(_freq);
UNSERIALIZE_SCALAR(_period);
UNSERIALIZE_SCALAR(_resetTick);
}
ArchTimer::ArchTimer(const std::string &name,
SimObject &parent,
SystemCounter &sysctr,
const Interrupt &interrupt)
: _name(name), _parent(parent), _systemCounter(sysctr),
_interrupt(interrupt),
_control(0), _counterLimit(0), _offset(0),
_counterLimitReachedEvent(this)
{
}
void
ArchTimer::counterLimitReached()
{
_control.istatus = 1;
if (!_control.enable)
return;
DPRINTF(Timer, "Counter limit reached\n");
if (!_control.imask) {
DPRINTF(Timer, "Causing interrupt\n");
_interrupt.send();
}
}
void
ArchTimer::updateCounter()
{
if (_counterLimitReachedEvent.scheduled())
_parent.deschedule(_counterLimitReachedEvent);
if (value() >= _counterLimit) {
counterLimitReached();
} else {
const auto period(_systemCounter.period());
_control.istatus = 0;
_parent.schedule(_counterLimitReachedEvent,
curTick() + (_counterLimit - value()) * period);
}
}
void
ArchTimer::setCompareValue(uint64_t val)
{
_counterLimit = val;
updateCounter();
}
void
ArchTimer::setTimerValue(uint32_t val)
{
setCompareValue(value() + sext<32>(val));
}
void
ArchTimer::setControl(uint32_t val)
{
ArchTimerCtrl new_ctl = val;
if ((new_ctl.enable && !new_ctl.imask) &&
!(_control.enable && !_control.imask)) {
// Re-evalute the timer condition
if (_counterLimit >= value()) {
_control.istatus = 1;
DPRINTF(Timer, "Causing interrupt in control\n");
//_interrupt.send();
}
}
_control.enable = new_ctl.enable;
_control.imask = new_ctl.imask;
}
void
ArchTimer::setOffset(uint64_t val)
{
_offset = val;
updateCounter();
}
uint64_t
ArchTimer::value() const
{
return _systemCounter.value() - _offset;
}
void
ArchTimer::serialize(CheckpointOut &cp) const
{
paramOut(cp, "control_serial", _control);
SERIALIZE_SCALAR(_counterLimit);
SERIALIZE_SCALAR(_offset);
const bool event_scheduled(_counterLimitReachedEvent.scheduled());
SERIALIZE_SCALAR(event_scheduled);
if (event_scheduled) {
const Tick event_time(_counterLimitReachedEvent.when());
SERIALIZE_SCALAR(event_time);
}
}
void
ArchTimer::unserialize(CheckpointIn &cp)
{
paramIn(cp, "control_serial", _control);
// We didn't serialize an offset before we added support for the
// virtual timer. Consider it optional to maintain backwards
// compatibility.
if (!UNSERIALIZE_OPT_SCALAR(_offset))
_offset = 0;
bool event_scheduled;
UNSERIALIZE_SCALAR(event_scheduled);
if (event_scheduled) {
Tick event_time;
UNSERIALIZE_SCALAR(event_time);
_parent.schedule(_counterLimitReachedEvent, event_time);
}
}
void
ArchTimer::Interrupt::send()
{
if (_ppi) {
_gic.sendPPInt(_irq, _cpu);
} else {
_gic.sendInt(_irq);
}
}
void
ArchTimer::Interrupt::clear()
{
if (_ppi) {
_gic.clearPPInt(_irq, _cpu);
} else {
_gic.clearInt(_irq);
}
}
GenericTimer::GenericTimer(GenericTimerParams *p)
: SimObject(p),
gic(p->gic),
irqPhys(p->int_phys),
irqVirt(p->int_virt)
{
fatal_if(!p->system, "No system specified, can't instantiate timer.\n");
p->system->setGenericTimer(this);
}
void
GenericTimer::serialize(CheckpointOut &cp) const
{
paramOut(cp, "cpu_count", timers.size());
systemCounter.serializeSection(cp, "sys_counter");
for (int i = 0; i < timers.size(); ++i) {
const CoreTimers &core(*timers[i]);
// This should really be phys_timerN, but we are stuck with
// arch_timer for backwards compatibility.
core.phys.serializeSection(cp, csprintf("arch_timer%d", i));
core.virt.serializeSection(cp, csprintf("virt_timer%d", i));
}
}
void
GenericTimer::unserialize(CheckpointIn &cp)
{
systemCounter.unserializeSection(cp, "sys_counter");
// Try to unserialize the CPU count. Old versions of the timer
// model assumed a 8 CPUs, so we fall back to that if the field
// isn't present.
static const unsigned OLD_CPU_MAX = 8;
unsigned cpu_count;
if (!UNSERIALIZE_OPT_SCALAR(cpu_count)) {
warn("Checkpoint does not contain CPU count, assuming %i CPUs\n",
OLD_CPU_MAX);
cpu_count = OLD_CPU_MAX;
}
for (int i = 0; i < cpu_count; ++i) {
CoreTimers &core(getTimers(i));
// This should really be phys_timerN, but we are stuck with
// arch_timer for backwards compatibility.
core.phys.unserializeSection(cp, csprintf("arch_timer%d", i));
core.virt.unserializeSection(cp, csprintf("virt_timer%d", i));
}
}
GenericTimer::CoreTimers &
GenericTimer::getTimers(int cpu_id)
{
if (cpu_id >= timers.size())
createTimers(cpu_id + 1);
return *timers[cpu_id];
}
void
GenericTimer::createTimers(unsigned cpus)
{
assert(timers.size() < cpus);
const unsigned old_cpu_count(timers.size());
timers.resize(cpus);
for (unsigned i = old_cpu_count; i < cpus; ++i) {
timers[i].reset(
new CoreTimers(*this, i, irqPhys, irqVirt));
}
}
void
GenericTimer::setMiscReg(int reg, unsigned cpu, MiscReg val)
{
CoreTimers &core(getTimers(cpu));
switch (reg) {
case MISCREG_CNTFRQ:
case MISCREG_CNTFRQ_EL0:
systemCounter.setFreq(val);
return;
case MISCREG_CNTKCTL:
case MISCREG_CNTKCTL_EL1:
systemCounter.setKernelControl(val);
return;
// Physical timer
case MISCREG_CNTP_CVAL:
case MISCREG_CNTP_CVAL_NS:
case MISCREG_CNTP_CVAL_EL0:
core.phys.setCompareValue(val);
return;
case MISCREG_CNTP_TVAL:
case MISCREG_CNTP_TVAL_NS:
case MISCREG_CNTP_TVAL_EL0:
core.phys.setTimerValue(val);
return;
case MISCREG_CNTP_CTL:
case MISCREG_CNTP_CTL_NS:
case MISCREG_CNTP_CTL_EL0:
core.phys.setControl(val);
return;
// Count registers
case MISCREG_CNTPCT:
case MISCREG_CNTPCT_EL0:
case MISCREG_CNTVCT:
case MISCREG_CNTVCT_EL0:
warn("Ignoring write to read only count register: %s\n",
miscRegName[reg]);
return;
// Virtual timer
case MISCREG_CNTVOFF:
case MISCREG_CNTVOFF_EL2:
core.virt.setOffset(val);
return;
case MISCREG_CNTV_CVAL:
case MISCREG_CNTV_CVAL_EL0:
core.virt.setCompareValue(val);
return;
case MISCREG_CNTV_TVAL:
case MISCREG_CNTV_TVAL_EL0:
core.virt.setTimerValue(val);
return;
case MISCREG_CNTV_CTL:
case MISCREG_CNTV_CTL_EL0:
core.virt.setControl(val);
return;
// PL1 phys. timer, secure
case MISCREG_CNTP_CTL_S:
case MISCREG_CNTPS_CVAL_EL1:
case MISCREG_CNTPS_TVAL_EL1:
case MISCREG_CNTPS_CTL_EL1:
/* FALLTHROUGH */
// PL2 phys. timer, non-secure
case MISCREG_CNTHCTL:
case MISCREG_CNTHCTL_EL2:
case MISCREG_CNTHP_CVAL:
case MISCREG_CNTHP_CVAL_EL2:
case MISCREG_CNTHP_TVAL:
case MISCREG_CNTHP_TVAL_EL2:
case MISCREG_CNTHP_CTL:
case MISCREG_CNTHP_CTL_EL2:
warn("Writing to unimplemented register: %s\n",
miscRegName[reg]);
return;
default:
warn("Writing to unknown register: %s\n", miscRegName[reg]);
return;
}
}
MiscReg
GenericTimer::readMiscReg(int reg, unsigned cpu)
{
CoreTimers &core(getTimers(cpu));
switch (reg) {
case MISCREG_CNTFRQ:
case MISCREG_CNTFRQ_EL0:
return systemCounter.freq();
case MISCREG_CNTKCTL:
case MISCREG_CNTKCTL_EL1:
return systemCounter.getKernelControl();
// Physical timer
case MISCREG_CNTP_CVAL:
case MISCREG_CNTP_CVAL_EL0:
return core.phys.compareValue();
case MISCREG_CNTP_TVAL:
case MISCREG_CNTP_TVAL_EL0:
return core.phys.timerValue();
case MISCREG_CNTP_CTL:
case MISCREG_CNTP_CTL_EL0:
case MISCREG_CNTP_CTL_NS:
return core.phys.control();
case MISCREG_CNTPCT:
case MISCREG_CNTPCT_EL0:
return core.phys.value();
// Virtual timer
case MISCREG_CNTVCT:
case MISCREG_CNTVCT_EL0:
return core.virt.value();
case MISCREG_CNTVOFF:
case MISCREG_CNTVOFF_EL2:
return core.virt.offset();
case MISCREG_CNTV_CVAL:
case MISCREG_CNTV_CVAL_EL0:
return core.virt.compareValue();
case MISCREG_CNTV_TVAL:
case MISCREG_CNTV_TVAL_EL0:
return core.virt.timerValue();
case MISCREG_CNTV_CTL:
case MISCREG_CNTV_CTL_EL0:
return core.virt.control();
// PL1 phys. timer, secure
case MISCREG_CNTP_CTL_S:
case MISCREG_CNTPS_CVAL_EL1:
case MISCREG_CNTPS_TVAL_EL1:
case MISCREG_CNTPS_CTL_EL1:
/* FALLTHROUGH */
// PL2 phys. timer, non-secure
case MISCREG_CNTHCTL:
case MISCREG_CNTHCTL_EL2:
case MISCREG_CNTHP_CVAL:
case MISCREG_CNTHP_CVAL_EL2:
case MISCREG_CNTHP_TVAL:
case MISCREG_CNTHP_TVAL_EL2:
case MISCREG_CNTHP_CTL:
case MISCREG_CNTHP_CTL_EL2:
warn("Reading from unimplemented register: %s\n",
miscRegName[reg]);
return 0;
default:
warn("Reading from unknown register: %s\n", miscRegName[reg]);
return 0;
}
}
GenericTimerMem::GenericTimerMem(GenericTimerMemParams *p)
: PioDevice(p),
ctrlRange(RangeSize(p->base, TheISA::PageBytes)),
timerRange(RangeSize(p->base + TheISA::PageBytes, TheISA::PageBytes)),
addrRanges{ctrlRange, timerRange},
systemCounter(),
physTimer(csprintf("%s.phys_timer0", name()),
*this, systemCounter,
ArchTimer::Interrupt(*p->gic, p->int_phys)),
virtTimer(csprintf("%s.virt_timer0", name()),
*this, systemCounter,
ArchTimer::Interrupt(*p->gic, p->int_virt))
{
}
void
GenericTimerMem::serialize(CheckpointOut &cp) const
{
paramOut(cp, "timer_count", 1);
systemCounter.serializeSection(cp, "sys_counter");
physTimer.serializeSection(cp, "phys_timer0");
virtTimer.serializeSection(cp, "virt_timer0");
}
void
GenericTimerMem::unserialize(CheckpointIn &cp)
{
systemCounter.unserializeSection(cp, "sys_counter");
unsigned timer_count;
UNSERIALIZE_SCALAR(timer_count);
// The timer count variable is just here for future versions where
// we support more than one set of timers.
if (timer_count != 1)
panic("Incompatible checkpoint: Only one set of timers supported");
physTimer.unserializeSection(cp, "phys_timer0");
virtTimer.unserializeSection(cp, "virt_timer0");
}
Tick
GenericTimerMem::read(PacketPtr pkt)
{
const unsigned size(pkt->getSize());
const Addr addr(pkt->getAddr());
uint64_t value;
pkt->makeResponse();
if (ctrlRange.contains(addr)) {
value = ctrlRead(addr - ctrlRange.start(), size);
} else if (timerRange.contains(addr)) {
value = timerRead(addr - timerRange.start(), size);
} else {
panic("Invalid address: 0x%x\n", addr);
}
DPRINTF(Timer, "Read 0x%x <- 0x%x(%i)\n", value, addr, size);
if (size == 8) {
pkt->set<uint64_t>(value);
} else if (size == 4) {
pkt->set<uint32_t>(value);
} else {
panic("Unexpected access size: %i\n", size);
}
return 0;
}
Tick
GenericTimerMem::write(PacketPtr pkt)
{
const unsigned size(pkt->getSize());
if (size != 8 && size != 4)
panic("Unexpected access size\n");
const Addr addr(pkt->getAddr());
const uint64_t value(size == 8 ?
pkt->get<uint64_t>() : pkt->get<uint32_t>());
DPRINTF(Timer, "Write 0x%x -> 0x%x(%i)\n", value, addr, size);
if (ctrlRange.contains(addr)) {
ctrlWrite(addr - ctrlRange.start(), size, value);
} else if (timerRange.contains(addr)) {
timerWrite(addr - timerRange.start(), size, value);
} else {
panic("Invalid address: 0x%x\n", addr);
}
pkt->makeResponse();
return 0;
}
uint64_t
GenericTimerMem::ctrlRead(Addr addr, size_t size) const
{
if (size == 4) {
switch (addr) {
case CTRL_CNTFRQ:
return systemCounter.freq();
case CTRL_CNTTIDR:
return 0x3; // Frame 0 implemented with virtual timers
case CTRL_CNTNSAR:
case CTRL_CNTACR_BASE:
warn("Reading from unimplemented control register (0x%x)\n", addr);
return 0;
case CTRL_CNTVOFF_LO_BASE:
return virtTimer.offset();
case CTRL_CNTVOFF_HI_BASE:
return virtTimer.offset() >> 32;
default:
warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
return 0;
}
} else if (size == 8) {
switch (addr) {
case CTRL_CNTVOFF_LO_BASE:
return virtTimer.offset();
default:
warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
return 0;
}
} else {
panic("Invalid access size: %i\n", size);
}
}
void
GenericTimerMem::ctrlWrite(Addr addr, size_t size, uint64_t value)
{
if (size == 4) {
switch (addr) {
case CTRL_CNTFRQ:
case CTRL_CNTNSAR:
case CTRL_CNTTIDR:
case CTRL_CNTACR_BASE:
warn("Write to unimplemented control register (0x%x)\n", addr);
return;
case CTRL_CNTVOFF_LO_BASE:
virtTimer.setOffset(
insertBits(virtTimer.offset(), 31, 0, value));
return;
case CTRL_CNTVOFF_HI_BASE:
virtTimer.setOffset(
insertBits(virtTimer.offset(), 63, 32, value));
return;
default:
warn("Ignoring write to unexpected address (0x%x:%i)\n",
addr, size);
return;
}
} else if (size == 8) {
switch (addr) {
case CTRL_CNTVOFF_LO_BASE:
virtTimer.setOffset(value);
return;
default:
warn("Ignoring write to unexpected address (0x%x:%i)\n",
addr, size);
return;
}
} else {
panic("Invalid access size: %i\n", size);
}
}
uint64_t
GenericTimerMem::timerRead(Addr addr, size_t size) const
{
if (size == 4) {
switch (addr) {
case TIMER_CNTPCT_LO:
return physTimer.value();
case TIMER_CNTPCT_HI:
return physTimer.value() >> 32;
case TIMER_CNTVCT_LO:
return virtTimer.value();
case TIMER_CNTVCT_HI:
return virtTimer.value() >> 32;
case TIMER_CNTFRQ:
return systemCounter.freq();
case TIMER_CNTEL0ACR:
warn("Read from unimplemented timer register (0x%x)\n", addr);
return 0;
case CTRL_CNTVOFF_LO_BASE:
return virtTimer.offset();
case CTRL_CNTVOFF_HI_BASE:
return virtTimer.offset() >> 32;
case TIMER_CNTP_CVAL_LO:
return physTimer.compareValue();
case TIMER_CNTP_CVAL_HI:
return physTimer.compareValue() >> 32;
case TIMER_CNTP_TVAL:
return physTimer.timerValue();
case TIMER_CNTP_CTL:
return physTimer.control();
case TIMER_CNTV_CVAL_LO:
return virtTimer.compareValue();
case TIMER_CNTV_CVAL_HI:
return virtTimer.compareValue() >> 32;
case TIMER_CNTV_TVAL:
return virtTimer.timerValue();
case TIMER_CNTV_CTL:
return virtTimer.control();
default:
warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
return 0;
}
} else if (size == 8) {
switch (addr) {
case TIMER_CNTPCT_LO:
return physTimer.value();
case TIMER_CNTVCT_LO:
return virtTimer.value();
case CTRL_CNTVOFF_LO_BASE:
return virtTimer.offset();
case TIMER_CNTP_CVAL_LO:
return physTimer.compareValue();
case TIMER_CNTV_CVAL_LO:
return virtTimer.compareValue();
default:
warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
return 0;
}
} else {
panic("Invalid access size: %i\n", size);
}
}
void
GenericTimerMem::timerWrite(Addr addr, size_t size, uint64_t value)
{
if (size == 4) {
switch (addr) {
case TIMER_CNTEL0ACR:
warn("Unimplemented timer register (0x%x)\n", addr);
return;
case TIMER_CNTP_CVAL_LO:
physTimer.setCompareValue(
insertBits(physTimer.compareValue(), 31, 0, value));
return;
case TIMER_CNTP_CVAL_HI:
physTimer.setCompareValue(
insertBits(physTimer.compareValue(), 63, 32, value));
return;
case TIMER_CNTP_TVAL:
physTimer.setTimerValue(value);
return;
case TIMER_CNTP_CTL:
physTimer.setControl(value);
return;
case TIMER_CNTV_CVAL_LO:
virtTimer.setCompareValue(
insertBits(virtTimer.compareValue(), 31, 0, value));
return;
case TIMER_CNTV_CVAL_HI:
virtTimer.setCompareValue(
insertBits(virtTimer.compareValue(), 63, 32, value));
return;
case TIMER_CNTV_TVAL:
virtTimer.setTimerValue(value);
return;
case TIMER_CNTV_CTL:
virtTimer.setControl(value);
return;
default:
warn("Unexpected address (0x%x:%i), ignoring write\n", addr, size);
return;
}
} else if (size == 8) {
switch (addr) {
case TIMER_CNTP_CVAL_LO:
return physTimer.setCompareValue(value);
case TIMER_CNTV_CVAL_LO:
return virtTimer.setCompareValue(value);
default:
warn("Unexpected address (0x%x:%i), ignoring write\n", addr, size);
return;
}
} else {
panic("Invalid access size: %i\n", size);
}
}
GenericTimer *
GenericTimerParams::create()
{
return new GenericTimer(this);
}
GenericTimerMem *
GenericTimerMemParams::create()
{
return new GenericTimerMem(this);
}