gem5/src/cpu/thread_context.hh
Kevin Lim c96160cef5 Change the connecting of the physPort and virtPort to the memory object below the CPU to happen every time activateContext is called. The overhead is probably a little higher than necessary, but allows these connections to properly be made when there are CPUs that are inactive until they are switched in.
Right now this introduces a minor memory leak as old physPorts and virtPorts are not deleted when new ones are created.  A flyspray task has been created for this issue.  It can not be resolved until we determine how the bus will handle giving out ID's to functional ports that may be deleted.

src/cpu/o3/cpu.cc:
src/cpu/simple/atomic.cc:
src/cpu/simple/timing.cc:
    Change the setup of the physPort and virtPort to instead happen every time the CPU has a context activated.  This is a little high overhead, but keeps it working correctly when the CPU does not have a physical memory attached to it until it switches in (like the case of switch CPUs).
src/cpu/o3/thread_context.hh:
    Change function from being called at init() to just being called whenever the memory ports need to be connected.
src/cpu/o3/thread_context_impl.hh:
    Update this to not delete the port if it's the same as the virtPort.
src/cpu/thread_context.hh:
    Change function from being called at init() to whenever the memory ports need to be connected.
src/cpu/thread_state.cc:
    Instead of initializing the ports, simply connect them, deleting any old ports that might exist.  This allows these functions to be called multiple times.
src/cpu/thread_state.hh:
    Ports are no longer initialized, but rather connected at context activation time.

--HG--
extra : convert_revision : e399ce5dfbd6ad658c953a7c9c7b69b89a70219e
2006-11-29 16:07:55 -05:00

454 lines
14 KiB
C++

/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#ifndef __CPU_THREAD_CONTEXT_HH__
#define __CPU_THREAD_CONTEXT_HH__
#include "arch/regfile.hh"
#include "arch/syscallreturn.hh"
#include "arch/types.hh"
#include "config/full_system.hh"
#include "mem/request.hh"
#include "sim/faults.hh"
#include "sim/host.hh"
#include "sim/serialize.hh"
#include "sim/byteswap.hh"
// @todo: Figure out a more architecture independent way to obtain the ITB and
// DTB pointers.
namespace TheISA
{
class DTB;
class ITB;
}
class BaseCPU;
class EndQuiesceEvent;
class Event;
class TranslatingPort;
class FunctionalPort;
class VirtualPort;
class Process;
class System;
namespace TheISA {
namespace Kernel {
class Statistics;
};
};
/**
* ThreadContext is the external interface to all thread state for
* anything outside of the CPU. It provides all accessor methods to
* state that might be needed by external objects, ranging from
* register values to things such as kernel stats. It is an abstract
* base class; the CPU can create its own ThreadContext by either
* deriving from it, or using the templated ProxyThreadContext.
*
* The ThreadContext is slightly different than the ExecContext. The
* ThreadContext provides access to an individual thread's state; an
* ExecContext provides ISA access to the CPU (meaning it is
* implicitly multithreaded on SMT systems). Additionally the
* ThreadState is an abstract class that exactly defines the
* interface; the ExecContext is a more implicit interface that must
* be implemented so that the ISA can access whatever state it needs.
*/
class ThreadContext
{
protected:
typedef TheISA::RegFile RegFile;
typedef TheISA::MachInst MachInst;
typedef TheISA::IntReg IntReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
typedef TheISA::MiscRegFile MiscRegFile;
typedef TheISA::MiscReg MiscReg;
public:
enum Status
{
/// Initialized but not running yet. All CPUs start in
/// this state, but most transition to Active on cycle 1.
/// In MP or SMT systems, non-primary contexts will stay
/// in this state until a thread is assigned to them.
Unallocated,
/// Running. Instructions should be executed only when
/// the context is in this state.
Active,
/// Temporarily inactive. Entered while waiting for
/// synchronization, etc.
Suspended,
/// Permanently shut down. Entered when target executes
/// m5exit pseudo-instruction. When all contexts enter
/// this state, the simulation will terminate.
Halted
};
virtual ~ThreadContext() { };
virtual BaseCPU *getCpuPtr() = 0;
virtual void setCpuId(int id) = 0;
virtual int readCpuId() = 0;
#if FULL_SYSTEM
virtual System *getSystemPtr() = 0;
virtual TheISA::ITB *getITBPtr() = 0;
virtual TheISA::DTB *getDTBPtr() = 0;
virtual TheISA::Kernel::Statistics *getKernelStats() = 0;
virtual FunctionalPort *getPhysPort() = 0;
virtual VirtualPort *getVirtPort(ThreadContext *tc = NULL) = 0;
virtual void delVirtPort(VirtualPort *vp) = 0;
virtual void connectMemPorts() = 0;
#else
virtual TranslatingPort *getMemPort() = 0;
virtual Process *getProcessPtr() = 0;
#endif
virtual Status status() const = 0;
virtual void setStatus(Status new_status) = 0;
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
virtual void activate(int delay = 1) = 0;
/// Set the status to Suspended.
virtual void suspend() = 0;
/// Set the status to Unallocated.
virtual void deallocate(int delay = 0) = 0;
/// Set the status to Halted.
virtual void halt() = 0;
#if FULL_SYSTEM
virtual void dumpFuncProfile() = 0;
#endif
virtual void takeOverFrom(ThreadContext *old_context) = 0;
virtual void regStats(const std::string &name) = 0;
virtual void serialize(std::ostream &os) = 0;
virtual void unserialize(Checkpoint *cp, const std::string &section) = 0;
#if FULL_SYSTEM
virtual EndQuiesceEvent *getQuiesceEvent() = 0;
// Not necessarily the best location for these...
// Having an extra function just to read these is obnoxious
virtual Tick readLastActivate() = 0;
virtual Tick readLastSuspend() = 0;
virtual void profileClear() = 0;
virtual void profileSample() = 0;
#endif
virtual int getThreadNum() = 0;
// Also somewhat obnoxious. Really only used for the TLB fault.
// However, may be quite useful in SPARC.
virtual TheISA::MachInst getInst() = 0;
virtual void copyArchRegs(ThreadContext *tc) = 0;
virtual void clearArchRegs() = 0;
//
// New accessors for new decoder.
//
virtual uint64_t readIntReg(int reg_idx) = 0;
virtual FloatReg readFloatReg(int reg_idx, int width) = 0;
virtual FloatReg readFloatReg(int reg_idx) = 0;
virtual FloatRegBits readFloatRegBits(int reg_idx, int width) = 0;
virtual FloatRegBits readFloatRegBits(int reg_idx) = 0;
virtual void setIntReg(int reg_idx, uint64_t val) = 0;
virtual void setFloatReg(int reg_idx, FloatReg val, int width) = 0;
virtual void setFloatReg(int reg_idx, FloatReg val) = 0;
virtual void setFloatRegBits(int reg_idx, FloatRegBits val) = 0;
virtual void setFloatRegBits(int reg_idx, FloatRegBits val, int width) = 0;
virtual uint64_t readPC() = 0;
virtual void setPC(uint64_t val) = 0;
virtual uint64_t readNextPC() = 0;
virtual void setNextPC(uint64_t val) = 0;
virtual uint64_t readNextNPC() = 0;
virtual void setNextNPC(uint64_t val) = 0;
virtual MiscReg readMiscReg(int misc_reg) = 0;
virtual MiscReg readMiscRegWithEffect(int misc_reg) = 0;
virtual void setMiscReg(int misc_reg, const MiscReg &val) = 0;
virtual void setMiscRegWithEffect(int misc_reg, const MiscReg &val) = 0;
// Also not necessarily the best location for these two. Hopefully will go
// away once we decide upon where st cond failures goes.
virtual unsigned readStCondFailures() = 0;
virtual void setStCondFailures(unsigned sc_failures) = 0;
// Only really makes sense for old CPU model. Still could be useful though.
virtual bool misspeculating() = 0;
#if !FULL_SYSTEM
virtual IntReg getSyscallArg(int i) = 0;
// used to shift args for indirect syscall
virtual void setSyscallArg(int i, IntReg val) = 0;
virtual void setSyscallReturn(SyscallReturn return_value) = 0;
// Same with st cond failures.
virtual Counter readFuncExeInst() = 0;
// This function exits the thread context in the CPU and returns
// 1 if the CPU has no more active threads (meaning it's OK to exit);
// Used in syscall-emulation mode when a thread calls the exit syscall.
virtual int exit() { return 1; };
#endif
virtual void changeRegFileContext(TheISA::RegContextParam param,
TheISA::RegContextVal val) = 0;
};
/**
* ProxyThreadContext class that provides a way to implement a
* ThreadContext without having to derive from it. ThreadContext is an
* abstract class, so anything that derives from it and uses its
* interface will pay the overhead of virtual function calls. This
* class is created to enable a user-defined Thread object to be used
* wherever ThreadContexts are used, without paying the overhead of
* virtual function calls when it is used by itself. See
* simple_thread.hh for an example of this.
*/
template <class TC>
class ProxyThreadContext : public ThreadContext
{
public:
ProxyThreadContext(TC *actual_tc)
{ actualTC = actual_tc; }
private:
TC *actualTC;
public:
BaseCPU *getCpuPtr() { return actualTC->getCpuPtr(); }
void setCpuId(int id) { actualTC->setCpuId(id); }
int readCpuId() { return actualTC->readCpuId(); }
#if FULL_SYSTEM
System *getSystemPtr() { return actualTC->getSystemPtr(); }
TheISA::ITB *getITBPtr() { return actualTC->getITBPtr(); }
TheISA::DTB *getDTBPtr() { return actualTC->getDTBPtr(); }
TheISA::Kernel::Statistics *getKernelStats()
{ return actualTC->getKernelStats(); }
FunctionalPort *getPhysPort() { return actualTC->getPhysPort(); }
VirtualPort *getVirtPort(ThreadContext *tc = NULL) { return actualTC->getVirtPort(tc); }
void delVirtPort(VirtualPort *vp) { return actualTC->delVirtPort(vp); }
void connectMemPorts() { actualTC->connectMemPorts(); }
#else
TranslatingPort *getMemPort() { return actualTC->getMemPort(); }
Process *getProcessPtr() { return actualTC->getProcessPtr(); }
#endif
Status status() const { return actualTC->status(); }
void setStatus(Status new_status) { actualTC->setStatus(new_status); }
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
void activate(int delay = 1) { actualTC->activate(delay); }
/// Set the status to Suspended.
void suspend() { actualTC->suspend(); }
/// Set the status to Unallocated.
void deallocate(int delay = 0) { actualTC->deallocate(); }
/// Set the status to Halted.
void halt() { actualTC->halt(); }
#if FULL_SYSTEM
void dumpFuncProfile() { actualTC->dumpFuncProfile(); }
#endif
void takeOverFrom(ThreadContext *oldContext)
{ actualTC->takeOverFrom(oldContext); }
void regStats(const std::string &name) { actualTC->regStats(name); }
void serialize(std::ostream &os) { actualTC->serialize(os); }
void unserialize(Checkpoint *cp, const std::string &section)
{ actualTC->unserialize(cp, section); }
#if FULL_SYSTEM
EndQuiesceEvent *getQuiesceEvent() { return actualTC->getQuiesceEvent(); }
Tick readLastActivate() { return actualTC->readLastActivate(); }
Tick readLastSuspend() { return actualTC->readLastSuspend(); }
void profileClear() { return actualTC->profileClear(); }
void profileSample() { return actualTC->profileSample(); }
#endif
int getThreadNum() { return actualTC->getThreadNum(); }
// @todo: Do I need this?
MachInst getInst() { return actualTC->getInst(); }
// @todo: Do I need this?
void copyArchRegs(ThreadContext *tc) { actualTC->copyArchRegs(tc); }
void clearArchRegs() { actualTC->clearArchRegs(); }
//
// New accessors for new decoder.
//
uint64_t readIntReg(int reg_idx)
{ return actualTC->readIntReg(reg_idx); }
FloatReg readFloatReg(int reg_idx, int width)
{ return actualTC->readFloatReg(reg_idx, width); }
FloatReg readFloatReg(int reg_idx)
{ return actualTC->readFloatReg(reg_idx); }
FloatRegBits readFloatRegBits(int reg_idx, int width)
{ return actualTC->readFloatRegBits(reg_idx, width); }
FloatRegBits readFloatRegBits(int reg_idx)
{ return actualTC->readFloatRegBits(reg_idx); }
void setIntReg(int reg_idx, uint64_t val)
{ actualTC->setIntReg(reg_idx, val); }
void setFloatReg(int reg_idx, FloatReg val, int width)
{ actualTC->setFloatReg(reg_idx, val, width); }
void setFloatReg(int reg_idx, FloatReg val)
{ actualTC->setFloatReg(reg_idx, val); }
void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
{ actualTC->setFloatRegBits(reg_idx, val, width); }
void setFloatRegBits(int reg_idx, FloatRegBits val)
{ actualTC->setFloatRegBits(reg_idx, val); }
uint64_t readPC() { return actualTC->readPC(); }
void setPC(uint64_t val) { actualTC->setPC(val); }
uint64_t readNextPC() { return actualTC->readNextPC(); }
void setNextPC(uint64_t val) { actualTC->setNextPC(val); }
uint64_t readNextNPC() { return actualTC->readNextNPC(); }
void setNextNPC(uint64_t val) { actualTC->setNextNPC(val); }
MiscReg readMiscReg(int misc_reg)
{ return actualTC->readMiscReg(misc_reg); }
MiscReg readMiscRegWithEffect(int misc_reg)
{ return actualTC->readMiscRegWithEffect(misc_reg); }
void setMiscReg(int misc_reg, const MiscReg &val)
{ return actualTC->setMiscReg(misc_reg, val); }
void setMiscRegWithEffect(int misc_reg, const MiscReg &val)
{ return actualTC->setMiscRegWithEffect(misc_reg, val); }
unsigned readStCondFailures()
{ return actualTC->readStCondFailures(); }
void setStCondFailures(unsigned sc_failures)
{ actualTC->setStCondFailures(sc_failures); }
// @todo: Fix this!
bool misspeculating() { return actualTC->misspeculating(); }
#if !FULL_SYSTEM
IntReg getSyscallArg(int i) { return actualTC->getSyscallArg(i); }
// used to shift args for indirect syscall
void setSyscallArg(int i, IntReg val)
{ actualTC->setSyscallArg(i, val); }
void setSyscallReturn(SyscallReturn return_value)
{ actualTC->setSyscallReturn(return_value); }
Counter readFuncExeInst() { return actualTC->readFuncExeInst(); }
#endif
void changeRegFileContext(TheISA::RegContextParam param,
TheISA::RegContextVal val)
{
actualTC->changeRegFileContext(param, val);
}
};
#endif