gem5/src/cpu/thread_context.hh
Steve Reinhardt 8882dc1283 Get rid of the Unallocated thread context state.
Basically merge it in with Halted.
Also had to get rid of a few other functions that
called ThreadContext::deallocate(), including:
 - InOrderCPU's setThreadRescheduleCondition.
 - ThreadContext::exit().  This function was there to avoid terminating
   simulation when one thread out of a multi-thread workload exits, but we
   need to find a better (non-cpu-centric) way.
2009-04-15 13:13:47 -07:00

447 lines
14 KiB
C++

/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#ifndef __CPU_THREAD_CONTEXT_HH__
#define __CPU_THREAD_CONTEXT_HH__
#include "arch/regfile.hh"
#include "arch/types.hh"
#include "config/full_system.hh"
#include "mem/request.hh"
#include "sim/faults.hh"
#include "sim/host.hh"
#include "sim/serialize.hh"
#include "sim/byteswap.hh"
// @todo: Figure out a more architecture independent way to obtain the ITB and
// DTB pointers.
namespace TheISA
{
class TLB;
}
class BaseCPU;
class EndQuiesceEvent;
class Event;
class TranslatingPort;
class FunctionalPort;
class VirtualPort;
class Process;
class System;
namespace TheISA {
namespace Kernel {
class Statistics;
};
};
/**
* ThreadContext is the external interface to all thread state for
* anything outside of the CPU. It provides all accessor methods to
* state that might be needed by external objects, ranging from
* register values to things such as kernel stats. It is an abstract
* base class; the CPU can create its own ThreadContext by either
* deriving from it, or using the templated ProxyThreadContext.
*
* The ThreadContext is slightly different than the ExecContext. The
* ThreadContext provides access to an individual thread's state; an
* ExecContext provides ISA access to the CPU (meaning it is
* implicitly multithreaded on SMT systems). Additionally the
* ThreadState is an abstract class that exactly defines the
* interface; the ExecContext is a more implicit interface that must
* be implemented so that the ISA can access whatever state it needs.
*/
class ThreadContext
{
protected:
typedef TheISA::RegFile RegFile;
typedef TheISA::MachInst MachInst;
typedef TheISA::IntReg IntReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
typedef TheISA::MiscRegFile MiscRegFile;
typedef TheISA::MiscReg MiscReg;
public:
enum Status
{
/// Running. Instructions should be executed only when
/// the context is in this state.
Active,
/// Temporarily inactive. Entered while waiting for
/// synchronization, etc.
Suspended,
/// Permanently shut down. Entered when target executes
/// m5exit pseudo-instruction. When all contexts enter
/// this state, the simulation will terminate.
Halted
};
virtual ~ThreadContext() { };
virtual BaseCPU *getCpuPtr() = 0;
virtual int cpuId() = 0;
virtual int threadId() = 0;
virtual void setThreadId(int id) = 0;
virtual int contextId() = 0;
virtual void setContextId(int id) = 0;
virtual TheISA::TLB *getITBPtr() = 0;
virtual TheISA::TLB *getDTBPtr() = 0;
virtual System *getSystemPtr() = 0;
#if FULL_SYSTEM
virtual TheISA::Kernel::Statistics *getKernelStats() = 0;
virtual FunctionalPort *getPhysPort() = 0;
virtual VirtualPort *getVirtPort() = 0;
virtual void connectMemPorts(ThreadContext *tc) = 0;
#else
virtual TranslatingPort *getMemPort() = 0;
virtual Process *getProcessPtr() = 0;
#endif
virtual Status status() const = 0;
virtual void setStatus(Status new_status) = 0;
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
virtual void activate(int delay = 1) = 0;
/// Set the status to Suspended.
virtual void suspend(int delay = 0) = 0;
/// Set the status to Halted.
virtual void halt(int delay = 0) = 0;
#if FULL_SYSTEM
virtual void dumpFuncProfile() = 0;
#endif
virtual void takeOverFrom(ThreadContext *old_context) = 0;
virtual void regStats(const std::string &name) = 0;
virtual void serialize(std::ostream &os) = 0;
virtual void unserialize(Checkpoint *cp, const std::string &section) = 0;
#if FULL_SYSTEM
virtual EndQuiesceEvent *getQuiesceEvent() = 0;
// Not necessarily the best location for these...
// Having an extra function just to read these is obnoxious
virtual Tick readLastActivate() = 0;
virtual Tick readLastSuspend() = 0;
virtual void profileClear() = 0;
virtual void profileSample() = 0;
#endif
// Also somewhat obnoxious. Really only used for the TLB fault.
// However, may be quite useful in SPARC.
virtual TheISA::MachInst getInst() = 0;
virtual void copyArchRegs(ThreadContext *tc) = 0;
virtual void clearArchRegs() = 0;
//
// New accessors for new decoder.
//
virtual uint64_t readIntReg(int reg_idx) = 0;
virtual FloatReg readFloatReg(int reg_idx, int width) = 0;
virtual FloatReg readFloatReg(int reg_idx) = 0;
virtual FloatRegBits readFloatRegBits(int reg_idx, int width) = 0;
virtual FloatRegBits readFloatRegBits(int reg_idx) = 0;
virtual void setIntReg(int reg_idx, uint64_t val) = 0;
virtual void setFloatReg(int reg_idx, FloatReg val, int width) = 0;
virtual void setFloatReg(int reg_idx, FloatReg val) = 0;
virtual void setFloatRegBits(int reg_idx, FloatRegBits val) = 0;
virtual void setFloatRegBits(int reg_idx, FloatRegBits val, int width) = 0;
virtual uint64_t readPC() = 0;
virtual void setPC(uint64_t val) = 0;
virtual uint64_t readNextPC() = 0;
virtual void setNextPC(uint64_t val) = 0;
virtual uint64_t readNextNPC() = 0;
virtual void setNextNPC(uint64_t val) = 0;
virtual uint64_t readMicroPC() = 0;
virtual void setMicroPC(uint64_t val) = 0;
virtual uint64_t readNextMicroPC() = 0;
virtual void setNextMicroPC(uint64_t val) = 0;
virtual MiscReg readMiscRegNoEffect(int misc_reg) = 0;
virtual MiscReg readMiscReg(int misc_reg) = 0;
virtual void setMiscRegNoEffect(int misc_reg, const MiscReg &val) = 0;
virtual void setMiscReg(int misc_reg, const MiscReg &val) = 0;
virtual uint64_t readRegOtherThread(int misc_reg, unsigned tid) { return 0; }
virtual void setRegOtherThread(int misc_reg, const MiscReg &val, unsigned tid) { };
// Also not necessarily the best location for these two. Hopefully will go
// away once we decide upon where st cond failures goes.
virtual unsigned readStCondFailures() = 0;
virtual void setStCondFailures(unsigned sc_failures) = 0;
// Only really makes sense for old CPU model. Still could be useful though.
virtual bool misspeculating() = 0;
#if !FULL_SYSTEM
// Same with st cond failures.
virtual Counter readFuncExeInst() = 0;
virtual void syscall(int64_t callnum) = 0;
// This function exits the thread context in the CPU and returns
// 1 if the CPU has no more active threads (meaning it's OK to exit);
// Used in syscall-emulation mode when a thread calls the exit syscall.
virtual int exit() { return 1; };
#endif
/** function to compare two thread contexts (for debugging) */
static void compare(ThreadContext *one, ThreadContext *two);
};
/**
* ProxyThreadContext class that provides a way to implement a
* ThreadContext without having to derive from it. ThreadContext is an
* abstract class, so anything that derives from it and uses its
* interface will pay the overhead of virtual function calls. This
* class is created to enable a user-defined Thread object to be used
* wherever ThreadContexts are used, without paying the overhead of
* virtual function calls when it is used by itself. See
* simple_thread.hh for an example of this.
*/
template <class TC>
class ProxyThreadContext : public ThreadContext
{
public:
ProxyThreadContext(TC *actual_tc)
{ actualTC = actual_tc; }
private:
TC *actualTC;
public:
BaseCPU *getCpuPtr() { return actualTC->getCpuPtr(); }
int cpuId() { return actualTC->cpuId(); }
int threadId() { return actualTC->threadId(); }
void setThreadId(int id) { return actualTC->setThreadId(id); }
int contextId() { return actualTC->contextId(); }
void setContextId(int id) { actualTC->setContextId(id); }
TheISA::TLB *getITBPtr() { return actualTC->getITBPtr(); }
TheISA::TLB *getDTBPtr() { return actualTC->getDTBPtr(); }
System *getSystemPtr() { return actualTC->getSystemPtr(); }
#if FULL_SYSTEM
TheISA::Kernel::Statistics *getKernelStats()
{ return actualTC->getKernelStats(); }
FunctionalPort *getPhysPort() { return actualTC->getPhysPort(); }
VirtualPort *getVirtPort() { return actualTC->getVirtPort(); }
void connectMemPorts(ThreadContext *tc) { actualTC->connectMemPorts(tc); }
#else
TranslatingPort *getMemPort() { return actualTC->getMemPort(); }
Process *getProcessPtr() { return actualTC->getProcessPtr(); }
#endif
Status status() const { return actualTC->status(); }
void setStatus(Status new_status) { actualTC->setStatus(new_status); }
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
void activate(int delay = 1) { actualTC->activate(delay); }
/// Set the status to Suspended.
void suspend(int delay = 0) { actualTC->suspend(); }
/// Set the status to Halted.
void halt(int delay = 0) { actualTC->halt(); }
#if FULL_SYSTEM
void dumpFuncProfile() { actualTC->dumpFuncProfile(); }
#endif
void takeOverFrom(ThreadContext *oldContext)
{ actualTC->takeOverFrom(oldContext); }
void regStats(const std::string &name) { actualTC->regStats(name); }
void serialize(std::ostream &os) { actualTC->serialize(os); }
void unserialize(Checkpoint *cp, const std::string &section)
{ actualTC->unserialize(cp, section); }
#if FULL_SYSTEM
EndQuiesceEvent *getQuiesceEvent() { return actualTC->getQuiesceEvent(); }
Tick readLastActivate() { return actualTC->readLastActivate(); }
Tick readLastSuspend() { return actualTC->readLastSuspend(); }
void profileClear() { return actualTC->profileClear(); }
void profileSample() { return actualTC->profileSample(); }
#endif
// @todo: Do I need this?
MachInst getInst() { return actualTC->getInst(); }
// @todo: Do I need this?
void copyArchRegs(ThreadContext *tc) { actualTC->copyArchRegs(tc); }
void clearArchRegs() { actualTC->clearArchRegs(); }
//
// New accessors for new decoder.
//
uint64_t readIntReg(int reg_idx)
{ return actualTC->readIntReg(reg_idx); }
FloatReg readFloatReg(int reg_idx, int width)
{ return actualTC->readFloatReg(reg_idx, width); }
FloatReg readFloatReg(int reg_idx)
{ return actualTC->readFloatReg(reg_idx); }
FloatRegBits readFloatRegBits(int reg_idx, int width)
{ return actualTC->readFloatRegBits(reg_idx, width); }
FloatRegBits readFloatRegBits(int reg_idx)
{ return actualTC->readFloatRegBits(reg_idx); }
void setIntReg(int reg_idx, uint64_t val)
{ actualTC->setIntReg(reg_idx, val); }
void setFloatReg(int reg_idx, FloatReg val, int width)
{ actualTC->setFloatReg(reg_idx, val, width); }
void setFloatReg(int reg_idx, FloatReg val)
{ actualTC->setFloatReg(reg_idx, val); }
void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
{ actualTC->setFloatRegBits(reg_idx, val, width); }
void setFloatRegBits(int reg_idx, FloatRegBits val)
{ actualTC->setFloatRegBits(reg_idx, val); }
uint64_t readPC() { return actualTC->readPC(); }
void setPC(uint64_t val) { actualTC->setPC(val); }
uint64_t readNextPC() { return actualTC->readNextPC(); }
void setNextPC(uint64_t val) { actualTC->setNextPC(val); }
uint64_t readNextNPC() { return actualTC->readNextNPC(); }
void setNextNPC(uint64_t val) { actualTC->setNextNPC(val); }
uint64_t readMicroPC() { return actualTC->readMicroPC(); }
void setMicroPC(uint64_t val) { actualTC->setMicroPC(val); }
uint64_t readNextMicroPC() { return actualTC->readMicroPC(); }
void setNextMicroPC(uint64_t val) { actualTC->setNextMicroPC(val); }
MiscReg readMiscRegNoEffect(int misc_reg)
{ return actualTC->readMiscRegNoEffect(misc_reg); }
MiscReg readMiscReg(int misc_reg)
{ return actualTC->readMiscReg(misc_reg); }
void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
{ return actualTC->setMiscRegNoEffect(misc_reg, val); }
void setMiscReg(int misc_reg, const MiscReg &val)
{ return actualTC->setMiscReg(misc_reg, val); }
unsigned readStCondFailures()
{ return actualTC->readStCondFailures(); }
void setStCondFailures(unsigned sc_failures)
{ actualTC->setStCondFailures(sc_failures); }
// @todo: Fix this!
bool misspeculating() { return actualTC->misspeculating(); }
#if !FULL_SYSTEM
void syscall(int64_t callnum)
{ actualTC->syscall(callnum); }
Counter readFuncExeInst() { return actualTC->readFuncExeInst(); }
#endif
};
#endif