gem5/src/cpu/simple/timing.cc

1085 lines
30 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
*/
#include "arch/locked_mem.hh"
#include "arch/mmaped_ipr.hh"
#include "arch/utility.hh"
#include "base/bigint.hh"
#include "cpu/exetrace.hh"
#include "cpu/simple/timing.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "params/TimingSimpleCPU.hh"
#include "sim/system.hh"
using namespace std;
using namespace TheISA;
Port *
TimingSimpleCPU::getPort(const std::string &if_name, int idx)
{
if (if_name == "dcache_port")
return &dcachePort;
else if (if_name == "icache_port")
return &icachePort;
else
panic("No Such Port\n");
}
void
TimingSimpleCPU::init()
{
BaseCPU::init();
#if FULL_SYSTEM
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *tc = threadContexts[i];
// initialize CPU, including PC
TheISA::initCPU(tc, _cpuId);
}
#endif
}
Tick
TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
{
panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
return curTick;
}
void
TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
{
//No internal storage to update, jusst return
return;
}
void
TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
{
if (status == RangeChange) {
if (!snoopRangeSent) {
snoopRangeSent = true;
sendStatusChange(Port::RangeChange);
}
return;
}
panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
}
void
TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
{
pkt = _pkt;
cpu->schedule(this, t);
}
TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
: BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock), fetchEvent(this)
{
_status = Idle;
icachePort.snoopRangeSent = false;
dcachePort.snoopRangeSent = false;
ifetch_pkt = dcache_pkt = NULL;
drainEvent = NULL;
previousTick = 0;
changeState(SimObject::Running);
}
TimingSimpleCPU::~TimingSimpleCPU()
{
}
void
TimingSimpleCPU::serialize(ostream &os)
{
SimObject::State so_state = SimObject::getState();
SERIALIZE_ENUM(so_state);
BaseSimpleCPU::serialize(os);
}
void
TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
SimObject::State so_state;
UNSERIALIZE_ENUM(so_state);
BaseSimpleCPU::unserialize(cp, section);
}
unsigned int
TimingSimpleCPU::drain(Event *drain_event)
{
// TimingSimpleCPU is ready to drain if it's not waiting for
// an access to complete.
if (_status == Idle || _status == Running || _status == SwitchedOut) {
changeState(SimObject::Drained);
return 0;
} else {
changeState(SimObject::Draining);
drainEvent = drain_event;
return 1;
}
}
void
TimingSimpleCPU::resume()
{
DPRINTF(SimpleCPU, "Resume\n");
if (_status != SwitchedOut && _status != Idle) {
assert(system->getMemoryMode() == Enums::timing);
if (fetchEvent.scheduled())
deschedule(fetchEvent);
schedule(fetchEvent, nextCycle());
}
changeState(SimObject::Running);
}
void
TimingSimpleCPU::switchOut()
{
assert(_status == Running || _status == Idle);
_status = SwitchedOut;
numCycles += tickToCycles(curTick - previousTick);
// If we've been scheduled to resume but are then told to switch out,
// we'll need to cancel it.
if (fetchEvent.scheduled())
deschedule(fetchEvent);
}
void
TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
// if any of this CPU's ThreadContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *tc = threadContexts[i];
if (tc->status() == ThreadContext::Active && _status != Running) {
_status = Running;
break;
}
}
if (_status != Running) {
_status = Idle;
}
assert(threadContexts.size() == 1);
previousTick = curTick;
}
void
TimingSimpleCPU::activateContext(int thread_num, int delay)
{
DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
assert(thread_num == 0);
assert(thread);
assert(_status == Idle);
notIdleFraction++;
_status = Running;
// kick things off by initiating the fetch of the next instruction
schedule(fetchEvent, nextCycle(curTick + ticks(delay)));
}
void
TimingSimpleCPU::suspendContext(int thread_num)
{
DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
assert(thread_num == 0);
assert(thread);
assert(_status == Running);
// just change status to Idle... if status != Running,
// completeInst() will not initiate fetch of next instruction.
notIdleFraction--;
_status = Idle;
}
bool
TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
{
RequestPtr req = pkt->req;
if (req->isMmapedIpr()) {
Tick delay;
delay = TheISA::handleIprRead(thread->getTC(), pkt);
new IprEvent(pkt, this, nextCycle(curTick + delay));
_status = DcacheWaitResponse;
dcache_pkt = NULL;
} else if (!dcachePort.sendTiming(pkt)) {
_status = DcacheRetry;
dcache_pkt = pkt;
} else {
_status = DcacheWaitResponse;
// memory system takes ownership of packet
dcache_pkt = NULL;
}
return dcache_pkt == NULL;
}
template <class T>
Fault
TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
{
Fault fault;
const int asid = 0;
const int thread_id = 0;
const Addr pc = thread->readPC();
PacketPtr pkt;
RequestPtr req;
int block_size = dcachePort.peerBlockSize();
int data_size = sizeof(T);
Addr second_addr = roundDown(addr + data_size - 1, block_size);
if (second_addr > addr) {
Addr first_size = second_addr - addr;
Addr second_size = data_size - first_size;
// Make sure we'll only need two accesses.
assert(roundDown(second_addr + second_size - 1, block_size) ==
second_addr);
/*
* Do the translations. If something isn't going to work, find out
* before we waste time setting up anything else.
*/
req = new Request(asid, addr, first_size,
flags, pc, _cpuId, thread_id);
fault = thread->translateDataReadReq(req);
if (fault != NoFault) {
delete req;
return fault;
}
Request *second_req =
new Request(asid, second_addr, second_size,
flags, pc, _cpuId, thread_id);
fault = thread->translateDataReadReq(second_req);
if (fault != NoFault) {
delete req;
delete second_req;
return fault;
}
T * data_ptr = new T;
/*
* This is the big packet that will hold the data we've gotten so far,
* if any, and also act as the response we actually give to the
* instruction.
*/
Request *orig_req =
new Request(asid, addr, data_size, flags, pc, _cpuId, thread_id);
orig_req->setPhys(req->getPaddr(), data_size, flags);
PacketPtr big_pkt =
new Packet(orig_req, MemCmd::ReadResp, Packet::Broadcast);
big_pkt->dataDynamic<T>(data_ptr);
SplitMainSenderState * main_send_state = new SplitMainSenderState;
big_pkt->senderState = main_send_state;
main_send_state->outstanding = 2;
// This is the packet we'll process now.
pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
pkt->dataStatic<uint8_t>((uint8_t *)data_ptr);
pkt->senderState = new SplitFragmentSenderState(big_pkt, 0);
// This is the second half of the access we'll deal with later.
PacketPtr second_pkt =
new Packet(second_req, MemCmd::ReadReq, Packet::Broadcast);
second_pkt->dataStatic<uint8_t>((uint8_t *)data_ptr + first_size);
second_pkt->senderState = new SplitFragmentSenderState(big_pkt, 1);
if (!handleReadPacket(pkt)) {
main_send_state->fragments[1] = second_pkt;
} else {
handleReadPacket(second_pkt);
}
} else {
req = new Request(asid, addr, data_size,
flags, pc, _cpuId, thread_id);
// translate to physical address
Fault fault = thread->translateDataReadReq(req);
if (fault != NoFault) {
delete req;
return fault;
}
pkt = new Packet(req,
(req->isLocked() ?
MemCmd::LoadLockedReq : MemCmd::ReadReq),
Packet::Broadcast);
pkt->dataDynamic<T>(new T);
handleReadPacket(pkt);
}
if (traceData) {
traceData->setData(data);
traceData->setAddr(addr);
}
// This will need a new way to tell if it has a dcache attached.
if (req->isUncacheable())
recordEvent("Uncached Read");
return NoFault;
}
Fault
TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr,
int size, unsigned flags)
{
Request *req =
new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);
if (traceData) {
traceData->setAddr(vaddr);
}
Fault fault = thread->translateDataWriteReq(req);
if (fault == NoFault)
paddr = req->getPaddr();
delete req;
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
bool
TimingSimpleCPU::handleWritePacket()
{
RequestPtr req = dcache_pkt->req;
if (req->isMmapedIpr()) {
Tick delay;
delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
_status = DcacheWaitResponse;
dcache_pkt = NULL;
} else if (!dcachePort.sendTiming(dcache_pkt)) {
_status = DcacheRetry;
} else {
_status = DcacheWaitResponse;
// memory system takes ownership of packet
dcache_pkt = NULL;
}
return dcache_pkt == NULL;
}
template <class T>
Fault
TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
const int asid = 0;
const int thread_id = 0;
bool do_access = true; // flag to suppress cache access
const Addr pc = thread->readPC();
RequestPtr req;
int block_size = dcachePort.peerBlockSize();
int data_size = sizeof(T);
Addr second_addr = roundDown(addr + data_size - 1, block_size);
if (second_addr > addr) {
Fault fault;
Addr first_size = second_addr - addr;
Addr second_size = data_size - first_size;
// Make sure we'll only need two accesses.
assert(roundDown(second_addr + second_size - 1, block_size) ==
second_addr);
req = new Request(asid, addr, first_size,
flags, pc, _cpuId, thread_id);
fault = thread->translateDataWriteReq(req);
if (fault != NoFault) {
delete req;
return fault;
}
RequestPtr second_req = new Request(asid, second_addr, second_size,
flags, pc, _cpuId, thread_id);
fault = thread->translateDataWriteReq(second_req);
if (fault != NoFault) {
delete req;
delete second_req;
return fault;
}
if (req->isLocked() || req->isSwap() ||
second_req->isLocked() || second_req->isSwap()) {
panic("LL/SCs and swaps can't be split.");
}
T * data_ptr = new T;
/*
* This is the big packet that will hold the data we've gotten so far,
* if any, and also act as the response we actually give to the
* instruction.
*/
RequestPtr orig_req =
new Request(asid, addr, data_size, flags, pc, _cpuId, thread_id);
orig_req->setPhys(req->getPaddr(), data_size, flags);
PacketPtr big_pkt =
new Packet(orig_req, MemCmd::WriteResp, Packet::Broadcast);
big_pkt->dataDynamic<T>(data_ptr);
big_pkt->set(data);
SplitMainSenderState * main_send_state = new SplitMainSenderState;
big_pkt->senderState = main_send_state;
main_send_state->outstanding = 2;
assert(dcache_pkt == NULL);
// This is the packet we'll process now.
dcache_pkt = new Packet(req, MemCmd::WriteReq, Packet::Broadcast);
dcache_pkt->dataStatic<uint8_t>((uint8_t *)data_ptr);
dcache_pkt->senderState = new SplitFragmentSenderState(big_pkt, 0);
// This is the second half of the access we'll deal with later.
PacketPtr second_pkt =
new Packet(second_req, MemCmd::WriteReq, Packet::Broadcast);
second_pkt->dataStatic<uint8_t>((uint8_t *)data_ptr + first_size);
second_pkt->senderState = new SplitFragmentSenderState(big_pkt, 1);
if (!handleWritePacket()) {
main_send_state->fragments[1] = second_pkt;
} else {
dcache_pkt = second_pkt;
handleWritePacket();
}
} else {
req = new Request(asid, addr, data_size, flags, pc, _cpuId, thread_id);
// translate to physical address
Fault fault = thread->translateDataWriteReq(req);
if (fault != NoFault) {
delete req;
return fault;
}
MemCmd cmd = MemCmd::WriteReq; // default
if (req->isLocked()) {
cmd = MemCmd::StoreCondReq;
do_access = TheISA::handleLockedWrite(thread, req);
} else if (req->isSwap()) {
cmd = MemCmd::SwapReq;
if (req->isCondSwap()) {
assert(res);
req->setExtraData(*res);
}
}
// Note: need to allocate dcache_pkt even if do_access is
// false, as it's used unconditionally to call completeAcc().
assert(dcache_pkt == NULL);
dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
dcache_pkt->allocate();
if (req->isMmapedIpr())
dcache_pkt->set(htog(data));
else
dcache_pkt->set(data);
if (do_access)
handleWritePacket();
}
if (traceData) {
traceData->setAddr(req->getVaddr());
traceData->setData(data);
}
// This will need a new way to tell if it's hooked up to a cache or not.
if (req->isUncacheable())
recordEvent("Uncached Write");
// If the write needs to have a fault on the access, consider calling
// changeStatus() and changing it to "bad addr write" or something.
return NoFault;
}
Fault
TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
int size, unsigned flags)
{
Request *req =
new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);
if (traceData) {
traceData->setAddr(vaddr);
}
Fault fault = thread->translateDataWriteReq(req);
if (fault == NoFault)
paddr = req->getPaddr();
delete req;
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
TimingSimpleCPU::write(Twin32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(Twin64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint16_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint8_t data, Addr addr,
unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
void
TimingSimpleCPU::fetch()
{
DPRINTF(SimpleCPU, "Fetch\n");
if (!curStaticInst || !curStaticInst->isDelayedCommit())
checkForInterrupts();
checkPcEventQueue();
bool fromRom = isRomMicroPC(thread->readMicroPC());
if (!fromRom) {
Request *ifetch_req = new Request();
ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
Fault fault = setupFetchRequest(ifetch_req);
ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
ifetch_pkt->dataStatic(&inst);
if (fault == NoFault) {
if (!icachePort.sendTiming(ifetch_pkt)) {
// Need to wait for retry
_status = IcacheRetry;
} else {
// Need to wait for cache to respond
_status = IcacheWaitResponse;
// ownership of packet transferred to memory system
ifetch_pkt = NULL;
}
} else {
delete ifetch_req;
delete ifetch_pkt;
// fetch fault: advance directly to next instruction (fault handler)
advanceInst(fault);
}
} else {
_status = IcacheWaitResponse;
completeIfetch(NULL);
}
numCycles += tickToCycles(curTick - previousTick);
previousTick = curTick;
}
void
TimingSimpleCPU::advanceInst(Fault fault)
{
if (fault != NoFault || !stayAtPC)
advancePC(fault);
if (_status == Running) {
// kick off fetch of next instruction... callback from icache
// response will cause that instruction to be executed,
// keeping the CPU running.
fetch();
}
}
void
TimingSimpleCPU::completeIfetch(PacketPtr pkt)
{
DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
// received a response from the icache: execute the received
// instruction
assert(!pkt || !pkt->isError());
assert(_status == IcacheWaitResponse);
_status = Running;
numCycles += tickToCycles(curTick - previousTick);
previousTick = curTick;
if (getState() == SimObject::Draining) {
if (pkt) {
delete pkt->req;
delete pkt;
}
completeDrain();
return;
}
preExecute();
if (curStaticInst &&
curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
// load or store: just send to dcache
Fault fault = curStaticInst->initiateAcc(this, traceData);
if (_status != Running) {
// instruction will complete in dcache response callback
assert(_status == DcacheWaitResponse || _status == DcacheRetry);
assert(fault == NoFault);
} else {
if (fault == NoFault) {
// Note that ARM can have NULL packets if the instruction gets
// squashed due to predication
// early fail on store conditional: complete now
assert(dcache_pkt != NULL || THE_ISA == ARM_ISA);
fault = curStaticInst->completeAcc(dcache_pkt, this,
traceData);
if (dcache_pkt != NULL)
{
delete dcache_pkt->req;
delete dcache_pkt;
dcache_pkt = NULL;
}
// keep an instruction count
if (fault == NoFault)
countInst();
} else if (traceData) {
// If there was a fault, we shouldn't trace this instruction.
delete traceData;
traceData = NULL;
}
postExecute();
// @todo remove me after debugging with legion done
if (curStaticInst && (!curStaticInst->isMicroop() ||
curStaticInst->isFirstMicroop()))
instCnt++;
advanceInst(fault);
}
} else if (curStaticInst) {
// non-memory instruction: execute completely now
Fault fault = curStaticInst->execute(this, traceData);
// keep an instruction count
if (fault == NoFault)
countInst();
else if (traceData) {
// If there was a fault, we shouldn't trace this instruction.
delete traceData;
traceData = NULL;
}
postExecute();
// @todo remove me after debugging with legion done
if (curStaticInst && (!curStaticInst->isMicroop() ||
curStaticInst->isFirstMicroop()))
instCnt++;
advanceInst(fault);
} else {
advanceInst(NoFault);
}
if (pkt) {
delete pkt->req;
delete pkt;
}
}
void
TimingSimpleCPU::IcachePort::ITickEvent::process()
{
cpu->completeIfetch(pkt);
}
bool
TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
{
if (pkt->isResponse() && !pkt->wasNacked()) {
// delay processing of returned data until next CPU clock edge
Tick next_tick = cpu->nextCycle(curTick);
if (next_tick == curTick)
cpu->completeIfetch(pkt);
else
tickEvent.schedule(pkt, next_tick);
return true;
}
else if (pkt->wasNacked()) {
assert(cpu->_status == IcacheWaitResponse);
pkt->reinitNacked();
if (!sendTiming(pkt)) {
cpu->_status = IcacheRetry;
cpu->ifetch_pkt = pkt;
}
}
//Snooping a Coherence Request, do nothing
return true;
}
void
TimingSimpleCPU::IcachePort::recvRetry()
{
// we shouldn't get a retry unless we have a packet that we're
// waiting to transmit
assert(cpu->ifetch_pkt != NULL);
assert(cpu->_status == IcacheRetry);
PacketPtr tmp = cpu->ifetch_pkt;
if (sendTiming(tmp)) {
cpu->_status = IcacheWaitResponse;
cpu->ifetch_pkt = NULL;
}
}
void
TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
{
// received a response from the dcache: complete the load or store
// instruction
assert(!pkt->isError());
numCycles += tickToCycles(curTick - previousTick);
previousTick = curTick;
if (pkt->senderState) {
SplitFragmentSenderState * send_state =
dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
assert(send_state);
delete pkt->req;
delete pkt;
PacketPtr big_pkt = send_state->bigPkt;
delete send_state;
SplitMainSenderState * main_send_state =
dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
assert(main_send_state);
// Record the fact that this packet is no longer outstanding.
assert(main_send_state->outstanding != 0);
main_send_state->outstanding--;
if (main_send_state->outstanding) {
return;
} else {
delete main_send_state;
big_pkt->senderState = NULL;
pkt = big_pkt;
}
}
assert(_status == DcacheWaitResponse);
_status = Running;
Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
// keep an instruction count
if (fault == NoFault)
countInst();
else if (traceData) {
// If there was a fault, we shouldn't trace this instruction.
delete traceData;
traceData = NULL;
}
// the locked flag may be cleared on the response packet, so check
// pkt->req and not pkt to see if it was a load-locked
if (pkt->isRead() && pkt->req->isLocked()) {
TheISA::handleLockedRead(thread, pkt->req);
}
delete pkt->req;
delete pkt;
postExecute();
if (getState() == SimObject::Draining) {
advancePC(fault);
completeDrain();
return;
}
advanceInst(fault);
}
void
TimingSimpleCPU::completeDrain()
{
DPRINTF(Config, "Done draining\n");
changeState(SimObject::Drained);
drainEvent->process();
}
void
TimingSimpleCPU::DcachePort::setPeer(Port *port)
{
Port::setPeer(port);
#if FULL_SYSTEM
// Update the ThreadContext's memory ports (Functional/Virtual
// Ports)
cpu->tcBase()->connectMemPorts(cpu->tcBase());
#endif
}
bool
TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
{
if (pkt->isResponse() && !pkt->wasNacked()) {
// delay processing of returned data until next CPU clock edge
Tick next_tick = cpu->nextCycle(curTick);
if (next_tick == curTick) {
cpu->completeDataAccess(pkt);
} else {
tickEvent.schedule(pkt, next_tick);
}
return true;
}
else if (pkt->wasNacked()) {
assert(cpu->_status == DcacheWaitResponse);
pkt->reinitNacked();
if (!sendTiming(pkt)) {
cpu->_status = DcacheRetry;
cpu->dcache_pkt = pkt;
}
}
//Snooping a Coherence Request, do nothing
return true;
}
void
TimingSimpleCPU::DcachePort::DTickEvent::process()
{
cpu->completeDataAccess(pkt);
}
void
TimingSimpleCPU::DcachePort::recvRetry()
{
// we shouldn't get a retry unless we have a packet that we're
// waiting to transmit
assert(cpu->dcache_pkt != NULL);
assert(cpu->_status == DcacheRetry);
PacketPtr tmp = cpu->dcache_pkt;
if (tmp->senderState) {
// This is a packet from a split access.
SplitFragmentSenderState * send_state =
dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
assert(send_state);
PacketPtr big_pkt = send_state->bigPkt;
SplitMainSenderState * main_send_state =
dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
assert(main_send_state);
if (sendTiming(tmp)) {
// If we were able to send without retrying, record that fact
// and try sending the other fragment.
send_state->clearFromParent();
int other_index = main_send_state->getPendingFragment();
if (other_index > 0) {
tmp = main_send_state->fragments[other_index];
cpu->dcache_pkt = tmp;
if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
(big_pkt->isWrite() && cpu->handleWritePacket())) {
main_send_state->fragments[other_index] = NULL;
}
} else {
cpu->_status = DcacheWaitResponse;
// memory system takes ownership of packet
cpu->dcache_pkt = NULL;
}
}
} else if (sendTiming(tmp)) {
cpu->_status = DcacheWaitResponse;
// memory system takes ownership of packet
cpu->dcache_pkt = NULL;
}
}
TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
Tick t)
: pkt(_pkt), cpu(_cpu)
{
cpu->schedule(this, t);
}
void
TimingSimpleCPU::IprEvent::process()
{
cpu->completeDataAccess(pkt);
}
const char *
TimingSimpleCPU::IprEvent::description() const
{
return "Timing Simple CPU Delay IPR event";
}
void
TimingSimpleCPU::printAddr(Addr a)
{
dcachePort.printAddr(a);
}
////////////////////////////////////////////////////////////////////////
//
// TimingSimpleCPU Simulation Object
//
TimingSimpleCPU *
TimingSimpleCPUParams::create()
{
numThreads = 1;
#if !FULL_SYSTEM
if (workload.size() != 1)
panic("only one workload allowed");
#endif
return new TimingSimpleCPU(this);
}