gem5/src/cpu/simple_thread.hh
Kevin Lim 54d4220b00 Reorganization/renaming of CPUExecContext. Now it is called SimpleThread in order to clear up the confusion due to the many ExecContexts. It also derives from a common ThreadState object, which holds various state common to threads across CPU models.
Following with the previous check-in, ExecContext now refers only to the interface provided to the ISA in order to access CPU state.  ThreadContext refers to the interface provided to all objects outside the CPU in order to access thread state.  SimpleThread provides all thread state and the interface to access it, and is suitable for simple execution models such as the SimpleCPU.

src/SConscript:
    Include thread state file.
src/arch/alpha/ev5.cc:
src/cpu/checker/cpu.cc:
src/cpu/checker/cpu.hh:
src/cpu/checker/thread_context.hh:
src/cpu/memtest/memtest.cc:
src/cpu/memtest/memtest.hh:
src/cpu/o3/cpu.cc:
src/cpu/ozone/cpu_impl.hh:
src/cpu/simple/atomic.cc:
src/cpu/simple/base.cc:
src/cpu/simple/base.hh:
src/cpu/simple/timing.cc:
    Rename CPUExecContext to SimpleThread.
src/cpu/base_dyn_inst.hh:
    Make thread member variables protected..
src/cpu/o3/alpha_cpu.hh:
src/cpu/o3/cpu.hh:
    Make various members of ThreadState protected.
src/cpu/o3/alpha_cpu_impl.hh:
    Push generation of TranslatingPort into the CPU itself.
    Make various members of ThreadState protected.
src/cpu/o3/thread_state.hh:
    Pull a lot of common code into the base ThreadState class.
src/cpu/ozone/thread_state.hh:
    Rename CPUExecContext to SimpleThread, move a lot of common code into base ThreadState class.
src/cpu/thread_state.hh:
    Push a lot of common code into base ThreadState class.  This goes along with renaming CPUExecContext to SimpleThread, and making it derive from ThreadState.
src/cpu/simple_thread.cc:
    Rename CPUExecContext to SimpleThread, make it derive from ThreadState.  This helps push a lot of common code/state into a single class that can be used by all CPUs.
src/cpu/simple_thread.hh:
    Rename CPUExecContext to SimpleThread, make it derive from ThreadState.
src/kern/system_events.cc:
    Rename cpu_exec_context to thread_context.
src/sim/process.hh:
    Remove unused forward declaration.

--HG--
rename : src/cpu/cpu_exec_context.cc => src/cpu/simple_thread.cc
rename : src/cpu/cpu_exec_context.hh => src/cpu/simple_thread.hh
extra : convert_revision : 2ed617aa80b64016cb9270f75352607cca032733
2006-06-07 15:29:53 -04:00

463 lines
13 KiB
C++

/*
* Copyright (c) 2001-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Nathan Binkert
*/
#ifndef __CPU_SIMPLE_THREAD_HH__
#define __CPU_SIMPLE_THREAD_HH__
#include "arch/isa_traits.hh"
#include "config/full_system.hh"
#include "cpu/thread_context.hh"
#include "cpu/thread_state.hh"
#include "mem/physical.hh"
#include "mem/request.hh"
#include "sim/byteswap.hh"
#include "sim/eventq.hh"
#include "sim/host.hh"
#include "sim/serialize.hh"
class BaseCPU;
#if FULL_SYSTEM
#include "sim/system.hh"
#include "arch/tlb.hh"
class FunctionProfile;
class ProfileNode;
class FunctionalPort;
class PhysicalPort;
namespace Kernel {
class Statistics;
};
#else // !FULL_SYSTEM
#include "sim/process.hh"
#include "mem/page_table.hh"
class TranslatingPort;
#endif // FULL_SYSTEM
/**
* The SimpleThread object provides a combination of the ThreadState
* object and the ThreadContext interface. It implements the
* ThreadContext interface so that a ProxyThreadContext class can be
* made using SimpleThread as the template parameter (see
* thread_context.hh). It adds to the ThreadState object by adding all
* the objects needed for simple functional execution, including a
* simple architectural register file, and pointers to the ITB and DTB
* in full system mode. For CPU models that do not need more advanced
* ways to hold state (i.e. a separate physical register file, or
* separate fetch and commit PC's), this SimpleThread class provides
* all the necessary state for full architecture-level functional
* simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
* examples.
*/
class SimpleThread : public ThreadState
{
protected:
typedef TheISA::RegFile RegFile;
typedef TheISA::MachInst MachInst;
typedef TheISA::MiscRegFile MiscRegFile;
typedef TheISA::MiscReg MiscReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
public:
typedef ThreadContext::Status Status;
protected:
RegFile regs; // correct-path register context
public:
// pointer to CPU associated with this SimpleThread
BaseCPU *cpu;
ProxyThreadContext<SimpleThread> *tc;
System *system;
#if FULL_SYSTEM
AlphaITB *itb;
AlphaDTB *dtb;
#endif
// constructor: initialize SimpleThread from given process structure
#if FULL_SYSTEM
SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
AlphaITB *_itb, AlphaDTB *_dtb,
bool use_kernel_stats = true);
#else
SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid,
MemObject *memobj);
// Constructor to use SimpleThread to pass reg file around. Not
// used for anything else.
SimpleThread(RegFile *regFile);
#endif
virtual ~SimpleThread();
virtual void takeOverFrom(ThreadContext *oldContext);
void regStats(const std::string &name);
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
/***************************************************************
* SimpleThread functions to provide CPU with access to various
* state, and to provide address translation methods.
**************************************************************/
/** Returns the pointer to this SimpleThread's ThreadContext. Used
* when a ThreadContext must be passed to objects outside of the
* CPU.
*/
ThreadContext *getTC() { return tc; }
#if FULL_SYSTEM
int getInstAsid() { return regs.instAsid(); }
int getDataAsid() { return regs.dataAsid(); }
Fault translateInstReq(RequestPtr &req)
{
return itb->translate(req, tc);
}
Fault translateDataReadReq(RequestPtr &req)
{
return dtb->translate(req, tc, false);
}
Fault translateDataWriteReq(RequestPtr &req)
{
return dtb->translate(req, tc, true);
}
void dumpFuncProfile();
int readIntrFlag() { return regs.intrflag; }
void setIntrFlag(int val) { regs.intrflag = val; }
Fault hwrei();
bool simPalCheck(int palFunc);
#else
Fault translateInstReq(RequestPtr &req)
{
return process->pTable->translate(req);
}
Fault translateDataReadReq(RequestPtr &req)
{
return process->pTable->translate(req);
}
Fault translateDataWriteReq(RequestPtr &req)
{
return process->pTable->translate(req);
}
#endif
/*******************************************
* ThreadContext interface functions.
******************************************/
BaseCPU *getCpuPtr() { return cpu; }
int getThreadNum() { return tid; }
#if FULL_SYSTEM
System *getSystemPtr() { return system; }
AlphaITB *getITBPtr() { return itb; }
AlphaDTB *getDTBPtr() { return dtb; }
FunctionalPort *getPhysPort() { return physPort; }
/** Return a virtual port. If no thread context is specified then a static
* port is returned. Otherwise a port is created and returned. It must be
* deleted by deleteVirtPort(). */
VirtualPort *getVirtPort(ThreadContext *tc);
void delVirtPort(VirtualPort *vp);
#endif
Status status() const { return _status; }
void setStatus(Status newStatus) { _status = newStatus; }
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
void activate(int delay = 1);
/// Set the status to Suspended.
void suspend();
/// Set the status to Unallocated.
void deallocate();
/// Set the status to Halted.
void halt();
/*
template <class T>
Fault read(RequestPtr &req, T &data)
{
#if FULL_SYSTEM && THE_ISA == ALPHA_ISA
if (req->flags & LOCKED) {
req->xc->setMiscReg(TheISA::Lock_Addr_DepTag, req->paddr);
req->xc->setMiscReg(TheISA::Lock_Flag_DepTag, true);
}
#endif
Fault error;
error = mem->prot_read(req->paddr, data, req->size);
data = LittleEndianGuest::gtoh(data);
return error;
}
template <class T>
Fault write(RequestPtr &req, T &data)
{
#if FULL_SYSTEM && THE_ISA == ALPHA_ISA
ExecContext *xc;
// If this is a store conditional, act appropriately
if (req->flags & LOCKED) {
xc = req->xc;
if (req->flags & UNCACHEABLE) {
// Don't update result register (see stq_c in isa_desc)
req->result = 2;
xc->setStCondFailures(0);//Needed? [RGD]
} else {
bool lock_flag = xc->readMiscReg(TheISA::Lock_Flag_DepTag);
Addr lock_addr = xc->readMiscReg(TheISA::Lock_Addr_DepTag);
req->result = lock_flag;
if (!lock_flag ||
((lock_addr & ~0xf) != (req->paddr & ~0xf))) {
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
xc->setStCondFailures(xc->readStCondFailures() + 1);
if (((xc->readStCondFailures()) % 100000) == 0) {
std::cerr << "Warning: "
<< xc->readStCondFailures()
<< " consecutive store conditional failures "
<< "on cpu " << req->xc->readCpuId()
<< std::endl;
}
return NoFault;
}
else xc->setStCondFailures(0);
}
}
// Need to clear any locked flags on other proccessors for
// this address. Only do this for succsful Store Conditionals
// and all other stores (WH64?). Unsuccessful Store
// Conditionals would have returned above, and wouldn't fall
// through.
for (int i = 0; i < system->execContexts.size(); i++){
xc = system->execContexts[i];
if ((xc->readMiscReg(TheISA::Lock_Addr_DepTag) & ~0xf) ==
(req->paddr & ~0xf)) {
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
}
}
#endif
return mem->prot_write(req->paddr, (T)htog(data), req->size);
}
*/
virtual bool misspeculating();
Fault instRead(RequestPtr &req)
{
panic("instRead not implemented");
// return funcPhysMem->read(req, inst);
return NoFault;
}
void copyArchRegs(ThreadContext *tc);
void clearArchRegs() { regs.clear(); }
//
// New accessors for new decoder.
//
uint64_t readIntReg(int reg_idx)
{
return regs.readIntReg(reg_idx);
}
FloatReg readFloatReg(int reg_idx, int width)
{
return regs.readFloatReg(reg_idx, width);
}
FloatReg readFloatReg(int reg_idx)
{
return regs.readFloatReg(reg_idx);
}
FloatRegBits readFloatRegBits(int reg_idx, int width)
{
return regs.readFloatRegBits(reg_idx, width);
}
FloatRegBits readFloatRegBits(int reg_idx)
{
return regs.readFloatRegBits(reg_idx);
}
void setIntReg(int reg_idx, uint64_t val)
{
regs.setIntReg(reg_idx, val);
}
void setFloatReg(int reg_idx, FloatReg val, int width)
{
regs.setFloatReg(reg_idx, val, width);
}
void setFloatReg(int reg_idx, FloatReg val)
{
regs.setFloatReg(reg_idx, val);
}
void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
{
regs.setFloatRegBits(reg_idx, val, width);
}
void setFloatRegBits(int reg_idx, FloatRegBits val)
{
regs.setFloatRegBits(reg_idx, val);
}
uint64_t readPC()
{
return regs.readPC();
}
void setPC(uint64_t val)
{
regs.setPC(val);
}
uint64_t readNextPC()
{
return regs.readNextPC();
}
void setNextPC(uint64_t val)
{
regs.setNextPC(val);
}
uint64_t readNextNPC()
{
return regs.readNextNPC();
}
void setNextNPC(uint64_t val)
{
regs.setNextNPC(val);
}
MiscReg readMiscReg(int misc_reg)
{
return regs.readMiscReg(misc_reg);
}
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
{
return regs.readMiscRegWithEffect(misc_reg, fault, tc);
}
Fault setMiscReg(int misc_reg, const MiscReg &val)
{
return regs.setMiscReg(misc_reg, val);
}
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
{
return regs.setMiscRegWithEffect(misc_reg, val, tc);
}
unsigned readStCondFailures() { return storeCondFailures; }
void setStCondFailures(unsigned sc_failures)
{ storeCondFailures = sc_failures; }
#if FULL_SYSTEM
bool inPalMode() { return AlphaISA::PcPAL(regs.readPC()); }
#endif
#if !FULL_SYSTEM
TheISA::IntReg getSyscallArg(int i)
{
return regs.readIntReg(TheISA::ArgumentReg0 + i);
}
// used to shift args for indirect syscall
void setSyscallArg(int i, TheISA::IntReg val)
{
regs.setIntReg(TheISA::ArgumentReg0 + i, val);
}
void setSyscallReturn(SyscallReturn return_value)
{
TheISA::setSyscallReturn(return_value, &regs);
}
void syscall(int64_t callnum)
{
process->syscall(callnum, tc);
}
#endif
void changeRegFileContext(RegFile::ContextParam param,
RegFile::ContextVal val)
{
regs.changeContext(param, val);
}
};
// for non-speculative execution context, spec_mode is always false
inline bool
SimpleThread::misspeculating()
{
return false;
}
#endif // __CPU_CPU_EXEC_CONTEXT_HH__