gem5/src/mem/protocol/MESI_Three_Level-L1cache.sm
Tony Gutierrez a317764577 ruby: slicc: have a static MachineType
This patch is imported from reviewboard patch 2551 by Nilay.
This patch moves from a dynamically defined MachineType to a statically
defined one.  The need for this patch was felt since a dynamically defined
type prevents us from having types for which no machine definition may
exist.

The following changes have been made:
i. each machine definition now uses a type from the MachineType enumeration
instead of any random identifier.  This required changing the grammar and the
*.sm files.
ii. MachineType enumeration defined statically in RubySlicc_Exports.sm.
* * *
normal protocol fixes for nilay's parser machine type fix
2015-07-20 09:15:18 -05:00

1018 lines
33 KiB
Text

/*
* Copyright (c) 1999-2013 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
machine(MachineType:L1Cache, "MESI Directory L1 Cache CMP")
: CacheMemory * cache;
int l2_select_num_bits;
Cycles l1_request_latency := 2;
Cycles l1_response_latency := 2;
Cycles to_l2_latency := 1;
// Message Buffers between the L1 and the L0 Cache
// From the L1 cache to the L0 cache
MessageBuffer * bufferToL0, network="To";
// From the L0 cache to the L1 cache
MessageBuffer * bufferFromL0, network="From";
// Message queue from this L1 cache TO the network / L2
MessageBuffer * requestToL2, network="To", virtual_network="0",
vnet_type="request";
MessageBuffer * responseToL2, network="To", virtual_network="1",
vnet_type="response";
MessageBuffer * unblockToL2, network="To", virtual_network="2",
vnet_type="unblock";
// To this L1 cache FROM the network / L2
MessageBuffer * requestFromL2, network="From", virtual_network="2",
vnet_type="request";
MessageBuffer * responseFromL2, network="From", virtual_network="1",
vnet_type="response";
{
// STATES
state_declaration(State, desc="Cache states", default="L1Cache_State_I") {
// Base states
I, AccessPermission:Invalid, desc="a L1 cache entry Idle";
S, AccessPermission:Read_Only, desc="a L1 cache entry Shared";
SS, AccessPermission:Read_Only, desc="a L1 cache entry Shared";
E, AccessPermission:Read_Only, desc="a L1 cache entry Exclusive";
EE, AccessPermission:Read_Write, desc="a L1 cache entry Exclusive";
M, AccessPermission:Maybe_Stale, desc="a L1 cache entry Modified", format="!b";
MM, AccessPermission:Read_Write, desc="a L1 cache entry Modified", format="!b";
// Transient States
IS, AccessPermission:Busy, desc="L1 idle, issued GETS, have not seen response yet";
IM, AccessPermission:Busy, desc="L1 idle, issued GETX, have not seen response yet";
SM, AccessPermission:Read_Only, desc="L1 idle, issued GETX, have not seen response yet";
M_I, AccessPermission:Busy, desc="L1 replacing, waiting for ACK";
SINK_WB_ACK, AccessPermission:Busy, desc="This is to sink WB_Acks from L2";
// For all of the following states, invalidate
// message has been sent to L0 cache. The response
// from the L0 cache has not been seen yet.
S_IL0, AccessPermission:Busy;
E_IL0, AccessPermission:Busy;
M_IL0, AccessPermission:Busy;
MM_IL0, AccessPermission:Read_Write;
SM_IL0, AccessPermission:Busy;
}
// EVENTS
enumeration(Event, desc="Cache events") {
// Requests from the L0 cache
Load, desc="Load request";
Store, desc="Store request";
WriteBack, desc="Writeback request";
// Responses from the L0 Cache
// L0 cache received the invalidation message
// and has sent the data.
L0_DataAck;
Inv, desc="Invalidate request from L2 bank";
// internal generated request
// Invalidate the line in L0 due to own requirements
L0_Invalidate_Own;
// Invalidate the line in L0 due to some other cache's requirements
L0_Invalidate_Else;
// Invalidate the line in the cache due to some one else / space needs.
L1_Replacement;
// other requests
Fwd_GETX, desc="GETX from other processor";
Fwd_GETS, desc="GETS from other processor";
Data, desc="Data for processor";
Data_Exclusive, desc="Data for processor";
DataS_fromL1, desc="data for GETS request, need to unblock directory";
Data_all_Acks, desc="Data for processor, all acks";
L0_Ack, desc="Ack for processor";
Ack, desc="Ack for processor";
Ack_all, desc="Last ack for processor";
WB_Ack, desc="Ack for replacement";
}
// TYPES
// CacheEntry
structure(Entry, desc="...", interface="AbstractCacheEntry" ) {
State CacheState, desc="cache state";
DataBlock DataBlk, desc="data for the block";
bool Dirty, default="false", desc="data is dirty";
}
// TBE fields
structure(TBE, desc="...") {
Addr addr, desc="Physical address for this TBE";
State TBEState, desc="Transient state";
DataBlock DataBlk, desc="Buffer for the data block";
bool Dirty, default="false", desc="data is dirty";
int pendingAcks, default="0", desc="number of pending acks";
}
structure(TBETable, external="yes") {
TBE lookup(Addr);
void allocate(Addr);
void deallocate(Addr);
bool isPresent(Addr);
}
TBETable TBEs, template="<L1Cache_TBE>", constructor="m_number_of_TBEs";
int l2_select_low_bit, default="RubySystem::getBlockSizeBits()";
Tick clockEdge();
Cycles ticksToCycles(Tick t);
void set_cache_entry(AbstractCacheEntry a);
void unset_cache_entry();
void set_tbe(TBE a);
void unset_tbe();
void wakeUpBuffers(Addr a);
void wakeUpAllBuffers(Addr a);
void profileMsgDelay(int virtualNetworkType, Cycles c);
// inclusive cache returns L1 entries only
Entry getCacheEntry(Addr addr), return_by_pointer="yes" {
Entry cache_entry := static_cast(Entry, "pointer", cache[addr]);
return cache_entry;
}
State getState(TBE tbe, Entry cache_entry, Addr addr) {
if(is_valid(tbe)) {
return tbe.TBEState;
} else if (is_valid(cache_entry)) {
return cache_entry.CacheState;
}
return State:I;
}
void setState(TBE tbe, Entry cache_entry, Addr addr, State state) {
// MUST CHANGE
if(is_valid(tbe)) {
tbe.TBEState := state;
}
if (is_valid(cache_entry)) {
cache_entry.CacheState := state;
}
}
AccessPermission getAccessPermission(Addr addr) {
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
DPRINTF(RubySlicc, "%s\n", L1Cache_State_to_permission(tbe.TBEState));
return L1Cache_State_to_permission(tbe.TBEState);
}
Entry cache_entry := getCacheEntry(addr);
if(is_valid(cache_entry)) {
DPRINTF(RubySlicc, "%s\n", L1Cache_State_to_permission(cache_entry.CacheState));
return L1Cache_State_to_permission(cache_entry.CacheState);
}
DPRINTF(RubySlicc, "%s\n", AccessPermission:NotPresent);
return AccessPermission:NotPresent;
}
void functionalRead(Addr addr, Packet *pkt) {
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
testAndRead(addr, tbe.DataBlk, pkt);
} else {
testAndRead(addr, getCacheEntry(addr).DataBlk, pkt);
}
}
int functionalWrite(Addr addr, Packet *pkt) {
int num_functional_writes := 0;
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
num_functional_writes := num_functional_writes +
testAndWrite(addr, tbe.DataBlk, pkt);
return num_functional_writes;
}
num_functional_writes := num_functional_writes +
testAndWrite(addr, getCacheEntry(addr).DataBlk, pkt);
return num_functional_writes;
}
void setAccessPermission(Entry cache_entry, Addr addr, State state) {
if (is_valid(cache_entry)) {
cache_entry.changePermission(L1Cache_State_to_permission(state));
}
}
Event mandatory_request_type_to_event(CoherenceClass type) {
if (type == CoherenceClass:GETS) {
return Event:Load;
} else if ((type == CoherenceClass:GETX) ||
(type == CoherenceClass:UPGRADE)) {
return Event:Store;
} else if (type == CoherenceClass:PUTX) {
return Event:WriteBack;
} else {
error("Invalid RequestType");
}
}
int getPendingAcks(TBE tbe) {
return tbe.pendingAcks;
}
bool inL0Cache(State state) {
if (state == State:S || state == State:E || state == State:M ||
state == State:S_IL0 || state == State:E_IL0 ||
state == State:M_IL0 || state == State:SM_IL0) {
return true;
}
return false;
}
out_port(requestNetwork_out, RequestMsg, requestToL2);
out_port(responseNetwork_out, ResponseMsg, responseToL2);
out_port(unblockNetwork_out, ResponseMsg, unblockToL2);
out_port(bufferToL0_out, CoherenceMsg, bufferToL0);
// Response From the L2 Cache to this L1 cache
in_port(responseNetwork_in, ResponseMsg, responseFromL2, rank = 3) {
if (responseNetwork_in.isReady(clockEdge())) {
peek(responseNetwork_in, ResponseMsg) {
assert(in_msg.Destination.isElement(machineID));
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
if(in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE) {
trigger(Event:Data_Exclusive, in_msg.addr, cache_entry, tbe);
} else if(in_msg.Type == CoherenceResponseType:DATA) {
if (getState(tbe, cache_entry, in_msg.addr) == State:IS &&
machineIDToMachineType(in_msg.Sender) == MachineType:L1Cache) {
trigger(Event:DataS_fromL1, in_msg.addr, cache_entry, tbe);
} else if ( (getPendingAcks(tbe) - in_msg.AckCount) == 0 ) {
trigger(Event:Data_all_Acks, in_msg.addr, cache_entry, tbe);
} else {
trigger(Event:Data, in_msg.addr, cache_entry, tbe);
}
} else if (in_msg.Type == CoherenceResponseType:ACK) {
if ( (getPendingAcks(tbe) - in_msg.AckCount) == 0 ) {
trigger(Event:Ack_all, in_msg.addr, cache_entry, tbe);
} else {
trigger(Event:Ack, in_msg.addr, cache_entry, tbe);
}
} else if (in_msg.Type == CoherenceResponseType:WB_ACK) {
trigger(Event:WB_Ack, in_msg.addr, cache_entry, tbe);
} else {
error("Invalid L1 response type");
}
}
}
}
// Request to this L1 cache from the shared L2
in_port(requestNetwork_in, RequestMsg, requestFromL2, rank = 2) {
if(requestNetwork_in.isReady(clockEdge())) {
peek(requestNetwork_in, RequestMsg) {
assert(in_msg.Destination.isElement(machineID));
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
if (in_msg.Type == CoherenceRequestType:INV) {
if (is_valid(cache_entry) && inL0Cache(cache_entry.CacheState)) {
trigger(Event:L0_Invalidate_Else, in_msg.addr,
cache_entry, tbe);
} else {
trigger(Event:Inv, in_msg.addr, cache_entry, tbe);
}
} else if (in_msg.Type == CoherenceRequestType:GETX ||
in_msg.Type == CoherenceRequestType:UPGRADE) {
if (is_valid(cache_entry) && inL0Cache(cache_entry.CacheState)) {
trigger(Event:L0_Invalidate_Else, in_msg.addr,
cache_entry, tbe);
} else {
trigger(Event:Fwd_GETX, in_msg.addr, cache_entry, tbe);
}
} else if (in_msg.Type == CoherenceRequestType:GETS) {
if (is_valid(cache_entry) && inL0Cache(cache_entry.CacheState)) {
trigger(Event:L0_Invalidate_Else, in_msg.addr,
cache_entry, tbe);
} else {
trigger(Event:Fwd_GETS, in_msg.addr, cache_entry, tbe);
}
} else {
error("Invalid forwarded request type");
}
}
}
}
// Requests to this L1 cache from the L0 cache.
in_port(messageBufferFromL0_in, CoherenceMsg, bufferFromL0, rank = 0) {
if (messageBufferFromL0_in.isReady(clockEdge())) {
peek(messageBufferFromL0_in, CoherenceMsg) {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
if(in_msg.Class == CoherenceClass:INV_DATA) {
trigger(Event:L0_DataAck, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Class == CoherenceClass:INV_ACK) {
trigger(Event:L0_Ack, in_msg.addr, cache_entry, tbe);
} else {
if (is_valid(cache_entry)) {
trigger(mandatory_request_type_to_event(in_msg.Class),
in_msg.addr, cache_entry, tbe);
} else {
if (cache.cacheAvail(in_msg.addr)) {
// L1 does't have the line, but we have space for it
// in the L1 let's see if the L2 has it
trigger(mandatory_request_type_to_event(in_msg.Class),
in_msg.addr, cache_entry, tbe);
} else {
// No room in the L1, so we need to make room in the L1
Entry victim_entry :=
getCacheEntry(cache.cacheProbe(in_msg.addr));
TBE victim_tbe := TBEs[cache.cacheProbe(in_msg.addr)];
if (is_valid(victim_entry) && inL0Cache(victim_entry.CacheState)) {
trigger(Event:L0_Invalidate_Own,
cache.cacheProbe(in_msg.addr),
victim_entry, victim_tbe);
} else {
trigger(Event:L1_Replacement,
cache.cacheProbe(in_msg.addr),
victim_entry, victim_tbe);
}
}
}
}
}
}
}
// ACTIONS
action(a_issueGETS, "a", desc="Issue GETS") {
peek(messageBufferFromL0_in, CoherenceMsg) {
enqueue(requestNetwork_out, RequestMsg, l1_request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:GETS;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
l2_select_low_bit, l2_select_num_bits, clusterID));
DPRINTF(RubySlicc, "address: %#x, destination: %s\n",
address, out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.AccessMode := in_msg.AccessMode;
}
}
}
action(b_issueGETX, "b", desc="Issue GETX") {
peek(messageBufferFromL0_in, CoherenceMsg) {
enqueue(requestNetwork_out, RequestMsg, l1_request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:GETX;
out_msg.Requestor := machineID;
DPRINTF(RubySlicc, "%s\n", machineID);
out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
l2_select_low_bit, l2_select_num_bits, clusterID));
DPRINTF(RubySlicc, "address: %#x, destination: %s\n",
address, out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.AccessMode := in_msg.AccessMode;
}
}
}
action(c_issueUPGRADE, "c", desc="Issue GETX") {
peek(messageBufferFromL0_in, CoherenceMsg) {
enqueue(requestNetwork_out, RequestMsg, l1_request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:UPGRADE;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
l2_select_low_bit, l2_select_num_bits, clusterID));
DPRINTF(RubySlicc, "address: %#x, destination: %s\n",
address, out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.AccessMode := in_msg.AccessMode;
}
}
}
action(d_sendDataToRequestor, "d", desc="send data to requestor") {
peek(requestNetwork_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.Dirty := cache_entry.Dirty;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(d2_sendDataToL2, "d2", desc="send data to the L2 cache because of M downgrade") {
enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.Dirty := cache_entry.Dirty;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
l2_select_low_bit, l2_select_num_bits, clusterID));
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(dt_sendDataToRequestor_fromTBE, "dt", desc="send data to requestor") {
peek(requestNetwork_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(d2t_sendDataToL2_fromTBE, "d2t", desc="send data to the L2 cache") {
enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
l2_select_low_bit, l2_select_num_bits, clusterID));
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(e_sendAckToRequestor, "e", desc="send invalidate ack to requestor (could be L2 or L1)") {
peek(requestNetwork_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
}
action(f_sendDataToL2, "f", desc="send data to the L2 cache") {
enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.Dirty := cache_entry.Dirty;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
l2_select_low_bit, l2_select_num_bits, clusterID));
out_msg.MessageSize := MessageSizeType:Writeback_Data;
}
}
action(ft_sendDataToL2_fromTBE, "ft", desc="send data to the L2 cache") {
enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
l2_select_low_bit, l2_select_num_bits, clusterID));
out_msg.MessageSize := MessageSizeType:Writeback_Data;
}
}
action(fi_sendInvAck, "fi", desc="send data to the L2 cache") {
peek(requestNetwork_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Response_Control;
out_msg.AckCount := 1;
}
}
}
action(forward_eviction_to_L0, "\cc", desc="sends eviction information to the processor") {
enqueue(bufferToL0_out, CoherenceMsg, l1_request_latency) {
out_msg.addr := address;
out_msg.Class := CoherenceClass:INV;
out_msg.Sender := machineID;
out_msg.Dest := createMachineID(MachineType:L0Cache, version);
out_msg.MessageSize := MessageSizeType:Control;
}
}
action(g_issuePUTX, "g", desc="send data to the L2 cache") {
enqueue(requestNetwork_out, RequestMsg, l1_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:PUTX;
out_msg.Dirty := cache_entry.Dirty;
out_msg.Requestor:= machineID;
out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
l2_select_low_bit, l2_select_num_bits, clusterID));
if (cache_entry.Dirty) {
out_msg.MessageSize := MessageSizeType:Writeback_Data;
out_msg.DataBlk := cache_entry.DataBlk;
} else {
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(j_sendUnblock, "j", desc="send unblock to the L2 cache") {
enqueue(unblockNetwork_out, ResponseMsg, to_l2_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:UNBLOCK;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
l2_select_low_bit, l2_select_num_bits, clusterID));
out_msg.MessageSize := MessageSizeType:Response_Control;
DPRINTF(RubySlicc, "%#x\n", address);
}
}
action(jj_sendExclusiveUnblock, "\j", desc="send unblock to the L2 cache") {
enqueue(unblockNetwork_out, ResponseMsg, to_l2_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:EXCLUSIVE_UNBLOCK;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
l2_select_low_bit, l2_select_num_bits, clusterID));
out_msg.MessageSize := MessageSizeType:Response_Control;
DPRINTF(RubySlicc, "%#x\n", address);
}
}
action(h_data_to_l0, "h", desc="If not prefetch, send data to the L0 cache.") {
enqueue(bufferToL0_out, CoherenceMsg, l1_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Class := CoherenceClass:DATA;
out_msg.Sender := machineID;
out_msg.Dest := createMachineID(MachineType:L0Cache, version);
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(hh_xdata_to_l0, "\h", desc="If not prefetch, notify sequencer that store completed.") {
enqueue(bufferToL0_out, CoherenceMsg, l1_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Class := CoherenceClass:DATA_EXCLUSIVE;
out_msg.Sender := machineID;
out_msg.Dest := createMachineID(MachineType:L0Cache, version);
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.Dirty := cache_entry.Dirty;
out_msg.MessageSize := MessageSizeType:Response_Data;
//cache_entry.Dirty := true;
}
}
action(i_allocateTBE, "i", desc="Allocate TBE (number of invalidates=0)") {
check_allocate(TBEs);
assert(is_valid(cache_entry));
TBEs.allocate(address);
set_tbe(TBEs[address]);
tbe.Dirty := cache_entry.Dirty;
tbe.DataBlk := cache_entry.DataBlk;
}
action(k_popL0RequestQueue, "k", desc="Pop mandatory queue.") {
messageBufferFromL0_in.dequeue(clockEdge());
}
action(l_popL2RequestQueue, "l",
desc="Pop incoming request queue and profile the delay within this virtual network") {
Tick delay := requestNetwork_in.dequeue(clockEdge());
profileMsgDelay(2, ticksToCycles(delay));
}
action(o_popL2ResponseQueue, "o",
desc="Pop Incoming Response queue and profile the delay within this virtual network") {
Tick delay := responseNetwork_in.dequeue(clockEdge());
profileMsgDelay(1, ticksToCycles(delay));
}
action(s_deallocateTBE, "s", desc="Deallocate TBE") {
TBEs.deallocate(address);
unset_tbe();
}
action(u_writeDataFromL0Request, "ureql0", desc="Write data to cache") {
peek(messageBufferFromL0_in, CoherenceMsg) {
assert(is_valid(cache_entry));
if (in_msg.Dirty) {
cache_entry.DataBlk := in_msg.DataBlk;
cache_entry.Dirty := in_msg.Dirty;
}
}
}
action(u_writeDataFromL2Response, "uresl2", desc="Write data to cache") {
peek(responseNetwork_in, ResponseMsg) {
assert(is_valid(cache_entry));
cache_entry.DataBlk := in_msg.DataBlk;
}
}
action(u_writeDataFromL0Response, "uresl0", desc="Write data to cache") {
peek(messageBufferFromL0_in, CoherenceMsg) {
assert(is_valid(cache_entry));
if (in_msg.Dirty) {
cache_entry.DataBlk := in_msg.DataBlk;
cache_entry.Dirty := in_msg.Dirty;
}
}
}
action(q_updateAckCount, "q", desc="Update ack count") {
peek(responseNetwork_in, ResponseMsg) {
assert(is_valid(tbe));
tbe.pendingAcks := tbe.pendingAcks - in_msg.AckCount;
APPEND_TRANSITION_COMMENT(in_msg.AckCount);
APPEND_TRANSITION_COMMENT(" p: ");
APPEND_TRANSITION_COMMENT(tbe.pendingAcks);
}
}
action(ff_deallocateCacheBlock, "\f",
desc="Deallocate L1 cache block.") {
if (cache.isTagPresent(address)) {
cache.deallocate(address);
}
unset_cache_entry();
}
action(oo_allocateCacheBlock, "\o", desc="Set cache tag equal to tag of block B.") {
if (is_invalid(cache_entry)) {
set_cache_entry(cache.allocate(address, new Entry));
}
}
action(z0_stallAndWaitL0Queue, "\z0", desc="recycle L0 request queue") {
stall_and_wait(messageBufferFromL0_in, address);
}
action(z2_stallAndWaitL2Queue, "\z2", desc="recycle L2 request queue") {
stall_and_wait(requestNetwork_in, address);
}
action(kd_wakeUpDependents, "kd", desc="wake-up dependents") {
wakeUpAllBuffers(address);
}
action(uu_profileMiss, "\um", desc="Profile the demand miss") {
++cache.demand_misses;
}
action(uu_profileHit, "\uh", desc="Profile the demand hit") {
++cache.demand_hits;
}
//*****************************************************
// TRANSITIONS
//*****************************************************
// Transitions for Load/Store/Replacement/WriteBack from transient states
transition({IS, IM, M_I, SM, SINK_WB_ACK, S_IL0, M_IL0, E_IL0, MM_IL0},
{Load, Store, L1_Replacement}) {
z0_stallAndWaitL0Queue;
}
transition(I, Load, IS) {
oo_allocateCacheBlock;
i_allocateTBE;
a_issueGETS;
uu_profileMiss;
k_popL0RequestQueue;
}
transition(I, Store, IM) {
oo_allocateCacheBlock;
i_allocateTBE;
b_issueGETX;
uu_profileMiss;
k_popL0RequestQueue;
}
transition(I, Inv) {
fi_sendInvAck;
l_popL2RequestQueue;
}
// Transitions from Shared
transition({S,SS}, Load, S) {
h_data_to_l0;
uu_profileHit;
k_popL0RequestQueue;
}
transition(EE, Load, E) {
hh_xdata_to_l0;
uu_profileHit;
k_popL0RequestQueue;
}
transition(MM, Load, M) {
hh_xdata_to_l0;
uu_profileHit;
k_popL0RequestQueue;
}
transition({S,SS}, Store, SM) {
i_allocateTBE;
c_issueUPGRADE;
uu_profileMiss;
k_popL0RequestQueue;
}
transition(SS, L1_Replacement, I) {
ff_deallocateCacheBlock;
}
transition(S, {L0_Invalidate_Own, L0_Invalidate_Else}, S_IL0) {
forward_eviction_to_L0;
}
transition(SS, Inv, I) {
fi_sendInvAck;
ff_deallocateCacheBlock;
l_popL2RequestQueue;
}
// Transitions from Exclusive
transition({EE,MM}, Store, M) {
hh_xdata_to_l0;
uu_profileHit;
k_popL0RequestQueue;
}
transition(EE, L1_Replacement, M_I) {
// silent E replacement??
i_allocateTBE;
g_issuePUTX; // send data, but hold in case forwarded request
ff_deallocateCacheBlock;
}
transition(EE, Inv, I) {
// don't send data
fi_sendInvAck;
ff_deallocateCacheBlock;
l_popL2RequestQueue;
}
transition(EE, Fwd_GETX, I) {
d_sendDataToRequestor;
ff_deallocateCacheBlock;
l_popL2RequestQueue;
}
transition(EE, Fwd_GETS, SS) {
d_sendDataToRequestor;
d2_sendDataToL2;
l_popL2RequestQueue;
}
transition(E, {L0_Invalidate_Own, L0_Invalidate_Else}, E_IL0) {
forward_eviction_to_L0;
}
// Transitions from Modified
transition(MM, L1_Replacement, M_I) {
i_allocateTBE;
g_issuePUTX; // send data, but hold in case forwarded request
ff_deallocateCacheBlock;
}
transition({M,E}, WriteBack, MM) {
u_writeDataFromL0Request;
k_popL0RequestQueue;
}
transition(M_I, WB_Ack, I) {
s_deallocateTBE;
o_popL2ResponseQueue;
ff_deallocateCacheBlock;
kd_wakeUpDependents;
}
transition(MM, Inv, I) {
f_sendDataToL2;
ff_deallocateCacheBlock;
l_popL2RequestQueue;
}
transition(M_I, Inv, SINK_WB_ACK) {
ft_sendDataToL2_fromTBE;
l_popL2RequestQueue;
}
transition(MM, Fwd_GETX, I) {
d_sendDataToRequestor;
ff_deallocateCacheBlock;
l_popL2RequestQueue;
}
transition(MM, Fwd_GETS, SS) {
d_sendDataToRequestor;
d2_sendDataToL2;
l_popL2RequestQueue;
}
transition(M, {L0_Invalidate_Own, L0_Invalidate_Else}, M_IL0) {
forward_eviction_to_L0;
}
transition(M_I, Fwd_GETX, SINK_WB_ACK) {
dt_sendDataToRequestor_fromTBE;
l_popL2RequestQueue;
}
transition(M_I, Fwd_GETS, SINK_WB_ACK) {
dt_sendDataToRequestor_fromTBE;
d2t_sendDataToL2_fromTBE;
l_popL2RequestQueue;
}
// Transitions from IS
transition(IS, Data_all_Acks, S) {
u_writeDataFromL2Response;
h_data_to_l0;
s_deallocateTBE;
o_popL2ResponseQueue;
kd_wakeUpDependents;
}
transition(IS, DataS_fromL1, S) {
u_writeDataFromL2Response;
j_sendUnblock;
h_data_to_l0;
s_deallocateTBE;
o_popL2ResponseQueue;
kd_wakeUpDependents;
}
// directory is blocked when sending exclusive data
transition(IS, Data_Exclusive, E) {
u_writeDataFromL2Response;
hh_xdata_to_l0;
jj_sendExclusiveUnblock;
s_deallocateTBE;
o_popL2ResponseQueue;
kd_wakeUpDependents;
}
// Transitions from IM
transition({IM,SM}, Inv, IM) {
fi_sendInvAck;
l_popL2RequestQueue;
}
transition(IM, Data, SM) {
u_writeDataFromL2Response;
q_updateAckCount;
o_popL2ResponseQueue;
}
transition(IM, Data_all_Acks, M) {
u_writeDataFromL2Response;
hh_xdata_to_l0;
jj_sendExclusiveUnblock;
s_deallocateTBE;
o_popL2ResponseQueue;
kd_wakeUpDependents;
}
transition({SM, IM}, Ack) {
q_updateAckCount;
o_popL2ResponseQueue;
}
transition(SM, Ack_all, M) {
jj_sendExclusiveUnblock;
hh_xdata_to_l0;
s_deallocateTBE;
o_popL2ResponseQueue;
kd_wakeUpDependents;
}
transition(SM, L0_Invalidate_Else, SM_IL0) {
forward_eviction_to_L0;
}
transition(SINK_WB_ACK, Inv){
fi_sendInvAck;
l_popL2RequestQueue;
}
transition(SINK_WB_ACK, WB_Ack, I){
s_deallocateTBE;
o_popL2ResponseQueue;
ff_deallocateCacheBlock;
kd_wakeUpDependents;
}
transition({M_IL0, E_IL0}, WriteBack, MM_IL0) {
u_writeDataFromL0Request;
k_popL0RequestQueue;
kd_wakeUpDependents;
}
transition({M_IL0, E_IL0}, L0_DataAck, MM) {
u_writeDataFromL0Response;
k_popL0RequestQueue;
kd_wakeUpDependents;
}
transition({M_IL0, MM_IL0}, L0_Ack, MM) {
k_popL0RequestQueue;
kd_wakeUpDependents;
}
transition(E_IL0, L0_Ack, EE) {
k_popL0RequestQueue;
kd_wakeUpDependents;
}
transition(S_IL0, L0_Ack, SS) {
k_popL0RequestQueue;
kd_wakeUpDependents;
}
transition(SM_IL0, L0_Ack, IM) {
k_popL0RequestQueue;
kd_wakeUpDependents;
}
transition({S_IL0, M_IL0, E_IL0, SM_IL0, SM}, L0_Invalidate_Own) {
z0_stallAndWaitL0Queue;
}
transition({S_IL0, M_IL0, E_IL0, SM_IL0}, L0_Invalidate_Else) {
z2_stallAndWaitL2Queue;
}
transition({IS, S_IL0, M_IL0, E_IL0, MM_IL0}, {Inv, Fwd_GETX, Fwd_GETS}) {
z2_stallAndWaitL2Queue;
}
}