gem5/src/cpu/o3/iew_impl.hh
Korey Sewell 82862e0e15 add ISA_HAS_DELAY_SLOT directive instead of "#if THE_ISA == ALPHA_ISA" throughout CPU models
src/arch/alpha/isa_traits.hh:
src/arch/mips/isa_traits.hh:
src/arch/sparc/isa_traits.hh:
    define 'ISA_HAS_DELAY_SLOT'
src/cpu/base_dyn_inst.hh:
src/cpu/o3/bpred_unit_impl.hh:
src/cpu/o3/commit_impl.hh:
src/cpu/o3/cpu.cc:
src/cpu/o3/cpu.hh:
src/cpu/o3/decode_impl.hh:
src/cpu/o3/fetch_impl.hh:
src/cpu/o3/iew_impl.hh:
src/cpu/o3/inst_queue_impl.hh:
src/cpu/o3/rename_impl.hh:
src/cpu/simple/base.cc:
    use ISA_HAS_DELAY_SLOT instead of THE_ISA == ALPHA_ISA

--HG--
extra : convert_revision : 24c7460d9391e8d443c9fe08e17c331ae8e9c36a
2006-08-31 20:51:30 -04:00

1584 lines
44 KiB
C++

/*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
// @todo: Fix the instantaneous communication among all the stages within
// iew. There's a clear delay between issue and execute, yet backwards
// communication happens simultaneously.
#include <queue>
#include "base/timebuf.hh"
#include "cpu/o3/fu_pool.hh"
#include "cpu/o3/iew.hh"
template<class Impl>
DefaultIEW<Impl>::DefaultIEW(Params *params)
: issueToExecQueue(params->backComSize, params->forwardComSize),
instQueue(params),
ldstQueue(params),
fuPool(params->fuPool),
commitToIEWDelay(params->commitToIEWDelay),
renameToIEWDelay(params->renameToIEWDelay),
issueToExecuteDelay(params->issueToExecuteDelay),
dispatchWidth(params->dispatchWidth),
issueWidth(params->issueWidth),
wbOutstanding(0),
wbWidth(params->wbWidth),
numThreads(params->numberOfThreads),
switchedOut(false)
{
_status = Active;
exeStatus = Running;
wbStatus = Idle;
// Setup wire to read instructions coming from issue.
fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
// Instruction queue needs the queue between issue and execute.
instQueue.setIssueToExecuteQueue(&issueToExecQueue);
instQueue.setIEW(this);
ldstQueue.setIEW(this);
for (int i=0; i < numThreads; i++) {
dispatchStatus[i] = Running;
stalls[i].commit = false;
fetchRedirect[i] = false;
bdelayDoneSeqNum[i] = 0;
}
wbMax = wbWidth * params->wbDepth;
updateLSQNextCycle = false;
ableToIssue = true;
skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
}
template <class Impl>
std::string
DefaultIEW<Impl>::name() const
{
return cpu->name() + ".iew";
}
template <class Impl>
void
DefaultIEW<Impl>::regStats()
{
using namespace Stats;
instQueue.regStats();
ldstQueue.regStats();
iewIdleCycles
.name(name() + ".iewIdleCycles")
.desc("Number of cycles IEW is idle");
iewSquashCycles
.name(name() + ".iewSquashCycles")
.desc("Number of cycles IEW is squashing");
iewBlockCycles
.name(name() + ".iewBlockCycles")
.desc("Number of cycles IEW is blocking");
iewUnblockCycles
.name(name() + ".iewUnblockCycles")
.desc("Number of cycles IEW is unblocking");
iewDispatchedInsts
.name(name() + ".iewDispatchedInsts")
.desc("Number of instructions dispatched to IQ");
iewDispSquashedInsts
.name(name() + ".iewDispSquashedInsts")
.desc("Number of squashed instructions skipped by dispatch");
iewDispLoadInsts
.name(name() + ".iewDispLoadInsts")
.desc("Number of dispatched load instructions");
iewDispStoreInsts
.name(name() + ".iewDispStoreInsts")
.desc("Number of dispatched store instructions");
iewDispNonSpecInsts
.name(name() + ".iewDispNonSpecInsts")
.desc("Number of dispatched non-speculative instructions");
iewIQFullEvents
.name(name() + ".iewIQFullEvents")
.desc("Number of times the IQ has become full, causing a stall");
iewLSQFullEvents
.name(name() + ".iewLSQFullEvents")
.desc("Number of times the LSQ has become full, causing a stall");
memOrderViolationEvents
.name(name() + ".memOrderViolationEvents")
.desc("Number of memory order violations");
predictedTakenIncorrect
.name(name() + ".predictedTakenIncorrect")
.desc("Number of branches that were predicted taken incorrectly");
predictedNotTakenIncorrect
.name(name() + ".predictedNotTakenIncorrect")
.desc("Number of branches that were predicted not taken incorrectly");
branchMispredicts
.name(name() + ".branchMispredicts")
.desc("Number of branch mispredicts detected at execute");
branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
iewExecutedInsts
.name(name() + ".EXEC:insts")
.desc("Number of executed instructions");
iewExecLoadInsts
.init(cpu->number_of_threads)
.name(name() + ".EXEC:loads")
.desc("Number of load instructions executed")
.flags(total);
iewExecSquashedInsts
.name(name() + ".EXEC:squashedInsts")
.desc("Number of squashed instructions skipped in execute");
iewExecutedSwp
.init(cpu->number_of_threads)
.name(name() + ".EXEC:swp")
.desc("number of swp insts executed")
.flags(total);
iewExecutedNop
.init(cpu->number_of_threads)
.name(name() + ".EXEC:nop")
.desc("number of nop insts executed")
.flags(total);
iewExecutedRefs
.init(cpu->number_of_threads)
.name(name() + ".EXEC:refs")
.desc("number of memory reference insts executed")
.flags(total);
iewExecutedBranches
.init(cpu->number_of_threads)
.name(name() + ".EXEC:branches")
.desc("Number of branches executed")
.flags(total);
iewExecStoreInsts
.name(name() + ".EXEC:stores")
.desc("Number of stores executed")
.flags(total);
iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
iewExecRate
.name(name() + ".EXEC:rate")
.desc("Inst execution rate")
.flags(total);
iewExecRate = iewExecutedInsts / cpu->numCycles;
iewInstsToCommit
.init(cpu->number_of_threads)
.name(name() + ".WB:sent")
.desc("cumulative count of insts sent to commit")
.flags(total);
writebackCount
.init(cpu->number_of_threads)
.name(name() + ".WB:count")
.desc("cumulative count of insts written-back")
.flags(total);
producerInst
.init(cpu->number_of_threads)
.name(name() + ".WB:producers")
.desc("num instructions producing a value")
.flags(total);
consumerInst
.init(cpu->number_of_threads)
.name(name() + ".WB:consumers")
.desc("num instructions consuming a value")
.flags(total);
wbPenalized
.init(cpu->number_of_threads)
.name(name() + ".WB:penalized")
.desc("number of instrctions required to write to 'other' IQ")
.flags(total);
wbPenalizedRate
.name(name() + ".WB:penalized_rate")
.desc ("fraction of instructions written-back that wrote to 'other' IQ")
.flags(total);
wbPenalizedRate = wbPenalized / writebackCount;
wbFanout
.name(name() + ".WB:fanout")
.desc("average fanout of values written-back")
.flags(total);
wbFanout = producerInst / consumerInst;
wbRate
.name(name() + ".WB:rate")
.desc("insts written-back per cycle")
.flags(total);
wbRate = writebackCount / cpu->numCycles;
}
template<class Impl>
void
DefaultIEW<Impl>::initStage()
{
for (int tid=0; tid < numThreads; tid++) {
toRename->iewInfo[tid].usedIQ = true;
toRename->iewInfo[tid].freeIQEntries =
instQueue.numFreeEntries(tid);
toRename->iewInfo[tid].usedLSQ = true;
toRename->iewInfo[tid].freeLSQEntries =
ldstQueue.numFreeEntries(tid);
}
}
template<class Impl>
void
DefaultIEW<Impl>::setCPU(O3CPU *cpu_ptr)
{
DPRINTF(IEW, "Setting CPU pointer.\n");
cpu = cpu_ptr;
instQueue.setCPU(cpu_ptr);
ldstQueue.setCPU(cpu_ptr);
cpu->activateStage(O3CPU::IEWIdx);
}
template<class Impl>
void
DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
{
DPRINTF(IEW, "Setting time buffer pointer.\n");
timeBuffer = tb_ptr;
// Setup wire to read information from time buffer, from commit.
fromCommit = timeBuffer->getWire(-commitToIEWDelay);
// Setup wire to write information back to previous stages.
toRename = timeBuffer->getWire(0);
toFetch = timeBuffer->getWire(0);
// Instruction queue also needs main time buffer.
instQueue.setTimeBuffer(tb_ptr);
}
template<class Impl>
void
DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
{
DPRINTF(IEW, "Setting rename queue pointer.\n");
renameQueue = rq_ptr;
// Setup wire to read information from rename queue.
fromRename = renameQueue->getWire(-renameToIEWDelay);
}
template<class Impl>
void
DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
{
DPRINTF(IEW, "Setting IEW queue pointer.\n");
iewQueue = iq_ptr;
// Setup wire to write instructions to commit.
toCommit = iewQueue->getWire(0);
}
template<class Impl>
void
DefaultIEW<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
{
DPRINTF(IEW, "Setting active threads list pointer.\n");
activeThreads = at_ptr;
ldstQueue.setActiveThreads(at_ptr);
instQueue.setActiveThreads(at_ptr);
}
template<class Impl>
void
DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
{
DPRINTF(IEW, "Setting scoreboard pointer.\n");
scoreboard = sb_ptr;
}
template <class Impl>
bool
DefaultIEW<Impl>::drain()
{
// IEW is ready to drain at any time.
cpu->signalDrained();
return true;
}
template <class Impl>
void
DefaultIEW<Impl>::resume()
{
}
template <class Impl>
void
DefaultIEW<Impl>::switchOut()
{
// Clear any state.
switchedOut = true;
instQueue.switchOut();
ldstQueue.switchOut();
fuPool->switchOut();
for (int i = 0; i < numThreads; i++) {
while (!insts[i].empty())
insts[i].pop();
while (!skidBuffer[i].empty())
skidBuffer[i].pop();
}
}
template <class Impl>
void
DefaultIEW<Impl>::takeOverFrom()
{
// Reset all state.
_status = Active;
exeStatus = Running;
wbStatus = Idle;
switchedOut = false;
instQueue.takeOverFrom();
ldstQueue.takeOverFrom();
fuPool->takeOverFrom();
initStage();
cpu->activityThisCycle();
for (int i=0; i < numThreads; i++) {
dispatchStatus[i] = Running;
stalls[i].commit = false;
fetchRedirect[i] = false;
}
updateLSQNextCycle = false;
// @todo: Fix hardcoded number
for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
issueToExecQueue.advance();
}
}
template<class Impl>
void
DefaultIEW<Impl>::squash(unsigned tid)
{
DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
tid);
// Tell the IQ to start squashing.
instQueue.squash(tid);
// Tell the LDSTQ to start squashing.
#if ISA_HAS_DELAY_SLOT
ldstQueue.squash(fromCommit->commitInfo[tid].bdelayDoneSeqNum, tid);
#else
ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
#endif
updatedQueues = true;
// Clear the skid buffer in case it has any data in it.
DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
tid, fromCommit->commitInfo[tid].bdelayDoneSeqNum);
while (!skidBuffer[tid].empty()) {
#if ISA_HAS_DELAY_SLOT
if (skidBuffer[tid].front()->seqNum <=
fromCommit->commitInfo[tid].bdelayDoneSeqNum) {
DPRINTF(IEW, "[tid:%i]: Cannot remove skidbuffer instructions "
"that occur before delay slot [sn:%i].\n",
fromCommit->commitInfo[tid].bdelayDoneSeqNum,
tid);
break;
} else {
DPRINTF(IEW, "[tid:%i]: Removing instruction [sn:%i] from "
"skidBuffer.\n", tid, skidBuffer[tid].front()->seqNum);
}
#endif
if (skidBuffer[tid].front()->isLoad() ||
skidBuffer[tid].front()->isStore() ) {
toRename->iewInfo[tid].dispatchedToLSQ++;
}
toRename->iewInfo[tid].dispatched++;
skidBuffer[tid].pop();
}
bdelayDoneSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
emptyRenameInsts(tid);
}
template<class Impl>
void
DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
{
DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
"[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
toCommit->squash[tid] = true;
toCommit->squashedSeqNum[tid] = inst->seqNum;
toCommit->mispredPC[tid] = inst->readPC();
toCommit->branchMispredict[tid] = true;
#if ISA_HAS_DELAY_SLOT
bool branch_taken = inst->readNextNPC() !=
(inst->readNextPC() + sizeof(TheISA::MachInst));
toCommit->branchTaken[tid] = branch_taken;
toCommit->condDelaySlotBranch[tid] = inst->isCondDelaySlot();
if (inst->isCondDelaySlot() && branch_taken) {
toCommit->nextPC[tid] = inst->readNextPC();
} else {
toCommit->nextPC[tid] = inst->readNextNPC();
}
#else
toCommit->branchTaken[tid] = inst->readNextPC() !=
(inst->readPC() + sizeof(TheISA::MachInst));
toCommit->nextPC[tid] = inst->readNextPC();
#endif
toCommit->includeSquashInst[tid] = false;
wroteToTimeBuffer = true;
}
template<class Impl>
void
DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
{
DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
"PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
toCommit->squash[tid] = true;
toCommit->squashedSeqNum[tid] = inst->seqNum;
toCommit->nextPC[tid] = inst->readNextPC();
toCommit->includeSquashInst[tid] = false;
wroteToTimeBuffer = true;
}
template<class Impl>
void
DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
{
DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
"PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
toCommit->squash[tid] = true;
toCommit->squashedSeqNum[tid] = inst->seqNum;
toCommit->nextPC[tid] = inst->readPC();
// Must include the broadcasted SN in the squash.
toCommit->includeSquashInst[tid] = true;
ldstQueue.setLoadBlockedHandled(tid);
wroteToTimeBuffer = true;
}
template<class Impl>
void
DefaultIEW<Impl>::block(unsigned tid)
{
DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
if (dispatchStatus[tid] != Blocked &&
dispatchStatus[tid] != Unblocking) {
toRename->iewBlock[tid] = true;
wroteToTimeBuffer = true;
}
// Add the current inputs to the skid buffer so they can be
// reprocessed when this stage unblocks.
skidInsert(tid);
dispatchStatus[tid] = Blocked;
}
template<class Impl>
void
DefaultIEW<Impl>::unblock(unsigned tid)
{
DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
"buffer %u.\n",tid, tid);
// If the skid bufffer is empty, signal back to previous stages to unblock.
// Also switch status to running.
if (skidBuffer[tid].empty()) {
toRename->iewUnblock[tid] = true;
wroteToTimeBuffer = true;
DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
dispatchStatus[tid] = Running;
}
}
template<class Impl>
void
DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
{
instQueue.wakeDependents(inst);
}
template<class Impl>
void
DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
{
instQueue.rescheduleMemInst(inst);
}
template<class Impl>
void
DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
{
instQueue.replayMemInst(inst);
}
template<class Impl>
void
DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
{
// First check the time slot that this instruction will write
// to. If there are free write ports at the time, then go ahead
// and write the instruction to that time. If there are not,
// keep looking back to see where's the first time there's a
// free slot.
while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
++wbNumInst;
if (wbNumInst == wbWidth) {
++wbCycle;
wbNumInst = 0;
}
assert((wbCycle * wbWidth + wbNumInst) < wbMax);
}
// Add finished instruction to queue to commit.
(*iewQueue)[wbCycle].insts[wbNumInst] = inst;
(*iewQueue)[wbCycle].size++;
}
template <class Impl>
unsigned
DefaultIEW<Impl>::validInstsFromRename()
{
unsigned inst_count = 0;
for (int i=0; i<fromRename->size; i++) {
if (!fromRename->insts[i]->isSquashed())
inst_count++;
}
return inst_count;
}
template<class Impl>
void
DefaultIEW<Impl>::skidInsert(unsigned tid)
{
DynInstPtr inst = NULL;
while (!insts[tid].empty()) {
inst = insts[tid].front();
insts[tid].pop();
DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
"dispatch skidBuffer %i\n",tid, inst->seqNum,
inst->readPC(),tid);
skidBuffer[tid].push(inst);
}
assert(skidBuffer[tid].size() <= skidBufferMax &&
"Skidbuffer Exceeded Max Size");
}
template<class Impl>
int
DefaultIEW<Impl>::skidCount()
{
int max=0;
std::list<unsigned>::iterator threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned thread_count = skidBuffer[*threads++].size();
if (max < thread_count)
max = thread_count;
}
return max;
}
template<class Impl>
bool
DefaultIEW<Impl>::skidsEmpty()
{
std::list<unsigned>::iterator threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
if (!skidBuffer[*threads++].empty())
return false;
}
return true;
}
template <class Impl>
void
DefaultIEW<Impl>::updateStatus()
{
bool any_unblocking = false;
std::list<unsigned>::iterator threads = (*activeThreads).begin();
threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
if (dispatchStatus[tid] == Unblocking) {
any_unblocking = true;
break;
}
}
// If there are no ready instructions waiting to be scheduled by the IQ,
// and there's no stores waiting to write back, and dispatch is not
// unblocking, then there is no internal activity for the IEW stage.
if (_status == Active && !instQueue.hasReadyInsts() &&
!ldstQueue.willWB() && !any_unblocking) {
DPRINTF(IEW, "IEW switching to idle\n");
deactivateStage();
_status = Inactive;
} else if (_status == Inactive && (instQueue.hasReadyInsts() ||
ldstQueue.willWB() ||
any_unblocking)) {
// Otherwise there is internal activity. Set to active.
DPRINTF(IEW, "IEW switching to active\n");
activateStage();
_status = Active;
}
}
template <class Impl>
void
DefaultIEW<Impl>::resetEntries()
{
instQueue.resetEntries();
ldstQueue.resetEntries();
}
template <class Impl>
void
DefaultIEW<Impl>::readStallSignals(unsigned tid)
{
if (fromCommit->commitBlock[tid]) {
stalls[tid].commit = true;
}
if (fromCommit->commitUnblock[tid]) {
assert(stalls[tid].commit);
stalls[tid].commit = false;
}
}
template <class Impl>
bool
DefaultIEW<Impl>::checkStall(unsigned tid)
{
bool ret_val(false);
if (stalls[tid].commit) {
DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
ret_val = true;
} else if (instQueue.isFull(tid)) {
DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
ret_val = true;
} else if (ldstQueue.isFull(tid)) {
DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
if (ldstQueue.numLoads(tid) > 0 ) {
DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
tid,ldstQueue.getLoadHeadSeqNum(tid));
}
if (ldstQueue.numStores(tid) > 0) {
DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
tid,ldstQueue.getStoreHeadSeqNum(tid));
}
ret_val = true;
} else if (ldstQueue.isStalled(tid)) {
DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
ret_val = true;
}
return ret_val;
}
template <class Impl>
void
DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
{
// Check if there's a squash signal, squash if there is
// Check stall signals, block if there is.
// If status was Blocked
// if so then go to unblocking
// If status was Squashing
// check if squashing is not high. Switch to running this cycle.
readStallSignals(tid);
if (fromCommit->commitInfo[tid].squash) {
squash(tid);
if (dispatchStatus[tid] == Blocked ||
dispatchStatus[tid] == Unblocking) {
toRename->iewUnblock[tid] = true;
wroteToTimeBuffer = true;
}
dispatchStatus[tid] = Squashing;
fetchRedirect[tid] = false;
return;
}
if (fromCommit->commitInfo[tid].robSquashing) {
DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
dispatchStatus[tid] = Squashing;
emptyRenameInsts(tid);
wroteToTimeBuffer = true;
return;
}
if (checkStall(tid)) {
block(tid);
dispatchStatus[tid] = Blocked;
return;
}
if (dispatchStatus[tid] == Blocked) {
// Status from previous cycle was blocked, but there are no more stall
// conditions. Switch over to unblocking.
DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
tid);
dispatchStatus[tid] = Unblocking;
unblock(tid);
return;
}
if (dispatchStatus[tid] == Squashing) {
// Switch status to running if rename isn't being told to block or
// squash this cycle.
DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
tid);
dispatchStatus[tid] = Running;
return;
}
}
template <class Impl>
void
DefaultIEW<Impl>::sortInsts()
{
int insts_from_rename = fromRename->size;
#ifdef DEBUG
#if !ISA_HAS_DELAY_SLOT
for (int i = 0; i < numThreads; i++)
assert(insts[i].empty());
#endif
#endif
for (int i = 0; i < insts_from_rename; ++i) {
insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
}
}
template <class Impl>
void
DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
{
DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions until "
"[sn:%i].\n", tid, bdelayDoneSeqNum[tid]);
while (!insts[tid].empty()) {
#if ISA_HAS_DELAY_SLOT
if (insts[tid].front()->seqNum <= bdelayDoneSeqNum[tid]) {
DPRINTF(IEW, "[tid:%i]: Done removing, cannot remove instruction"
" that occurs at or before delay slot [sn:%i].\n",
tid, bdelayDoneSeqNum[tid]);
break;
} else {
DPRINTF(IEW, "[tid:%i]: Removing incoming rename instruction "
"[sn:%i].\n", tid, insts[tid].front()->seqNum);
}
#endif
if (insts[tid].front()->isLoad() ||
insts[tid].front()->isStore() ) {
toRename->iewInfo[tid].dispatchedToLSQ++;
}
toRename->iewInfo[tid].dispatched++;
insts[tid].pop();
}
}
template <class Impl>
void
DefaultIEW<Impl>::wakeCPU()
{
cpu->wakeCPU();
}
template <class Impl>
void
DefaultIEW<Impl>::activityThisCycle()
{
DPRINTF(Activity, "Activity this cycle.\n");
cpu->activityThisCycle();
}
template <class Impl>
inline void
DefaultIEW<Impl>::activateStage()
{
DPRINTF(Activity, "Activating stage.\n");
cpu->activateStage(O3CPU::IEWIdx);
}
template <class Impl>
inline void
DefaultIEW<Impl>::deactivateStage()
{
DPRINTF(Activity, "Deactivating stage.\n");
cpu->deactivateStage(O3CPU::IEWIdx);
}
template<class Impl>
void
DefaultIEW<Impl>::dispatch(unsigned tid)
{
// If status is Running or idle,
// call dispatchInsts()
// If status is Unblocking,
// buffer any instructions coming from rename
// continue trying to empty skid buffer
// check if stall conditions have passed
if (dispatchStatus[tid] == Blocked) {
++iewBlockCycles;
} else if (dispatchStatus[tid] == Squashing) {
++iewSquashCycles;
}
// Dispatch should try to dispatch as many instructions as its bandwidth
// will allow, as long as it is not currently blocked.
if (dispatchStatus[tid] == Running ||
dispatchStatus[tid] == Idle) {
DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
"dispatch.\n", tid);
dispatchInsts(tid);
} else if (dispatchStatus[tid] == Unblocking) {
// Make sure that the skid buffer has something in it if the
// status is unblocking.
assert(!skidsEmpty());
// If the status was unblocking, then instructions from the skid
// buffer were used. Remove those instructions and handle
// the rest of unblocking.
dispatchInsts(tid);
++iewUnblockCycles;
if (validInstsFromRename() && dispatchedAllInsts) {
// Add the current inputs to the skid buffer so they can be
// reprocessed when this stage unblocks.
skidInsert(tid);
}
unblock(tid);
}
}
template <class Impl>
void
DefaultIEW<Impl>::dispatchInsts(unsigned tid)
{
dispatchedAllInsts = true;
// Obtain instructions from skid buffer if unblocking, or queue from rename
// otherwise.
std::queue<DynInstPtr> &insts_to_dispatch =
dispatchStatus[tid] == Unblocking ?
skidBuffer[tid] : insts[tid];
int insts_to_add = insts_to_dispatch.size();
DynInstPtr inst;
bool add_to_iq = false;
int dis_num_inst = 0;
// Loop through the instructions, putting them in the instruction
// queue.
for ( ; dis_num_inst < insts_to_add &&
dis_num_inst < dispatchWidth;
++dis_num_inst)
{
inst = insts_to_dispatch.front();
if (dispatchStatus[tid] == Unblocking) {
DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
"buffer\n", tid);
}
// Make sure there's a valid instruction there.
assert(inst);
DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
"IQ.\n",
tid, inst->readPC(), inst->seqNum, inst->threadNumber);
// Be sure to mark these instructions as ready so that the
// commit stage can go ahead and execute them, and mark
// them as issued so the IQ doesn't reprocess them.
// Check for squashed instructions.
if (inst->isSquashed()) {
DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
"not adding to IQ.\n", tid);
++iewDispSquashedInsts;
insts_to_dispatch.pop();
//Tell Rename That An Instruction has been processed
if (inst->isLoad() || inst->isStore()) {
toRename->iewInfo[tid].dispatchedToLSQ++;
}
toRename->iewInfo[tid].dispatched++;
continue;
}
// Check for full conditions.
if (instQueue.isFull(tid)) {
DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
// Call function to start blocking.
block(tid);
// Set unblock to false. Special case where we are using
// skidbuffer (unblocking) instructions but then we still
// get full in the IQ.
toRename->iewUnblock[tid] = false;
dispatchedAllInsts = false;
++iewIQFullEvents;
break;
} else if (ldstQueue.isFull(tid)) {
DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
// Call function to start blocking.
block(tid);
// Set unblock to false. Special case where we are using
// skidbuffer (unblocking) instructions but then we still
// get full in the IQ.
toRename->iewUnblock[tid] = false;
dispatchedAllInsts = false;
++iewLSQFullEvents;
break;
}
// Otherwise issue the instruction just fine.
if (inst->isLoad()) {
DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
"encountered, adding to LSQ.\n", tid);
// Reserve a spot in the load store queue for this
// memory access.
ldstQueue.insertLoad(inst);
++iewDispLoadInsts;
add_to_iq = true;
toRename->iewInfo[tid].dispatchedToLSQ++;
} else if (inst->isStore()) {
DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
"encountered, adding to LSQ.\n", tid);
ldstQueue.insertStore(inst);
++iewDispStoreInsts;
if (inst->isStoreConditional()) {
// Store conditionals need to be set as "canCommit()"
// so that commit can process them when they reach the
// head of commit.
// @todo: This is somewhat specific to Alpha.
inst->setCanCommit();
instQueue.insertNonSpec(inst);
add_to_iq = false;
++iewDispNonSpecInsts;
} else {
add_to_iq = true;
}
toRename->iewInfo[tid].dispatchedToLSQ++;
#if FULL_SYSTEM
} else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
// Same as non-speculative stores.
inst->setCanCommit();
instQueue.insertBarrier(inst);
add_to_iq = false;
#endif
} else if (inst->isNonSpeculative()) {
DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
"encountered, skipping.\n", tid);
// Same as non-speculative stores.
inst->setCanCommit();
// Specifically insert it as nonspeculative.
instQueue.insertNonSpec(inst);
++iewDispNonSpecInsts;
add_to_iq = false;
} else if (inst->isNop()) {
DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
"skipping.\n", tid);
inst->setIssued();
inst->setExecuted();
inst->setCanCommit();
instQueue.recordProducer(inst);
iewExecutedNop[tid]++;
add_to_iq = false;
} else if (inst->isExecuted()) {
assert(0 && "Instruction shouldn't be executed.\n");
DPRINTF(IEW, "Issue: Executed branch encountered, "
"skipping.\n");
inst->setIssued();
inst->setCanCommit();
instQueue.recordProducer(inst);
add_to_iq = false;
} else {
add_to_iq = true;
}
// If the instruction queue is not full, then add the
// instruction.
if (add_to_iq) {
instQueue.insert(inst);
}
insts_to_dispatch.pop();
toRename->iewInfo[tid].dispatched++;
++iewDispatchedInsts;
}
if (!insts_to_dispatch.empty()) {
DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
block(tid);
toRename->iewUnblock[tid] = false;
}
if (dispatchStatus[tid] == Idle && dis_num_inst) {
dispatchStatus[tid] = Running;
updatedQueues = true;
}
dis_num_inst = 0;
}
template <class Impl>
void
DefaultIEW<Impl>::printAvailableInsts()
{
int inst = 0;
std::cout << "Available Instructions: ";
while (fromIssue->insts[inst]) {
if (inst%3==0) std::cout << "\n\t";
std::cout << "PC: " << fromIssue->insts[inst]->readPC()
<< " TN: " << fromIssue->insts[inst]->threadNumber
<< " SN: " << fromIssue->insts[inst]->seqNum << " | ";
inst++;
}
std::cout << "\n";
}
template <class Impl>
void
DefaultIEW<Impl>::executeInsts()
{
wbNumInst = 0;
wbCycle = 0;
std::list<unsigned>::iterator threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
fetchRedirect[tid] = false;
}
// Uncomment this if you want to see all available instructions.
// printAvailableInsts();
// Execute/writeback any instructions that are available.
int insts_to_execute = fromIssue->size;
int inst_num = 0;
for (; inst_num < insts_to_execute;
++inst_num) {
DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
DynInstPtr inst = instQueue.getInstToExecute();
DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
inst->readPC(), inst->threadNumber,inst->seqNum);
// Check if the instruction is squashed; if so then skip it
if (inst->isSquashed()) {
DPRINTF(IEW, "Execute: Instruction was squashed.\n");
// Consider this instruction executed so that commit can go
// ahead and retire the instruction.
inst->setExecuted();
// Not sure if I should set this here or just let commit try to
// commit any squashed instructions. I like the latter a bit more.
inst->setCanCommit();
++iewExecSquashedInsts;
decrWb(inst->seqNum);
continue;
}
Fault fault = NoFault;
// Execute instruction.
// Note that if the instruction faults, it will be handled
// at the commit stage.
if (inst->isMemRef() &&
(!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
DPRINTF(IEW, "Execute: Calculating address for memory "
"reference.\n");
// Tell the LDSTQ to execute this instruction (if it is a load).
if (inst->isLoad()) {
// Loads will mark themselves as executed, and their writeback
// event adds the instruction to the queue to commit
fault = ldstQueue.executeLoad(inst);
} else if (inst->isStore()) {
ldstQueue.executeStore(inst);
// If the store had a fault then it may not have a mem req
if (inst->req && !(inst->req->getFlags() & LOCKED)) {
inst->setExecuted();
instToCommit(inst);
}
// Store conditionals will mark themselves as
// executed, and their writeback event will add the
// instruction to the queue to commit.
} else {
panic("Unexpected memory type!\n");
}
} else {
inst->execute();
inst->setExecuted();
instToCommit(inst);
}
updateExeInstStats(inst);
// Check if branch prediction was correct, if not then we need
// to tell commit to squash in flight instructions. Only
// handle this if there hasn't already been something that
// redirects fetch in this group of instructions.
// This probably needs to prioritize the redirects if a different
// scheduler is used. Currently the scheduler schedules the oldest
// instruction first, so the branch resolution order will be correct.
unsigned tid = inst->threadNumber;
if (!fetchRedirect[tid]) {
if (inst->mispredicted()) {
fetchRedirect[tid] = true;
DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
#if ISA_HAS_DELAY_SLOT
DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
inst->nextNPC);
#else
DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
inst->nextPC);
#endif
// If incorrect, then signal the ROB that it must be squashed.
squashDueToBranch(inst, tid);
if (inst->predTaken()) {
predictedTakenIncorrect++;
} else {
predictedNotTakenIncorrect++;
}
} else if (ldstQueue.violation(tid)) {
fetchRedirect[tid] = true;
// If there was an ordering violation, then get the
// DynInst that caused the violation. Note that this
// clears the violation signal.
DynInstPtr violator;
violator = ldstQueue.getMemDepViolator(tid);
DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
"%#x, inst PC: %#x. Addr is: %#x.\n",
violator->readPC(), inst->readPC(), inst->physEffAddr);
// Tell the instruction queue that a violation has occured.
instQueue.violation(inst, violator);
// Squash.
squashDueToMemOrder(inst,tid);
++memOrderViolationEvents;
} else if (ldstQueue.loadBlocked(tid) &&
!ldstQueue.isLoadBlockedHandled(tid)) {
fetchRedirect[tid] = true;
DPRINTF(IEW, "Load operation couldn't execute because the "
"memory system is blocked. PC: %#x [sn:%lli]\n",
inst->readPC(), inst->seqNum);
squashDueToMemBlocked(inst, tid);
}
}
}
// Update and record activity if we processed any instructions.
if (inst_num) {
if (exeStatus == Idle) {
exeStatus = Running;
}
updatedQueues = true;
cpu->activityThisCycle();
}
// Need to reset this in case a writeback event needs to write into the
// iew queue. That way the writeback event will write into the correct
// spot in the queue.
wbNumInst = 0;
}
template <class Impl>
void
DefaultIEW<Impl>::writebackInsts()
{
// Loop through the head of the time buffer and wake any
// dependents. These instructions are about to write back. Also
// mark scoreboard that this instruction is finally complete.
// Either have IEW have direct access to scoreboard, or have this
// as part of backwards communication.
for (int inst_num = 0; inst_num < issueWidth &&
toCommit->insts[inst_num]; inst_num++) {
DynInstPtr inst = toCommit->insts[inst_num];
int tid = inst->threadNumber;
DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
inst->seqNum, inst->readPC());
iewInstsToCommit[tid]++;
// Some instructions will be sent to commit without having
// executed because they need commit to handle them.
// E.g. Uncached loads have not actually executed when they
// are first sent to commit. Instead commit must tell the LSQ
// when it's ready to execute the uncached load.
if (!inst->isSquashed() && inst->isExecuted()) {
int dependents = instQueue.wakeDependents(inst);
for (int i = 0; i < inst->numDestRegs(); i++) {
//mark as Ready
DPRINTF(IEW,"Setting Destination Register %i\n",
inst->renamedDestRegIdx(i));
scoreboard->setReg(inst->renamedDestRegIdx(i));
}
if (dependents) {
producerInst[tid]++;
consumerInst[tid]+= dependents;
}
writebackCount[tid]++;
}
decrWb(inst->seqNum);
}
}
template<class Impl>
void
DefaultIEW<Impl>::tick()
{
wbNumInst = 0;
wbCycle = 0;
wroteToTimeBuffer = false;
updatedQueues = false;
sortInsts();
// Free function units marked as being freed this cycle.
fuPool->processFreeUnits();
std::list<unsigned>::iterator threads = (*activeThreads).begin();
// Check stall and squash signals, dispatch any instructions.
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
checkSignalsAndUpdate(tid);
dispatch(tid);
}
if (exeStatus != Squashing) {
executeInsts();
writebackInsts();
// Have the instruction queue try to schedule any ready instructions.
// (In actuality, this scheduling is for instructions that will
// be executed next cycle.)
instQueue.scheduleReadyInsts();
// Also should advance its own time buffers if the stage ran.
// Not the best place for it, but this works (hopefully).
issueToExecQueue.advance();
}
bool broadcast_free_entries = false;
if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
exeStatus = Idle;
updateLSQNextCycle = false;
broadcast_free_entries = true;
}
// Writeback any stores using any leftover bandwidth.
ldstQueue.writebackStores();
// Check the committed load/store signals to see if there's a load
// or store to commit. Also check if it's being told to execute a
// nonspeculative instruction.
// This is pretty inefficient...
threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = (*threads++);
DPRINTF(IEW,"Processing [tid:%i]\n",tid);
// Update structures based on instructions committed.
if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
!fromCommit->commitInfo[tid].squash &&
!fromCommit->commitInfo[tid].robSquashing) {
ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
updateLSQNextCycle = true;
instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
}
if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
//DPRINTF(IEW,"NonspecInst from thread %i",tid);
if (fromCommit->commitInfo[tid].uncached) {
instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
} else {
instQueue.scheduleNonSpec(
fromCommit->commitInfo[tid].nonSpecSeqNum);
}
}
if (broadcast_free_entries) {
toFetch->iewInfo[tid].iqCount =
instQueue.getCount(tid);
toFetch->iewInfo[tid].ldstqCount =
ldstQueue.getCount(tid);
toRename->iewInfo[tid].usedIQ = true;
toRename->iewInfo[tid].freeIQEntries =
instQueue.numFreeEntries();
toRename->iewInfo[tid].usedLSQ = true;
toRename->iewInfo[tid].freeLSQEntries =
ldstQueue.numFreeEntries(tid);
wroteToTimeBuffer = true;
}
DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
tid, toRename->iewInfo[tid].dispatched);
}
DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
"LSQ has %i free entries.\n",
instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
ldstQueue.numFreeEntries());
updateStatus();
if (wroteToTimeBuffer) {
DPRINTF(Activity, "Activity this cycle.\n");
cpu->activityThisCycle();
}
}
template <class Impl>
void
DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
{
int thread_number = inst->threadNumber;
//
// Pick off the software prefetches
//
#ifdef TARGET_ALPHA
if (inst->isDataPrefetch())
iewExecutedSwp[thread_number]++;
else
iewIewExecutedcutedInsts++;
#else
iewExecutedInsts++;
#endif
//
// Control operations
//
if (inst->isControl())
iewExecutedBranches[thread_number]++;
//
// Memory operations
//
if (inst->isMemRef()) {
iewExecutedRefs[thread_number]++;
if (inst->isLoad()) {
iewExecLoadInsts[thread_number]++;
}
}
}