gem5/arch/sparc/isa/formats/integerop.isa
Gabe Black a8fbc4ec76 Got hello world to work!
arch/sparc/isa/decoder.isa:
    Made sure if a register was assigned to along some control path, then all paths on which no exception would block commit set a value as well. Also, Rs1 is treated as signed for bpr instructions.
arch/sparc/isa/formats/integerop.isa:
    Added an IntOpImm11 class which sign extends the SIMM11 immediate field.
arch/sparc/isa/formats/mem.isa:
    Fixed how offsets are used, and how disassembly is generated.
arch/sparc/linux/process.cc:
    Added fstat and exit_group syscalls.

--HG--
extra : convert_revision : 3b4427d239d254a92179a4137441125b8a364264
2006-04-30 01:46:00 -04:00

349 lines
11 KiB
Text

////////////////////////////////////////////////////////////////////
//
// Integer operate instructions
//
output header {{
/**
* Base class for integer operations.
*/
class IntOp : public SparcStaticInst
{
protected:
// Constructor
IntOp(const char *mnem, ExtMachInst _machInst,
OpClass __opClass) :
SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
virtual bool printPseudoOps(std::ostream &os, Addr pc,
const SymbolTable *symtab) const;
};
/**
* Base class for immediate integer operations.
*/
class IntOpImm : public IntOp
{
protected:
// Constructor
IntOpImm(const char *mnem, ExtMachInst _machInst,
OpClass __opClass) :
IntOp(mnem, _machInst, __opClass)
{
}
int32_t imm;
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
virtual bool printPseudoOps(std::ostream &os, Addr pc,
const SymbolTable *symtab) const;
};
/**
* Base class for 10 bit immediate integer operations.
*/
class IntOpImm10 : public IntOpImm
{
protected:
// Constructor
IntOpImm10(const char *mnem, ExtMachInst _machInst,
OpClass __opClass) :
IntOpImm(mnem, _machInst, __opClass)
{
imm = sign_ext(SIMM10, 10);
}
};
/**
* Base class for 11 bit immediate integer operations.
*/
class IntOpImm11 : public IntOpImm
{
protected:
// Constructor
IntOpImm11(const char *mnem, ExtMachInst _machInst,
OpClass __opClass) :
IntOpImm(mnem, _machInst, __opClass)
{
imm = sign_ext(SIMM11, 11);
}
};
/**
* Base class for 13 bit immediate integer operations.
*/
class IntOpImm13 : public IntOpImm
{
protected:
// Constructor
IntOpImm13(const char *mnem, ExtMachInst _machInst,
OpClass __opClass) :
IntOpImm(mnem, _machInst, __opClass)
{
imm = sign_ext(SIMM13, 13);
}
};
/**
* Base class for sethi.
*/
class SetHi : public IntOpImm
{
protected:
// Constructor
SetHi(const char *mnem, ExtMachInst _machInst,
OpClass __opClass) :
IntOpImm(mnem, _machInst, __opClass)
{
imm = (IMM22 << 10) & 0xFFFFFC00;
}
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
};
}};
def template SetHiDecode {{
{
if(RD == 0 && IMM22 == 0)
return (SparcStaticInst *)(new Nop("nop", machInst, No_OpClass));
else
return (SparcStaticInst *)(new %(class_name)s(machInst));
}
}};
output decoder {{
bool IntOp::printPseudoOps(std::ostream &os, Addr pc,
const SymbolTable *symbab) const
{
if(!strcmp(mnemonic, "or") && _srcRegIdx[0] == 0)
{
printMnemonic(os, "mov");
if(_numSrcRegs > 0)
printReg(os, _srcRegIdx[1]);
ccprintf(os, ", ");
if(_numDestRegs > 0)
printReg(os, _destRegIdx[0]);
return true;
}
return false;
}
bool IntOpImm::printPseudoOps(std::ostream &os, Addr pc,
const SymbolTable *symbab) const
{
if(!strcmp(mnemonic, "or"))
{
if(_srcRegIdx[0] == 0)
{
if(imm == 0)
{
printMnemonic(os, "clr");
if(_numDestRegs > 0)
printReg(os, _destRegIdx[0]);
return true;
}
else
{
printMnemonic(os, "mov");
ccprintf(os, ", 0x%x, ", imm);
if(_numDestRegs > 0)
printReg(os, _destRegIdx[0]);
return true;
}
}
else if(imm == 0)
{
printMnemonic(os, "mov");
if(_numSrcRegs > 0)
printReg(os, _srcRegIdx[0]);
ccprintf(os, ", ");
if(_numDestRegs > 0)
printReg(os, _destRegIdx[0]);
return true;
}
}
return false;
}
std::string IntOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream response;
if(!printPseudoOps(response, pc, symtab))
{
printMnemonic(response, mnemonic);
if (_numSrcRegs > 0)
{
printReg(response, _srcRegIdx[0]);
for(int x = 1; x < _numSrcRegs; x++)
{
response << ", ";
printReg(response, _srcRegIdx[x]);
}
}
if (_numDestRegs > 0)
{
if(_numSrcRegs > 0)
response << ", ";
printReg(response, _destRegIdx[0]);
}
}
return response.str();
}
std::string IntOpImm::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream response;
if(!printPseudoOps(response, pc, symtab))
{
printMnemonic(response, mnemonic);
if (_numSrcRegs > 0)
{
printReg(response, _srcRegIdx[0]);
for(int x = 1; x < _numSrcRegs - 1; x++)
{
response << ", ";
printReg(response, _srcRegIdx[x]);
}
}
if(_numSrcRegs > 0)
response << ", ";
ccprintf(response, "0x%x", imm);
if (_numDestRegs > 0)
{
response << ", ";
printReg(response, _destRegIdx[0]);
}
}
return response.str();
}
std::string SetHi::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream response;
printMnemonic(response, mnemonic);
if(_numSrcRegs > 0)
response << ", ";
ccprintf(response, "%%hi(0x%x), ", imm);
printReg(response, _destRegIdx[0]);
return response.str();
}
}};
def template IntOpExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
%(op_decl)s;
%(op_rd)s;
%(code)s;
//Write the resulting state to the execution context
if(fault == NoFault)
{
%(cc_code)s;
%(op_wb)s;
}
return fault;
}
}};
let {{
def doIntFormat(code, ccCode, name, Name, opt_flags):
(usesImm, code, immCode,
rString, iString) = splitOutImm(code)
iop = InstObjParams(name, Name, 'IntOp', code,
opt_flags, ("cc_code", ccCode))
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
exec_output = IntOpExecute.subst(iop)
if usesImm:
imm_iop = InstObjParams(name, Name + 'Imm', 'IntOpImm' + iString,
immCode, opt_flags, ("cc_code", ccCode))
header_output += BasicDeclare.subst(imm_iop)
decoder_output += BasicConstructor.subst(imm_iop)
exec_output += IntOpExecute.subst(imm_iop)
decode_block = ROrImmDecode.subst(iop)
else:
decode_block = BasicDecode.subst(iop)
return (header_output, decoder_output, exec_output, decode_block)
calcCcCode = '''
CcrIccN = (Rd >> 31) & 1;
CcrIccZ = ((Rd & 0xFFFFFFFF) == 0);
CcrXccN = (Rd >> 63) & 1;
CcrXccZ = (Rd == 0);
CcrIccV = %(ivValue)s;
CcrIccC = %(icValue)s;
CcrXccV = %(xvValue)s;
CcrXccC = %(xcValue)s;
DPRINTF(Sparc, "in = %%d\\n", CcrIccN);
DPRINTF(Sparc, "iz = %%d\\n", CcrIccZ);
DPRINTF(Sparc, "xn = %%d\\n", CcrXccN);
DPRINTF(Sparc, "xz = %%d\\n", CcrXccZ);
DPRINTF(Sparc, "iv = %%d\\n", CcrIccV);
DPRINTF(Sparc, "ic = %%d\\n", CcrIccC);
DPRINTF(Sparc, "xv = %%d\\n", CcrXccV);
DPRINTF(Sparc, "xc = %%d\\n", CcrXccC);
'''
}};
// Primary format for integer operate instructions:
def format IntOp(code, *opt_flags) {{
ccCode = ''
(header_output,
decoder_output,
exec_output,
decode_block) = doIntFormat(code, ccCode,
name, Name, opt_flags)
}};
// Primary format for integer operate instructions:
def format IntOpCc(code, icValue, ivValue, xcValue, xvValue, *opt_flags) {{
ccCode = calcCcCode % vars()
(header_output,
decoder_output,
exec_output,
decode_block) = doIntFormat(code, ccCode,
name, Name, opt_flags)
}};
// Primary format for integer operate instructions:
def format IntOpCcRes(code, *opt_flags) {{
ccCode = calcCcCode % {"icValue":"0",
"ivValue":"0",
"xcValue":"0",
"xvValue":"0"}
(header_output,
decoder_output,
exec_output,
decode_block) = doIntFormat(code, ccCode,
name, Name, opt_flags)
}};
def format SetHi(code, *opt_flags) {{
iop = InstObjParams(name, Name, 'SetHi',
code, opt_flags, ("cc_code", ''))
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
exec_output = IntOpExecute.subst(iop)
decode_block = SetHiDecode.subst(iop)
}};