gem5/src/mem/coherent_bus.hh
2012-09-25 11:49:41 -05:00

306 lines
10 KiB
C++

/*
* Copyright (c) 2011-2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
* Ali Saidi
* Andreas Hansson
* William Wang
*/
/**
* @file
* Declaration of a coherent bus.
*/
#ifndef __MEM_COHERENT_BUS_HH__
#define __MEM_COHERENT_BUS_HH__
#include "mem/bus.hh"
#include "params/CoherentBus.hh"
/**
* A coherent bus connects a number of (potentially) snooping masters
* and slaves, and routes the request and response packets based on
* the address, and also forwards all requests to the snoopers and
* deals with the snoop responses.
*
* The coherent bus can be used as a template for modelling QPI,
* HyperTransport, ACE and coherent OCP buses, and is typically used
* for the L1-to-L2 buses and as the main system interconnect.
* @sa \ref gem5MemorySystem "gem5 Memory System"
*/
class CoherentBus : public BaseBus
{
protected:
/**
* Declare the three layers of this bus, one for requests, one
* for responses, and one for snoop responses
*/
Layer<SlavePort> reqLayer;
Layer<MasterPort> respLayer;
Layer<SlavePort> snoopRespLayer;
/**
* Declaration of the coherent bus slave port type, one will be
* instantiated for each of the master ports connecting to the
* bus.
*/
class CoherentBusSlavePort : public SlavePort
{
private:
/** A reference to the bus to which this port belongs. */
CoherentBus &bus;
public:
CoherentBusSlavePort(const std::string &_name,
CoherentBus &_bus, PortID _id)
: SlavePort(_name, &_bus, _id), bus(_bus)
{ }
protected:
/**
* When receiving a timing request, pass it to the bus.
*/
virtual bool recvTimingReq(PacketPtr pkt)
{ return bus.recvTimingReq(pkt, id); }
/**
* When receiving a timing snoop response, pass it to the bus.
*/
virtual bool recvTimingSnoopResp(PacketPtr pkt)
{ return bus.recvTimingSnoopResp(pkt, id); }
/**
* When receiving an atomic request, pass it to the bus.
*/
virtual Tick recvAtomic(PacketPtr pkt)
{ return bus.recvAtomic(pkt, id); }
/**
* When receiving a functional request, pass it to the bus.
*/
virtual void recvFunctional(PacketPtr pkt)
{ bus.recvFunctional(pkt, id); }
/**
* When receiving a retry, pass it to the bus.
*/
virtual void recvRetry()
{ panic("Bus slave ports always succeed and should never retry.\n"); }
/**
* Return the union of all adress ranges seen by this bus.
*/
virtual AddrRangeList getAddrRanges() const
{ return bus.getAddrRanges(); }
/**
* Get the maximum block size as seen by the bus.
*/
virtual unsigned deviceBlockSize() const
{ return bus.findBlockSize(); }
};
/**
* Declaration of the coherent bus master port type, one will be
* instantiated for each of the slave interfaces connecting to the
* bus.
*/
class CoherentBusMasterPort : public MasterPort
{
private:
/** A reference to the bus to which this port belongs. */
CoherentBus &bus;
public:
CoherentBusMasterPort(const std::string &_name,
CoherentBus &_bus, PortID _id)
: MasterPort(_name, &_bus, _id), bus(_bus)
{ }
protected:
/**
* Determine if this port should be considered a snooper. For
* a coherent bus master port this is always true.
*
* @return a boolean that is true if this port is snooping
*/
virtual bool isSnooping() const
{ return true; }
/**
* When receiving a timing response, pass it to the bus.
*/
virtual bool recvTimingResp(PacketPtr pkt)
{ return bus.recvTimingResp(pkt, id); }
/**
* When receiving a timing snoop request, pass it to the bus.
*/
virtual void recvTimingSnoopReq(PacketPtr pkt)
{ return bus.recvTimingSnoopReq(pkt, id); }
/**
* When receiving an atomic snoop request, pass it to the bus.
*/
virtual Tick recvAtomicSnoop(PacketPtr pkt)
{ return bus.recvAtomicSnoop(pkt, id); }
/**
* When receiving a functional snoop request, pass it to the bus.
*/
virtual void recvFunctionalSnoop(PacketPtr pkt)
{ bus.recvFunctionalSnoop(pkt, id); }
/** When reciving a range change from the peer port (at id),
pass it to the bus. */
virtual void recvRangeChange()
{ bus.recvRangeChange(id); }
/** When reciving a retry from the peer port (at id),
pass it to the bus. */
virtual void recvRetry()
{ bus.recvRetry(); }
// Ask the bus to ask everyone on the bus what their block size is and
// take the max of it. This might need to be changed a bit if we ever
// support multiple block sizes.
virtual unsigned deviceBlockSize() const
{ return bus.findBlockSize(); }
};
std::vector<SlavePort*> snoopPorts;
/**
* Store the outstanding requests so we can determine which ones
* we generated and which ones were merely forwarded. This is used
* in the coherent bus when coherency responses come back.
*/
std::set<RequestPtr> outstandingReq;
/** Function called by the port when the bus is recieving a Timing
request packet.*/
virtual bool recvTimingReq(PacketPtr pkt, PortID slave_port_id);
/** Function called by the port when the bus is recieving a Timing
response packet.*/
virtual bool recvTimingResp(PacketPtr pkt, PortID master_port_id);
/** Function called by the port when the bus is recieving a timing
snoop request.*/
virtual void recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id);
/** Function called by the port when the bus is recieving a timing
snoop response.*/
virtual bool recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id);
/** Timing function called by port when it is once again able to process
* requests. */
void recvRetry();
/**
* Forward a timing packet to our snoopers, potentially excluding
* one of the connected coherent masters to avoid sending a packet
* back to where it came from.
*
* @param pkt Packet to forward
* @param exclude_slave_port_id Id of slave port to exclude
*/
void forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id);
/** Function called by the port when the bus is recieving a Atomic
transaction.*/
Tick recvAtomic(PacketPtr pkt, PortID slave_port_id);
/** Function called by the port when the bus is recieving an
atomic snoop transaction.*/
Tick recvAtomicSnoop(PacketPtr pkt, PortID master_port_id);
/**
* Forward an atomic packet to our snoopers, potentially excluding
* one of the connected coherent masters to avoid sending a packet
* back to where it came from.
*
* @param pkt Packet to forward
* @param exclude_slave_port_id Id of slave port to exclude
*
* @return a pair containing the snoop response and snoop latency
*/
std::pair<MemCmd, Tick> forwardAtomic(PacketPtr pkt,
PortID exclude_slave_port_id);
/** Function called by the port when the bus is recieving a Functional
transaction.*/
void recvFunctional(PacketPtr pkt, PortID slave_port_id);
/** Function called by the port when the bus is recieving a functional
snoop transaction.*/
void recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id);
/**
* Forward a functional packet to our snoopers, potentially
* excluding one of the connected coherent masters to avoid
* sending a packet back to where it came from.
*
* @param pkt Packet to forward
* @param exclude_slave_port_id Id of slave port to exclude
*/
void forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id);
public:
virtual void init();
CoherentBus(const CoherentBusParams *p);
unsigned int drain(Event *de);
};
#endif //__MEM_COHERENT_BUS_HH__