gem5/python/m5/config.py
Steve Reinhardt 8031cd93b5 Standardize clock parameter names to 'clock'.
Fix description for Bus clock_ratio (no longer a ratio).
Add Clock param type (generic Frequency or Latency).

cpu/base_cpu.cc:
cpu/base_cpu.hh:
cpu/beta_cpu/alpha_full_cpu_builder.cc:
cpu/simple_cpu/simple_cpu.cc:
dev/ide_ctrl.cc:
dev/ns_gige.cc:
dev/ns_gige.hh:
dev/pciconfigall.cc:
dev/sinic.cc:
dev/tsunami_cchip.cc:
dev/tsunami_io.cc:
dev/tsunami_pchip.cc:
dev/uart.cc:
python/m5/objects/BaseCPU.py:
python/m5/objects/BaseCache.py:
python/m5/objects/BaseSystem.py:
python/m5/objects/Bus.py:
python/m5/objects/Ethernet.py:
python/m5/objects/Root.py:
sim/universe.cc:
    Standardize clock parameter names to 'clock'.
    Fix description for Bus clock_ratio (no longer a ratio).
python/m5/config.py:
    Minor tweaks on Frequency/Latency:
    - added new Clock param type to avoid ambiguities
    - factored out init code into getLatency()
    - made RootFrequency *not* a subclass of Frequency so it
    can't be directly assigned to a Frequency paremeter

--HG--
extra : convert_revision : fc4bb8562df171b454bbf696314cda57e1ec8506
2005-06-01 21:44:00 -04:00

1271 lines
44 KiB
Python

# Copyright (c) 2004-2005 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import generators
import os, re, sys, types, inspect
import m5
panic = m5.panic
from convert import *
from multidict import multidict
noDot = False
try:
import pydot
except:
noDot = True
class Singleton(type):
def __call__(cls, *args, **kwargs):
if hasattr(cls, '_instance'):
return cls._instance
cls._instance = super(Singleton, cls).__call__(*args, **kwargs)
return cls._instance
#####################################################################
#
# M5 Python Configuration Utility
#
# The basic idea is to write simple Python programs that build Python
# objects corresponding to M5 SimObjects for the desired simulation
# configuration. For now, the Python emits a .ini file that can be
# parsed by M5. In the future, some tighter integration between M5
# and the Python interpreter may allow bypassing the .ini file.
#
# Each SimObject class in M5 is represented by a Python class with the
# same name. The Python inheritance tree mirrors the M5 C++ tree
# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
# SimObjects inherit from a single SimObject base class). To specify
# an instance of an M5 SimObject in a configuration, the user simply
# instantiates the corresponding Python object. The parameters for
# that SimObject are given by assigning to attributes of the Python
# object, either using keyword assignment in the constructor or in
# separate assignment statements. For example:
#
# cache = BaseCache(size='64KB')
# cache.hit_latency = 3
# cache.assoc = 8
#
# The magic lies in the mapping of the Python attributes for SimObject
# classes to the actual SimObject parameter specifications. This
# allows parameter validity checking in the Python code. Continuing
# the example above, the statements "cache.blurfl=3" or
# "cache.assoc='hello'" would both result in runtime errors in Python,
# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
# parameter requires an integer, respectively. This magic is done
# primarily by overriding the special __setattr__ method that controls
# assignment to object attributes.
#
# Once a set of Python objects have been instantiated in a hierarchy,
# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
# will generate a .ini file. See simple-4cpu.py for an example
# (corresponding to m5-test/simple-4cpu.ini).
#
#####################################################################
#####################################################################
#
# ConfigNode/SimObject classes
#
# The Python class hierarchy rooted by ConfigNode (which is the base
# class of SimObject, which in turn is the base class of all other M5
# SimObject classes) has special attribute behavior. In general, an
# object in this hierarchy has three categories of attribute-like
# things:
#
# 1. Regular Python methods and variables. These must start with an
# underscore to be treated normally.
#
# 2. SimObject parameters. These values are stored as normal Python
# attributes, but all assignments to these attributes are checked
# against the pre-defined set of parameters stored in the class's
# _params dictionary. Assignments to attributes that do not
# correspond to predefined parameters, or that are not of the correct
# type, incur runtime errors.
#
# 3. Hierarchy children. The child nodes of a ConfigNode are stored
# in the node's _children dictionary, but can be accessed using the
# Python attribute dot-notation (just as they are printed out by the
# simulator). Children cannot be created using attribute assigment;
# they must be added by specifying the parent node in the child's
# constructor or using the '+=' operator.
# The SimObject parameters are the most complex, for a few reasons.
# First, both parameter descriptions and parameter values are
# inherited. Thus parameter description lookup must go up the
# inheritance chain like normal attribute lookup, but this behavior
# must be explicitly coded since the lookup occurs in each class's
# _params attribute. Second, because parameter values can be set
# on SimObject classes (to implement default values), the parameter
# checking behavior must be enforced on class attribute assignments as
# well as instance attribute assignments. Finally, because we allow
# class specialization via inheritance (e.g., see the L1Cache class in
# the simple-4cpu.py example), we must do parameter checking even on
# class instantiation. To provide all these features, we use a
# metaclass to define most of the SimObject parameter behavior for
# this class hierarchy.
#
#####################################################################
def isSimObject(value):
return isinstance(value, SimObject)
def isSimObjSequence(value):
if not isinstance(value, (list, tuple)):
return False
for val in value:
if not isNullPointer(val) and not isSimObject(val):
return False
return True
def isNullPointer(value):
return isinstance(value, NullSimObject)
# The metaclass for ConfigNode (and thus for everything that derives
# from ConfigNode, including SimObject). This class controls how new
# classes that derive from ConfigNode are instantiated, and provides
# inherited class behavior (just like a class controls how instances
# of that class are instantiated, and provides inherited instance
# behavior).
class MetaSimObject(type):
# Attributes that can be set only at initialization time
init_keywords = { 'abstract' : types.BooleanType,
'type' : types.StringType }
# Attributes that can be set any time
keywords = { 'check' : types.FunctionType,
'children' : types.ListType }
# __new__ is called before __init__, and is where the statements
# in the body of the class definition get loaded into the class's
# __dict__. We intercept this to filter out parameter assignments
# and only allow "private" attributes to be passed to the base
# __new__ (starting with underscore).
def __new__(mcls, name, bases, dict):
# Copy "private" attributes (including special methods such as __new__)
# to the official dict. Everything else goes in _init_dict to be
# filtered in __init__.
cls_dict = {}
for key,val in dict.items():
if key.startswith('_'):
cls_dict[key] = val
del dict[key]
cls_dict['_init_dict'] = dict
return super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
# initialization
def __init__(cls, name, bases, dict):
super(MetaSimObject, cls).__init__(name, bases, dict)
# initialize required attributes
cls._params = multidict()
cls._values = multidict()
cls._anon_subclass_counter = 0
# We don't support multiple inheritance. If you want to, you
# must fix multidict to deal with it properly.
if len(bases) > 1:
raise TypeError, "SimObjects do not support multiple inheritance"
base = bases[0]
if isinstance(base, MetaSimObject):
cls._params.parent = base._params
cls._values.parent = base._values
# If your parent has a value in it that's a config node, clone
# it. Do this now so if we update any of the values'
# attributes we are updating the clone and not the original.
for key,val in base._values.iteritems():
# don't clone if (1) we're about to overwrite it with
# a local setting or (2) we've already cloned a copy
# from an earlier (more derived) base
if cls._init_dict.has_key(key) or cls._values.has_key(key):
continue
if isSimObject(val):
cls._values[key] = val()
elif isSimObjSequence(val) and len(val):
cls._values[key] = [ v() for v in val ]
# now process remaining _init_dict items
for key,val in cls._init_dict.items():
if isinstance(val, (types.FunctionType, types.TypeType)):
type.__setattr__(cls, key, val)
# param descriptions
elif isinstance(val, ParamDesc):
cls._new_param(key, val)
# init-time-only keywords
elif cls.init_keywords.has_key(key):
cls._set_keyword(key, val, cls.init_keywords[key])
# default: use normal path (ends up in __setattr__)
else:
setattr(cls, key, val)
def _set_keyword(cls, keyword, val, kwtype):
if not isinstance(val, kwtype):
raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
(keyword, type(val), kwtype)
if isinstance(val, types.FunctionType):
val = classmethod(val)
type.__setattr__(cls, keyword, val)
def _new_param(cls, name, value):
cls._params[name] = value
if hasattr(value, 'default'):
setattr(cls, name, value.default)
# Set attribute (called on foo.attr = value when foo is an
# instance of class cls).
def __setattr__(cls, attr, value):
# normal processing for private attributes
if attr.startswith('_'):
type.__setattr__(cls, attr, value)
return
if cls.keywords.has_key(attr):
cls._set_keyword(attr, value, cls.keywords[attr])
return
# must be SimObject param
param = cls._params.get(attr, None)
if param:
# It's ok: set attribute by delegating to 'object' class.
try:
cls._values[attr] = param.convert(value)
except Exception, e:
msg = "%s\nError setting param %s.%s to %s\n" % \
(e, cls.__name__, attr, value)
e.args = (msg, )
raise
# I would love to get rid of this
elif isSimObject(value) or isSimObjSequence(value):
cls._values[attr] = value
else:
raise AttributeError, \
"Class %s has no parameter %s" % (cls.__name__, attr)
def __getattr__(cls, attr):
if cls._values.has_key(attr):
return cls._values[attr]
raise AttributeError, \
"object '%s' has no attribute '%s'" % (cls.__name__, attr)
# The ConfigNode class is the root of the special hierarchy. Most of
# the code in this class deals with the configuration hierarchy itself
# (parent/child node relationships).
class SimObject(object):
# Specify metaclass. Any class inheriting from SimObject will
# get this metaclass.
__metaclass__ = MetaSimObject
def __init__(self, _value_parent = None, **kwargs):
self._children = {}
if not _value_parent:
_value_parent = self.__class__
# clone values
self._values = multidict(_value_parent._values)
for key,val in _value_parent._values.iteritems():
if isSimObject(val):
setattr(self, key, val())
elif isSimObjSequence(val) and len(val):
setattr(self, key, [ v() for v in val ])
# apply attribute assignments from keyword args, if any
for key,val in kwargs.iteritems():
setattr(self, key, val)
def __call__(self, **kwargs):
return self.__class__(_value_parent = self, **kwargs)
def __getattr__(self, attr):
if self._values.has_key(attr):
return self._values[attr]
raise AttributeError, "object '%s' has no attribute '%s'" \
% (self.__class__.__name__, attr)
# Set attribute (called on foo.attr = value when foo is an
# instance of class cls).
def __setattr__(self, attr, value):
# normal processing for private attributes
if attr.startswith('_'):
object.__setattr__(self, attr, value)
return
# must be SimObject param
param = self._params.get(attr, None)
if param:
# It's ok: set attribute by delegating to 'object' class.
try:
value = param.convert(value)
except Exception, e:
msg = "%s\nError setting param %s.%s to %s\n" % \
(e, self.__class__.__name__, attr, value)
e.args = (msg, )
raise
# I would love to get rid of this
elif isSimObject(value) or isSimObjSequence(value):
pass
else:
raise AttributeError, "Class %s has no parameter %s" \
% (self.__class__.__name__, attr)
# clear out old child with this name, if any
self.clear_child(attr)
if isSimObject(value):
value.set_path(self, attr)
elif isSimObjSequence(value):
value = SimObjVector(value)
[v.set_path(self, "%s%d" % (attr, i)) for i,v in enumerate(value)]
self._values[attr] = value
# this hack allows tacking a '[0]' onto parameters that may or may
# not be vectors, and always getting the first element (e.g. cpus)
def __getitem__(self, key):
if key == 0:
return self
raise TypeError, "Non-zero index '%s' to SimObject" % key
# clear out children with given name, even if it's a vector
def clear_child(self, name):
if not self._children.has_key(name):
return
child = self._children[name]
if isinstance(child, SimObjVector):
for i in xrange(len(child)):
del self._children["s%d" % (name, i)]
del self._children[name]
def add_child(self, name, value):
self._children[name] = value
def set_path(self, parent, name):
if not hasattr(self, '_parent'):
self._parent = parent
self._name = name
parent.add_child(name, self)
def path(self):
if not hasattr(self, '_parent'):
return 'root'
ppath = self._parent.path()
if ppath == 'root':
return self._name
return ppath + "." + self._name
def __str__(self):
return self.path()
def ini_str(self):
return self.path()
def find_any(self, ptype):
if isinstance(self, ptype):
return self, True
found_obj = None
for child in self._children.itervalues():
if isinstance(child, ptype):
if found_obj != None and child != found_obj:
raise AttributeError, \
'parent.any matched more than one: %s %s' % \
(obj.path, child.path)
found_obj = child
# search param space
for pname,pdesc in self._params.iteritems():
if issubclass(pdesc.ptype, ptype):
match_obj = self._values[pname]
if found_obj != None and found_obj != match_obj:
raise AttributeError, \
'parent.any matched more than one: %s' % obj.path
found_obj = match_obj
return found_obj, found_obj != None
def print_ini(self):
print '[' + self.path() + ']' # .ini section header
if hasattr(self, 'type') and not isinstance(self, ParamContext):
print 'type =', self.type
child_names = self._children.keys()
child_names.sort()
np_child_names = [c for c in child_names \
if not isinstance(self._children[c], ParamContext)]
if len(np_child_names):
print 'children =', ' '.join(np_child_names)
param_names = self._params.keys()
param_names.sort()
for param in param_names:
value = self._values.get(param, None)
if value != None:
if isproxy(value):
try:
value = value.unproxy(self)
except:
print >> sys.stderr, \
"Error in unproxying param '%s' of %s" % \
(param, self.path())
raise
setattr(self, param, value)
print param, '=', self._values[param].ini_str()
print # blank line between objects
for child in child_names:
self._children[child].print_ini()
# generate output file for 'dot' to display as a pretty graph.
# this code is currently broken.
def outputDot(self, dot):
label = "{%s|" % self.path
if isSimObject(self.realtype):
label += '%s|' % self.type
if self.children:
# instantiate children in same order they were added for
# backward compatibility (else we can end up with cpu1
# before cpu0).
for c in self.children:
dot.add_edge(pydot.Edge(self.path,c.path, style="bold"))
simobjs = []
for param in self.params:
try:
if param.value is None:
raise AttributeError, 'Parameter with no value'
value = param.value
string = param.string(value)
except Exception, e:
msg = 'exception in %s:%s\n%s' % (self.name, param.name, e)
e.args = (msg, )
raise
if isSimObject(param.ptype) and string != "Null":
simobjs.append(string)
else:
label += '%s = %s\\n' % (param.name, string)
for so in simobjs:
label += "|<%s> %s" % (so, so)
dot.add_edge(pydot.Edge("%s:%s" % (self.path, so), so,
tailport="w"))
label += '}'
dot.add_node(pydot.Node(self.path,shape="Mrecord",label=label))
# recursively dump out children
for c in self.children:
c.outputDot(dot)
class ParamContext(SimObject):
pass
#####################################################################
#
# Proxy object support.
#
#####################################################################
class BaseProxy(object):
def __init__(self, search_self, search_up):
self._search_self = search_self
self._search_up = search_up
self._multiplier = None
def __setattr__(self, attr, value):
if not attr.startswith('_'):
raise AttributeError, 'cannot set attribute on proxy object'
super(BaseProxy, self).__setattr__(attr, value)
# support multiplying proxies by constants
def __mul__(self, other):
if not isinstance(other, (int, float)):
raise TypeError, "Proxy multiplier must be integer"
if self._multiplier == None:
self._multiplier = other
else:
# support chained multipliers
self._multiplier *= other
return self
__rmul__ = __mul__
def _mulcheck(self, result):
if self._multiplier == None:
return result
return result * self._multiplier
def unproxy(self, base):
obj = base
done = False
if self._search_self:
result, done = self.find(obj)
if self._search_up:
while not done:
try: obj = obj._parent
except: break
result, done = self.find(obj)
if not done:
raise AttributeError, "Can't resolve proxy '%s' from '%s'" % \
(self.path(), base.path())
if isinstance(result, BaseProxy):
if result == self:
raise RuntimeError, "Cycle in unproxy"
result = result.unproxy(obj)
return self._mulcheck(result)
def getindex(obj, index):
if index == None:
return obj
try:
obj = obj[index]
except TypeError:
if index != 0:
raise
# if index is 0 and item is not subscriptable, just
# use item itself (so cpu[0] works on uniprocessors)
return obj
getindex = staticmethod(getindex)
def set_param_desc(self, pdesc):
self._pdesc = pdesc
class AttrProxy(BaseProxy):
def __init__(self, search_self, search_up, attr):
super(AttrProxy, self).__init__(search_self, search_up)
self._attr = attr
self._modifiers = []
def __getattr__(self, attr):
# python uses __bases__ internally for inheritance
if attr.startswith('_'):
return super(AttrProxy, self).__getattr__(self, attr)
if hasattr(self, '_pdesc'):
raise AttributeError, "Attribute reference on bound proxy"
self._modifiers.append(attr)
return self
# support indexing on proxies (e.g., Self.cpu[0])
def __getitem__(self, key):
if not isinstance(key, int):
raise TypeError, "Proxy object requires integer index"
self._modifiers.append(key)
return self
def find(self, obj):
try:
val = getattr(obj, self._attr)
except:
return None, False
while isproxy(val):
val = val.unproxy(obj)
for m in self._modifiers:
if isinstance(m, str):
val = getattr(val, m)
elif isinstance(m, int):
val = val[m]
else:
assert("Item must be string or integer")
while isproxy(val):
val = val.unproxy(obj)
return val, True
def path(self):
p = self._attr
for m in self._modifiers:
if isinstance(m, str):
p += '.%s' % m
elif isinstance(m, int):
p += '[%d]' % m
else:
assert("Item must be string or integer")
return p
class AnyProxy(BaseProxy):
def find(self, obj):
return obj.find_any(self._pdesc.ptype)
def path(self):
return 'any'
def isproxy(obj):
if isinstance(obj, BaseProxy):
return True
elif isinstance(obj, (list, tuple)):
for v in obj:
if isproxy(v):
return True
return False
class ProxyFactory(object):
def __init__(self, search_self, search_up):
self.search_self = search_self
self.search_up = search_up
def __getattr__(self, attr):
if attr == 'any':
return AnyProxy(self.search_self, self.search_up)
else:
return AttrProxy(self.search_self, self.search_up, attr)
# global objects for handling proxies
Parent = ProxyFactory(search_self = False, search_up = True)
Self = ProxyFactory(search_self = True, search_up = False)
#####################################################################
#
# Parameter description classes
#
# The _params dictionary in each class maps parameter names to
# either a Param or a VectorParam object. These objects contain the
# parameter description string, the parameter type, and the default
# value (loaded from the PARAM section of the .odesc files). The
# _convert() method on these objects is used to force whatever value
# is assigned to the parameter to the appropriate type.
#
# Note that the default values are loaded into the class's attribute
# space when the parameter dictionary is initialized (in
# MetaConfigNode._setparams()); after that point they aren't used.
#
#####################################################################
# Dummy base class to identify types that are legitimate for SimObject
# parameters.
class ParamValue(object):
# default for printing to .ini file is regular string conversion.
# will be overridden in some cases
def ini_str(self):
return str(self)
# allows us to blithely call unproxy() on things without checking
# if they're really proxies or not
def unproxy(self, base):
return self
# Regular parameter description.
class ParamDesc(object):
def __init__(self, ptype_str, ptype, *args, **kwargs):
self.ptype_str = ptype_str
# remember ptype only if it is provided
if ptype != None:
self.ptype = ptype
if args:
if len(args) == 1:
self.desc = args[0]
elif len(args) == 2:
self.default = args[0]
self.desc = args[1]
else:
raise TypeError, 'too many arguments'
if kwargs.has_key('desc'):
assert(not hasattr(self, 'desc'))
self.desc = kwargs['desc']
del kwargs['desc']
if kwargs.has_key('default'):
assert(not hasattr(self, 'default'))
self.default = kwargs['default']
del kwargs['default']
if kwargs:
raise TypeError, 'extra unknown kwargs %s' % kwargs
if not hasattr(self, 'desc'):
raise TypeError, 'desc attribute missing'
def __getattr__(self, attr):
if attr == 'ptype':
try:
ptype = eval(self.ptype_str, m5.__dict__)
if not isinstance(ptype, type):
panic("Param qualifier is not a type: %s" % self.ptype)
self.ptype = ptype
return ptype
except NameError:
pass
raise AttributeError, "'%s' object has no attribute '%s'" % \
(type(self).__name__, attr)
def convert(self, value):
if isinstance(value, BaseProxy):
value.set_param_desc(self)
return value
if not hasattr(self, 'ptype') and isNullPointer(value):
# deferred evaluation of SimObject; continue to defer if
# we're just assigning a null pointer
return value
if isinstance(value, self.ptype):
return value
if isNullPointer(value) and issubclass(self.ptype, SimObject):
return value
return self.ptype(value)
# Vector-valued parameter description. Just like ParamDesc, except
# that the value is a vector (list) of the specified type instead of a
# single value.
class VectorParamValue(list):
def ini_str(self):
return ' '.join([str(v) for v in self])
def unproxy(self, base):
return [v.unproxy(base) for v in self]
class SimObjVector(VectorParamValue):
def print_ini(self):
for v in self:
v.print_ini()
class VectorParamDesc(ParamDesc):
# Convert assigned value to appropriate type. If the RHS is not a
# list or tuple, it generates a single-element list.
def convert(self, value):
if isinstance(value, (list, tuple)):
# list: coerce each element into new list
tmp_list = [ ParamDesc.convert(self, v) for v in value ]
if isSimObjSequence(tmp_list):
return SimObjVector(tmp_list)
else:
return VectorParamValue(tmp_list)
else:
# singleton: leave it be (could coerce to a single-element
# list here, but for some historical reason we don't...
return ParamDesc.convert(self, value)
class ParamFactory(object):
def __init__(self, param_desc_class, ptype_str = None):
self.param_desc_class = param_desc_class
self.ptype_str = ptype_str
def __getattr__(self, attr):
if self.ptype_str:
attr = self.ptype_str + '.' + attr
return ParamFactory(self.param_desc_class, attr)
# E.g., Param.Int(5, "number of widgets")
def __call__(self, *args, **kwargs):
caller_frame = inspect.stack()[1][0]
ptype = None
try:
ptype = eval(self.ptype_str,
caller_frame.f_globals, caller_frame.f_locals)
if not isinstance(ptype, type):
raise TypeError, \
"Param qualifier is not a type: %s" % ptype
except NameError:
# if name isn't defined yet, assume it's a SimObject, and
# try to resolve it later
pass
return self.param_desc_class(self.ptype_str, ptype, *args, **kwargs)
Param = ParamFactory(ParamDesc)
VectorParam = ParamFactory(VectorParamDesc)
#####################################################################
#
# Parameter Types
#
# Though native Python types could be used to specify parameter types
# (the 'ptype' field of the Param and VectorParam classes), it's more
# flexible to define our own set of types. This gives us more control
# over how Python expressions are converted to values (via the
# __init__() constructor) and how these values are printed out (via
# the __str__() conversion method). Eventually we'll need these types
# to correspond to distinct C++ types as well.
#
#####################################################################
class Range(ParamValue):
type = int # default; can be overridden in subclasses
def __init__(self, *args, **kwargs):
def handle_kwargs(self, kwargs):
if 'end' in kwargs:
self.second = self.type(kwargs.pop('end'))
elif 'size' in kwargs:
self.second = self.first + self.type(kwargs.pop('size')) - 1
else:
raise TypeError, "Either end or size must be specified"
if len(args) == 0:
self.first = self.type(kwargs.pop('start'))
handle_kwargs(self, kwargs)
elif len(args) == 1:
if kwargs:
self.first = self.type(args[0])
handle_kwargs(self, kwargs)
elif isinstance(args[0], Range):
self.first = self.type(args[0].first)
self.second = self.type(args[0].second)
else:
self.first = self.type(0)
self.second = self.type(args[0]) - 1
elif len(args) == 2:
self.first = self.type(args[0])
self.second = self.type(args[1])
else:
raise TypeError, "Too many arguments specified"
if kwargs:
raise TypeError, "too many keywords: %s" % kwargs.keys()
def __str__(self):
return '%s:%s' % (self.first, self.second)
# Metaclass for bounds-checked integer parameters. See CheckedInt.
class CheckedIntType(type):
def __init__(cls, name, bases, dict):
super(CheckedIntType, cls).__init__(name, bases, dict)
# CheckedInt is an abstract base class, so we actually don't
# want to do any processing on it... the rest of this code is
# just for classes that derive from CheckedInt.
if name == 'CheckedInt':
return
if not (hasattr(cls, 'min') and hasattr(cls, 'max')):
if not (hasattr(cls, 'size') and hasattr(cls, 'unsigned')):
panic("CheckedInt subclass %s must define either\n" \
" 'min' and 'max' or 'size' and 'unsigned'\n" \
% name);
if cls.unsigned:
cls.min = 0
cls.max = 2 ** cls.size - 1
else:
cls.min = -(2 ** (cls.size - 1))
cls.max = (2 ** (cls.size - 1)) - 1
# Abstract superclass for bounds-checked integer parameters. This
# class is subclassed to generate parameter classes with specific
# bounds. Initialization of the min and max bounds is done in the
# metaclass CheckedIntType.__init__.
class CheckedInt(long,ParamValue):
__metaclass__ = CheckedIntType
def __new__(cls, value):
if isinstance(value, str):
value = toInteger(value)
self = long.__new__(cls, value)
if not cls.min <= self <= cls.max:
raise TypeError, 'Integer param out of bounds %d < %d < %d' % \
(cls.min, self, cls.max)
return self
class Int(CheckedInt): size = 32; unsigned = False
class Unsigned(CheckedInt): size = 32; unsigned = True
class Int8(CheckedInt): size = 8; unsigned = False
class UInt8(CheckedInt): size = 8; unsigned = True
class Int16(CheckedInt): size = 16; unsigned = False
class UInt16(CheckedInt): size = 16; unsigned = True
class Int32(CheckedInt): size = 32; unsigned = False
class UInt32(CheckedInt): size = 32; unsigned = True
class Int64(CheckedInt): size = 64; unsigned = False
class UInt64(CheckedInt): size = 64; unsigned = True
class Counter(CheckedInt): size = 64; unsigned = True
class Tick(CheckedInt): size = 64; unsigned = True
class TcpPort(CheckedInt): size = 16; unsigned = True
class UdpPort(CheckedInt): size = 16; unsigned = True
class Percent(CheckedInt): min = 0; max = 100
class MemorySize(CheckedInt):
size = 64
unsigned = True
def __new__(cls, value):
return super(MemorySize, cls).__new__(cls, toMemorySize(value))
class Addr(CheckedInt):
size = 64
unsigned = True
def __new__(cls, value):
try:
value = long(toMemorySize(value))
except TypeError:
value = long(value)
return super(Addr, cls).__new__(cls, value)
class AddrRange(Range):
type = Addr
# String-valued parameter. Just mixin the ParamValue class
# with the built-in str class.
class String(ParamValue,str):
pass
# Boolean parameter type. Python doesn't let you subclass bool, since
# it doesn't want to let you create multiple instances of True and
# False. Thus this is a little more complicated than String.
class Bool(ParamValue):
def __init__(self, value):
try:
self.value = toBool(value)
except TypeError:
self.value = bool(value)
def __str__(self):
return str(self.value)
def ini_str(self):
if self.value:
return 'true'
return 'false'
def IncEthernetAddr(addr, val = 1):
bytes = map(lambda x: int(x, 16), addr.split(':'))
bytes[5] += val
for i in (5, 4, 3, 2, 1):
val,rem = divmod(bytes[i], 256)
bytes[i] = rem
if val == 0:
break
bytes[i - 1] += val
assert(bytes[0] <= 255)
return ':'.join(map(lambda x: '%02x' % x, bytes))
class NextEthernetAddr(object):
__metaclass__ = Singleton
addr = "00:90:00:00:00:01"
def __init__(self, inc = 1):
self.value = self.addr
self.addr = IncEthernetAddr(self.addr, inc)
class EthernetAddr(ParamValue):
def __init__(self, value):
if value == NextEthernetAddr:
self.value = value
return
if not isinstance(value, str):
raise TypeError, "expected an ethernet address and didn't get one"
bytes = value.split(':')
if len(bytes) != 6:
raise TypeError, 'invalid ethernet address %s' % value
for byte in bytes:
if not 0 <= int(byte) <= 256:
raise TypeError, 'invalid ethernet address %s' % value
self.value = value
def __str__(self):
if self.value == NextEthernetAddr:
self.value = self.value().value
return self.value
# Special class for NULL pointers. Note the special check in
# make_param_value() above that lets these be assigned where a
# SimObject is required.
# only one copy of a particular node
class NullSimObject(object):
__metaclass__ = Singleton
def __call__(cls):
return cls
def _instantiate(self, parent = None, path = ''):
pass
def ini_str(self):
return 'Null'
# The only instance you'll ever need...
Null = NULL = NullSimObject()
# Enumerated types are a little more complex. The user specifies the
# type as Enum(foo) where foo is either a list or dictionary of
# alternatives (typically strings, but not necessarily so). (In the
# long run, the integer value of the parameter will be the list index
# or the corresponding dictionary value. For now, since we only check
# that the alternative is valid and then spit it into a .ini file,
# there's not much point in using the dictionary.)
# What Enum() must do is generate a new type encapsulating the
# provided list/dictionary so that specific values of the parameter
# can be instances of that type. We define two hidden internal
# classes (_ListEnum and _DictEnum) to serve as base classes, then
# derive the new type from the appropriate base class on the fly.
# Metaclass for Enum types
class MetaEnum(type):
def __init__(cls, name, bases, init_dict):
if init_dict.has_key('map'):
if not isinstance(cls.map, dict):
raise TypeError, "Enum-derived class attribute 'map' " \
"must be of type dict"
# build list of value strings from map
cls.vals = cls.map.keys()
cls.vals.sort()
elif init_dict.has_key('vals'):
if not isinstance(cls.vals, list):
raise TypeError, "Enum-derived class attribute 'vals' " \
"must be of type list"
# build string->value map from vals sequence
cls.map = {}
for idx,val in enumerate(cls.vals):
cls.map[val] = idx
else:
raise TypeError, "Enum-derived class must define "\
"attribute 'map' or 'vals'"
super(MetaEnum, cls).__init__(name, bases, init_dict)
def cpp_declare(cls):
s = 'enum %s {\n ' % cls.__name__
s += ',\n '.join(['%s = %d' % (v,cls.map[v]) for v in cls.vals])
s += '\n};\n'
return s
# Base class for enum types.
class Enum(ParamValue):
__metaclass__ = MetaEnum
vals = []
def __init__(self, value):
if value not in self.map:
raise TypeError, "Enum param got bad value '%s' (not in %s)" \
% (value, self.vals)
self.value = value
def __str__(self):
return self.value
ticks_per_sec = None
# how big does a rounding error need to be before we warn about it?
frequency_tolerance = 0.001 # 0.1%
# convert a floting-point # of ticks to integer, and warn if rounding
# discards too much precision
def tick_check(float_ticks):
if float_ticks == 0:
return 0
int_ticks = int(round(float_ticks))
err = (float_ticks - int_ticks) / float_ticks
if err > frequency_tolerance:
print >> sys.stderr, "Warning: rounding error > tolerance"
print >> sys.stderr, " %f rounded to %d" % (float_ticks, int_ticks)
#raise ValueError
return int_ticks
# superclass for "numeric" parameter values, to emulate math
# operations in a type-safe way. e.g., a Latency times an int returns
# a new Latency object.
class NumericParamValue(ParamValue):
def __str__(self):
return str(self.value)
def __float__(self):
return float(self.value)
def __mul__(self, other):
newobj = self.__class__(self)
newobj.value *= other
return newobj
__rmul__ = __mul__
def __div__(self, other):
newobj = self.__class__(self)
newobj.value /= other
return newobj
def getLatency(value):
if isinstance(value, Latency) or isinstance(value, Clock):
return value.value
elif isinstance(value, Frequency) or isinstance(value, RootClock):
return 1 / value.value
elif isinstance(value, str):
try:
return toLatency(value)
except ValueError:
try:
return 1 / toFrequency(value)
except ValueError:
pass # fall through
raise ValueError, "Invalid Frequency/Latency value '%s'" % value
class Latency(NumericParamValue):
def __init__(self, value):
self.value = getLatency(value)
def __getattr__(self, attr):
if attr in ('latency', 'period'):
return self
if attr == 'frequency':
return Frequency(self)
raise AttributeError, "Latency object has no attribute '%s'" % attr
# convert latency to ticks
def ini_str(self):
return str(tick_check(self.value * ticks_per_sec))
class Frequency(NumericParamValue):
def __init__(self, value):
self.value = 1 / getLatency(value)
def __getattr__(self, attr):
if attr == 'frequency':
return self
if attr in ('latency', 'period'):
return Latency(self)
raise AttributeError, "Frequency object has no attribute '%s'" % attr
# convert frequency to ticks per period
def ini_str(self):
return self.period.ini_str()
# Just like Frequency, except ini_str() is absolute # of ticks per sec (Hz).
# We can't inherit from Frequency because we don't want it to be directly
# assignable to a regular Frequency parameter.
class RootClock(ParamValue):
def __init__(self, value):
self.value = 1 / getLatency(value)
def __getattr__(self, attr):
if attr == 'frequency':
return Frequency(self)
if attr in ('latency', 'period'):
return Latency(self)
raise AttributeError, "Frequency object has no attribute '%s'" % attr
def ini_str(self):
return str(tick_check(self.value))
# A generic frequency and/or Latency value. Value is stored as a latency,
# but to avoid ambiguity this object does not support numeric ops (* or /).
# An explicit conversion to a Latency or Frequency must be made first.
class Clock(ParamValue):
def __init__(self, value):
self.value = getLatency(value)
def __getattr__(self, attr):
if attr == 'frequency':
return Frequency(self)
if attr in ('latency', 'period'):
return Latency(self)
raise AttributeError, "Frequency object has no attribute '%s'" % attr
def ini_str(self):
return self.period.ini_str()
class NetworkBandwidth(float,ParamValue):
def __new__(cls, value):
val = toNetworkBandwidth(value) / 8.0
return super(cls, NetworkBandwidth).__new__(cls, val)
def __str__(self):
return str(self.val)
def ini_str(self):
return '%f' % (ticks_per_sec / self.val)
class MemoryBandwidth(float,ParamValue):
def __new__(self, value):
val = toMemoryBandwidth(value)
return super(cls, MemoryBandwidth).__new__(cls, val)
def __str__(self):
return str(self.val)
def ini_str(self):
return '%f' % (ticks_per_sec / self.val)
#
# "Constants"... handy aliases for various values.
#
# Some memory range specifications use this as a default upper bound.
MaxAddr = Addr.max
MaxTick = Tick.max
AllMemory = AddrRange(0, MaxAddr)
#####################################################################
# The final hook to generate .ini files. Called from configuration
# script once config is built.
def instantiate(root):
global ticks_per_sec
ticks_per_sec = float(root.clock.frequency)
root.print_ini()
noDot = True # temporary until we fix dot
if not noDot:
dot = pydot.Dot()
instance.outputDot(dot)
dot.orientation = "portrait"
dot.size = "8.5,11"
dot.ranksep="equally"
dot.rank="samerank"
dot.write("config.dot")
dot.write_ps("config.ps")
# __all__ defines the list of symbols that get exported when
# 'from config import *' is invoked. Try to keep this reasonably
# short to avoid polluting other namespaces.
__all__ = ['SimObject', 'ParamContext', 'Param', 'VectorParam',
'Parent', 'Self',
'Enum', 'Bool', 'String',
'Int', 'Unsigned', 'Int8', 'UInt8', 'Int16', 'UInt16',
'Int32', 'UInt32', 'Int64', 'UInt64',
'Counter', 'Addr', 'Tick', 'Percent',
'TcpPort', 'UdpPort', 'EthernetAddr',
'MemorySize', 'Latency', 'Frequency', 'RootClock', 'Clock',
'NetworkBandwidth', 'MemoryBandwidth',
'Range', 'AddrRange', 'MaxAddr', 'MaxTick', 'AllMemory',
'Null', 'NULL',
'NextEthernetAddr', 'instantiate']