e00237e49e
util/stats/db.py: Build a result object as the result of a query operation so it is easier to populate and contains a bit more information than just a big dict. Also change the next level data into a matrix instead of a dict of dicts. Move the "get" function into the Database object. (The get function is used by the output parsing function as the interface for accessing backend storage, same interface for profile stuff.) Change the old get variable to the method variable, it describes how the get works, (whether using sum, stdev, etc.) util/stats/display.py: Clean up the display functions, mostly formatting. Handle values the way they should be now. util/stats/info.py: Totally re-work how values are accessed from their data store. Access individual values on demand instead of calculating everything and passing up a huge result from the bottom. This impacts the way that proxying works, and in general, everything is now esentially a proxy for the lower level database. Provide new operators: unproxy, scalar, vector, value, values, total, and len which retrieve the proper result from the object they are called on. Move the ProxyGroup stuff (proxies of proxies!) here from the now gone proxy.py file and integrate the shared parts of the code. The ProxyGroup stuff allows you to write formulas without specifying the statistics until evaluation time. Get rid of global variables! util/stats/output.py: Move the dbinfo stuff into the Database itself. Each source should have it's own get() function for accessing it's data. This get() function behaves a bit differently than before in that it can return vectors as well, deal with these vectors and with no result conditions better. util/stats/stats.py: the info module no longer has the source global variable, just create the database source and pass it around as necessary --HG-- extra : convert_revision : 8e5aa228e5d3ae8068ef9c40f65b3a2f9e7c0cff
716 lines
21 KiB
Python
716 lines
21 KiB
Python
# Copyright (c) 2003-2004 The Regents of The University of Michigan
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are
|
|
# met: redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer;
|
|
# redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution;
|
|
# neither the name of the copyright holders nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
from __future__ import division
|
|
import operator, re, types
|
|
|
|
def unproxy(proxy):
|
|
if hasattr(proxy, '__unproxy__'):
|
|
return proxy.__unproxy__()
|
|
|
|
return proxy
|
|
|
|
def scalar(stat):
|
|
stat = unproxy(stat)
|
|
assert(stat.__scalar__() != stat.__vector__())
|
|
return stat.__scalar__()
|
|
|
|
def vector(stat):
|
|
stat = unproxy(stat)
|
|
assert(stat.__scalar__() != stat.__vector__())
|
|
return stat.__vector__()
|
|
|
|
def value(stat, *args):
|
|
stat = unproxy(stat)
|
|
return stat.__value__(*args)
|
|
|
|
def values(stat, run):
|
|
stat = unproxy(stat)
|
|
result = []
|
|
for i in xrange(len(stat)):
|
|
val = value(stat, run.run, i)
|
|
if val is None:
|
|
return None
|
|
result.append(val)
|
|
return result
|
|
|
|
def total(stat, run):
|
|
return sum(values(stat, run))
|
|
|
|
def len(stat):
|
|
stat = unproxy(stat)
|
|
return stat.__len__()
|
|
|
|
class Value(object):
|
|
def __scalar__(self):
|
|
raise AttributeError, "must define __scalar__ for %s" % (type (self))
|
|
def __vector__(self):
|
|
raise AttributeError, "must define __vector__ for %s" % (type (self))
|
|
|
|
def __add__(self, other):
|
|
return BinaryProxy(operator.__add__, self, other)
|
|
def __sub__(self, other):
|
|
return BinaryProxy(operator.__sub__, self, other)
|
|
def __mul__(self, other):
|
|
return BinaryProxy(operator.__mul__, self, other)
|
|
def __div__(self, other):
|
|
return BinaryProxy(operator.__div__, self, other)
|
|
def __truediv__(self, other):
|
|
return BinaryProxy(operator.__truediv__, self, other)
|
|
def __floordiv__(self, other):
|
|
return BinaryProxy(operator.__floordiv__, self, other)
|
|
|
|
def __radd__(self, other):
|
|
return BinaryProxy(operator.__add__, other, self)
|
|
def __rsub__(self, other):
|
|
return BinaryProxy(operator.__sub__, other, self)
|
|
def __rmul__(self, other):
|
|
return BinaryProxy(operator.__mul__, other, self)
|
|
def __rdiv__(self, other):
|
|
return BinaryProxy(operator.__div__, other, self)
|
|
def __rtruediv__(self, other):
|
|
return BinaryProxy(operator.__truediv__, other, self)
|
|
def __rfloordiv__(self, other):
|
|
return BinaryProxy(operator.__floordiv__, other, self)
|
|
|
|
def __neg__(self):
|
|
return UnaryProxy(operator.__neg__, self)
|
|
def __pos__(self):
|
|
return UnaryProxy(operator.__pos__, self)
|
|
def __abs__(self):
|
|
return UnaryProxy(operator.__abs__, self)
|
|
|
|
class Scalar(Value):
|
|
def __scalar__(self):
|
|
return True
|
|
|
|
def __vector__(self):
|
|
return False
|
|
|
|
def __value__(self, run):
|
|
raise AttributeError, '__value__ must be defined'
|
|
|
|
class VectorItemProxy(Value):
|
|
def __init__(self, proxy, index):
|
|
self.proxy = proxy
|
|
self.index = index
|
|
|
|
def __scalar__(self):
|
|
return True
|
|
|
|
def __vector__(self):
|
|
return False
|
|
|
|
def __value__(self, run):
|
|
return value(self.proxy, run, self.index)
|
|
|
|
class Vector(Value):
|
|
def __scalar__(self):
|
|
return False
|
|
|
|
def __vector__(self):
|
|
return True
|
|
|
|
def __value__(self, run, index):
|
|
raise AttributeError, '__value__ must be defined'
|
|
|
|
def __getitem__(self, index):
|
|
return VectorItemProxy(self, index)
|
|
|
|
class ScalarConstant(Scalar):
|
|
def __init__(self, constant):
|
|
self.constant = constant
|
|
def __value__(self, run):
|
|
return self.constant
|
|
|
|
class VectorConstant(Vector):
|
|
def __init__(self, constant):
|
|
self.constant = constant
|
|
def __value__(self, run, index):
|
|
return self.constant[index]
|
|
def __len__(self):
|
|
return len(self.constant)
|
|
|
|
def WrapValue(value):
|
|
if isinstance(value, (int, long, float)):
|
|
return ScalarConstant(value)
|
|
if isinstance(value, (list, tuple)):
|
|
return VectorConstant(value)
|
|
if isinstance(value, Value):
|
|
return value
|
|
|
|
raise AttributeError, 'Only values can be wrapped'
|
|
|
|
class Statistic(object):
|
|
def __getattr__(self, attr):
|
|
if attr in ('data', 'x', 'y'):
|
|
result = self.source.data(self, self.bins, self.ticks)
|
|
self.data = result.data
|
|
self.x = result.x
|
|
self.y = result.y
|
|
return super(Statistic, self).__getattribute__(attr)
|
|
|
|
def __setattr__(self, attr, value):
|
|
if attr == 'stat':
|
|
raise AttributeError, '%s is read only' % stat
|
|
if attr in ('source', 'bins', 'ticks'):
|
|
if getattr(self, attr) != value:
|
|
if hasattr(self, 'data'):
|
|
delattr(self, 'data')
|
|
|
|
super(Statistic, self).__setattr__(attr, value)
|
|
|
|
class ValueProxy(Value):
|
|
def __getattr__(self, attr):
|
|
if attr == '__value__':
|
|
if scalar(self):
|
|
return self.__scalarvalue__
|
|
if vector(self):
|
|
return self.__vectorvalue__
|
|
if attr == '__len__':
|
|
if vector(self):
|
|
return self.__vectorlen__
|
|
return super(ValueProxy, self).__getattribute__(attr)
|
|
|
|
class UnaryProxy(ValueProxy):
|
|
def __init__(self, op, arg):
|
|
self.op = op
|
|
self.arg = WrapValue(arg)
|
|
|
|
def __scalar__(self):
|
|
return scalar(self.arg)
|
|
|
|
def __vector__(self):
|
|
return vector(self.arg)
|
|
|
|
def __scalarvalue__(self, run):
|
|
val = value(self.arg, run)
|
|
if val is None:
|
|
return None
|
|
return self.op(val)
|
|
|
|
def __vectorvalue__(self, run, index):
|
|
val = value(self.arg, run, index)
|
|
if val is None:
|
|
return None
|
|
return self.op(val)
|
|
|
|
def __vectorlen__(self):
|
|
return len(unproxy(self.arg))
|
|
|
|
class BinaryProxy(ValueProxy):
|
|
def __init__(self, op, arg0, arg1):
|
|
super(BinaryProxy, self).__init__()
|
|
self.op = op
|
|
self.arg0 = WrapValue(arg0)
|
|
self.arg1 = WrapValue(arg1)
|
|
|
|
def __scalar__(self):
|
|
return scalar(self.arg0) and scalar(self.arg1)
|
|
|
|
def __vector__(self):
|
|
return vector(self.arg0) or vector(self.arg1)
|
|
|
|
def __scalarvalue__(self, run):
|
|
val0 = value(self.arg0, run)
|
|
val1 = value(self.arg1, run)
|
|
if val0 is None or val1 is None:
|
|
return None
|
|
return self.op(val0, val1)
|
|
|
|
def __vectorvalue__(self, run, index):
|
|
if scalar(self.arg0):
|
|
val0 = value(self.arg0, run)
|
|
if vector(self.arg0):
|
|
val0 = value(self.arg0, run, index)
|
|
if scalar(self.arg1):
|
|
val1 = value(self.arg1, run)
|
|
if vector(self.arg1):
|
|
val1 = value(self.arg1, run, index)
|
|
|
|
if val0 is None or val1 is None:
|
|
return None
|
|
|
|
return self.op(val0, val1)
|
|
|
|
def __vectorlen__(self):
|
|
if vector(self.arg0) and scalar(self.arg1):
|
|
return len(self.arg0)
|
|
if scalar(self.arg0) and vector(self.arg1):
|
|
return len(self.arg1)
|
|
|
|
len0 = len(self.arg0)
|
|
len1 = len(self.arg1)
|
|
|
|
if len0 != len1:
|
|
raise AttributeError, \
|
|
"vectors of different lengths %d != %d" % (len0, len1)
|
|
|
|
return len0
|
|
|
|
class Proxy(Value):
|
|
def __init__(self, name, dict):
|
|
self.name = name
|
|
self.dict = dict
|
|
|
|
def __unproxy__(self):
|
|
return unproxy(self.dict[self.name])
|
|
|
|
def __getitem__(self, index):
|
|
return ItemProxy(self, index)
|
|
|
|
def __getattr__(self, attr):
|
|
return AttrProxy(self, attr)
|
|
|
|
class ItemProxy(Proxy):
|
|
def __init__(self, proxy, index):
|
|
self.proxy = proxy
|
|
self.index = index
|
|
|
|
def __unproxy__(self):
|
|
return unproxy(unproxy(self.proxy)[self.index])
|
|
|
|
class AttrProxy(Proxy):
|
|
def __init__(self, proxy, attr):
|
|
self.proxy = proxy
|
|
self.attr = attr
|
|
|
|
def __unproxy__(self):
|
|
return unproxy(getattr(unproxy(self.proxy), self.attr))
|
|
|
|
class ProxyGroup(object):
|
|
def __init__(self, dict=None, **kwargs):
|
|
self.__dict__['dict'] = {}
|
|
|
|
if dict is not None:
|
|
self.dict.update(dict)
|
|
|
|
if kwargs:
|
|
self.dict.update(kwargs)
|
|
|
|
def __getattr__(self, name):
|
|
return Proxy(name, self.dict)
|
|
|
|
def __setattr__(self, attr, value):
|
|
self.dict[attr] = value
|
|
|
|
class ScalarStat(Statistic,Scalar):
|
|
def __value__(self, run):
|
|
if run not in self.data:
|
|
return None
|
|
return self.data[run][0][0]
|
|
|
|
def display(self, run=None):
|
|
import display
|
|
p = display.Print()
|
|
p.name = self.name
|
|
p.desc = self.desc
|
|
p.value = value(self, run)
|
|
p.flags = self.flags
|
|
p.precision = self.precision
|
|
if display.all or (self.flags & flags.printable):
|
|
p.display()
|
|
|
|
class VectorStat(Statistic,Vector):
|
|
def __value__(self, run, item):
|
|
if run not in self.data:
|
|
return None
|
|
return self.data[run][item][0]
|
|
|
|
def __len__(self):
|
|
return self.x
|
|
|
|
def display(self, run=None):
|
|
import display
|
|
d = display.VectorDisplay()
|
|
d.name = self.name
|
|
d.desc = self.desc
|
|
d.value = [ value(self, run, i) for i in xrange(len(self)) ]
|
|
d.flags = self.flags
|
|
d.precision = self.precision
|
|
d.display()
|
|
|
|
class Formula(Value):
|
|
def __getattribute__(self, attr):
|
|
if attr not in ( '__scalar__', '__vector__', '__value__', '__len__' ):
|
|
return super(Formula, self).__getattribute__(attr)
|
|
|
|
formula = re.sub(':', '__', self.formula)
|
|
value = eval(formula, self.source.stattop)
|
|
return getattr(value, attr)
|
|
|
|
class SimpleDist(Statistic):
|
|
def __init__(self, sums, squares, samples):
|
|
self.sums = sums
|
|
self.squares = squares
|
|
self.samples = samples
|
|
|
|
def display(self, name, desc, flags, precision):
|
|
import display
|
|
p = display.Print()
|
|
p.flags = flags
|
|
p.precision = precision
|
|
|
|
if self.samples > 0:
|
|
p.name = name + ".mean"
|
|
p.value = self.sums / self.samples
|
|
p.display()
|
|
|
|
p.name = name + ".stdev"
|
|
if self.samples > 1:
|
|
var = (self.samples * self.squares - self.sums ** 2) \
|
|
/ (self.samples * (self.samples - 1))
|
|
if var >= 0:
|
|
p.value = math.sqrt(var)
|
|
else:
|
|
p.value = 'NaN'
|
|
else:
|
|
p.value = 0.0
|
|
p.display()
|
|
|
|
p.name = name + ".samples"
|
|
p.value = self.samples
|
|
p.display()
|
|
|
|
def comparable(self, other):
|
|
return True
|
|
|
|
def __eq__(self, other):
|
|
return self.sums == other.sums and self.squares == other.squares and \
|
|
self.samples == other.samples
|
|
|
|
def __isub__(self, other):
|
|
self.sums -= other.sums
|
|
self.squares -= other.squares
|
|
self.samples -= other.samples
|
|
return self
|
|
|
|
def __iadd__(self, other):
|
|
self.sums += other.sums
|
|
self.squares += other.squares
|
|
self.samples += other.samples
|
|
return self
|
|
|
|
def __itruediv__(self, other):
|
|
if not other:
|
|
return self
|
|
self.sums /= other
|
|
self.squares /= other
|
|
self.samples /= other
|
|
return self
|
|
|
|
class FullDist(SimpleDist):
|
|
def __init__(self, sums, squares, samples, minval, maxval,
|
|
under, vec, over, min, max, bsize, size):
|
|
self.sums = sums
|
|
self.squares = squares
|
|
self.samples = samples
|
|
self.minval = minval
|
|
self.maxval = maxval
|
|
self.under = under
|
|
self.vec = vec
|
|
self.over = over
|
|
self.min = min
|
|
self.max = max
|
|
self.bsize = bsize
|
|
self.size = size
|
|
|
|
def display(self, name, desc, flags, precision):
|
|
import display
|
|
p = display.Print()
|
|
p.flags = flags
|
|
p.precision = precision
|
|
|
|
p.name = name + '.min_val'
|
|
p.value = self.minval
|
|
p.display()
|
|
|
|
p.name = name + '.max_val'
|
|
p.value = self.maxval
|
|
p.display()
|
|
|
|
p.name = name + '.underflow'
|
|
p.value = self.under
|
|
p.display()
|
|
|
|
i = self.min
|
|
for val in self.vec[:-1]:
|
|
p.name = name + '[%d:%d]' % (i, i + self.bsize - 1)
|
|
p.value = val
|
|
p.display()
|
|
i += self.bsize
|
|
|
|
p.name = name + '[%d:%d]' % (i, self.max)
|
|
p.value = self.vec[-1]
|
|
p.display()
|
|
|
|
|
|
p.name = name + '.overflow'
|
|
p.value = self.over
|
|
p.display()
|
|
|
|
SimpleDist.display(self, name, desc, flags, precision)
|
|
|
|
def comparable(self, other):
|
|
return self.min == other.min and self.max == other.max and \
|
|
self.bsize == other.bsize and self.size == other.size
|
|
|
|
def __eq__(self, other):
|
|
return self.sums == other.sums and self.squares == other.squares and \
|
|
self.samples == other.samples
|
|
|
|
def __isub__(self, other):
|
|
self.sums -= other.sums
|
|
self.squares -= other.squares
|
|
self.samples -= other.samples
|
|
|
|
if other.samples:
|
|
self.minval = min(self.minval, other.minval)
|
|
self.maxval = max(self.maxval, other.maxval)
|
|
self.under -= under
|
|
self.vec = map(lambda x,y: x - y, self.vec, other.vec)
|
|
self.over -= over
|
|
return self
|
|
|
|
def __iadd__(self, other):
|
|
if not self.samples and other.samples:
|
|
self = other
|
|
return self
|
|
|
|
self.sums += other.sums
|
|
self.squares += other.squares
|
|
self.samples += other.samples
|
|
|
|
if other.samples:
|
|
self.minval = min(self.minval, other.minval)
|
|
self.maxval = max(self.maxval, other.maxval)
|
|
self.under += other.under
|
|
self.vec = map(lambda x,y: x + y, self.vec, other.vec)
|
|
self.over += other.over
|
|
return self
|
|
|
|
def __itruediv__(self, other):
|
|
if not other:
|
|
return self
|
|
self.sums /= other
|
|
self.squares /= other
|
|
self.samples /= other
|
|
|
|
if self.samples:
|
|
self.under /= other
|
|
for i in xrange(len(self.vec)):
|
|
self.vec[i] /= other
|
|
self.over /= other
|
|
return self
|
|
|
|
class Dist(Statistic):
|
|
def display(self):
|
|
import display
|
|
if not display.all and not (self.flags & flags.printable):
|
|
return
|
|
|
|
self.dist.display(self.name, self.desc, self.flags, self.precision)
|
|
|
|
def comparable(self, other):
|
|
return self.name == other.name and \
|
|
self.dist.compareable(other.dist)
|
|
|
|
def __eq__(self, other):
|
|
return self.dist == other.dist
|
|
|
|
def __isub__(self, other):
|
|
self.dist -= other.dist
|
|
return self
|
|
|
|
def __iadd__(self, other):
|
|
self.dist += other.dist
|
|
return self
|
|
|
|
def __itruediv__(self, other):
|
|
if not other:
|
|
return self
|
|
self.dist /= other
|
|
return self
|
|
|
|
class VectorDist(Statistic):
|
|
def display(self):
|
|
import display
|
|
if not display.all and not (self.flags & flags.printable):
|
|
return
|
|
|
|
if isinstance(self.dist, SimpleDist):
|
|
return
|
|
|
|
for dist,sn,sd,i in map(None, self.dist, self.subnames, self.subdescs,
|
|
range(len(self.dist))):
|
|
if len(sn) > 0:
|
|
name = '%s.%s' % (self.name, sn)
|
|
else:
|
|
name = '%s[%d]' % (self.name, i)
|
|
|
|
if len(sd) > 0:
|
|
desc = sd
|
|
else:
|
|
desc = self.desc
|
|
|
|
dist.display(name, desc, self.flags, self.precision)
|
|
|
|
if (self.flags & flags.total) or 1:
|
|
if isinstance(self.dist[0], SimpleDist):
|
|
disttotal = SimpleDist( \
|
|
reduce(sums, [d.sums for d in self.dist]),
|
|
reduce(sums, [d.squares for d in self.dist]),
|
|
reduce(sums, [d.samples for d in self.dist]))
|
|
else:
|
|
disttotal = FullDist( \
|
|
reduce(sums, [d.sums for d in self.dist]),
|
|
reduce(sums, [d.squares for d in self.dist]),
|
|
reduce(sums, [d.samples for d in self.dist]),
|
|
min([d.minval for d in self.dist]),
|
|
max([d.maxval for d in self.dist]),
|
|
reduce(sums, [d.under for d in self.dist]),
|
|
reduce(sums, [d.vec for d in self.dist]),
|
|
reduce(sums, [d.over for d in self.dist]),
|
|
dist[0].min,
|
|
dist[0].max,
|
|
dist[0].bsize,
|
|
dist[0].size)
|
|
|
|
name = '%s.total' % (self.name)
|
|
desc = self.desc
|
|
disttotal.display(name, desc, self.flags, self.precision)
|
|
|
|
def comparable(self, other):
|
|
return self.name == other.name and \
|
|
alltrue(map(lambda x, y : x.comparable(y),
|
|
self.dist,
|
|
other.dist))
|
|
|
|
def __eq__(self, other):
|
|
return alltrue(map(lambda x, y : x == y, self.dist, other.dist))
|
|
|
|
def __isub__(self, other):
|
|
if isinstance(self.dist, (list, tuple)) and \
|
|
isinstance(other.dist, (list, tuple)):
|
|
for sd,od in zip(self.dist, other.dist):
|
|
sd -= od
|
|
else:
|
|
self.dist -= other.dist
|
|
return self
|
|
|
|
def __iadd__(self, other):
|
|
if isinstance(self.dist, (list, tuple)) and \
|
|
isinstance(other.dist, (list, tuple)):
|
|
for sd,od in zip(self.dist, other.dist):
|
|
sd += od
|
|
else:
|
|
self.dist += other.dist
|
|
return self
|
|
|
|
def __itruediv__(self, other):
|
|
if not other:
|
|
return self
|
|
if isinstance(self.dist, (list, tuple)):
|
|
for dist in self.dist:
|
|
dist /= other
|
|
else:
|
|
self.dist /= other
|
|
return self
|
|
|
|
class Vector2d(Statistic):
|
|
def display(self):
|
|
import display
|
|
if not display.all and not (self.flags & flags.printable):
|
|
return
|
|
|
|
d = display.VectorDisplay()
|
|
d.__dict__.update(self.__dict__)
|
|
|
|
if self.__dict__.has_key('ysubnames'):
|
|
ysubnames = list(self.ysubnames)
|
|
slack = self.x - len(ysubnames)
|
|
if slack > 0:
|
|
ysubnames.extend(['']*slack)
|
|
else:
|
|
ysubnames = range(self.x)
|
|
|
|
for x,sname in enumerate(ysubnames):
|
|
o = x * self.y
|
|
d.value = self.value[o:o+self.y]
|
|
d.name = '%s[%s]' % (self.name, sname)
|
|
d.display()
|
|
|
|
if self.flags & flags.total:
|
|
d.value = []
|
|
for y in range(self.y):
|
|
xtot = 0.0
|
|
for x in range(self.x):
|
|
xtot += self.value[y + x * self.x]
|
|
d.value.append(xtot)
|
|
|
|
d.name = self.name + '.total'
|
|
d.display()
|
|
|
|
def comparable(self, other):
|
|
return self.name == other.name and self.x == other.x and \
|
|
self.y == other.y
|
|
|
|
def __eq__(self, other):
|
|
return True
|
|
|
|
def __isub__(self, other):
|
|
return self
|
|
|
|
def __iadd__(self, other):
|
|
return self
|
|
|
|
def __itruediv__(self, other):
|
|
if not other:
|
|
return self
|
|
return self
|
|
|
|
def NewStat(source, data):
|
|
stat = None
|
|
if data.type == 'SCALAR':
|
|
stat = ScalarStat()
|
|
elif data.type == 'VECTOR':
|
|
stat = VectorStat()
|
|
elif data.type == 'DIST':
|
|
stat = Dist()
|
|
elif data.type == 'VECTORDIST':
|
|
stat = VectorDist()
|
|
elif data.type == 'VECTOR2D':
|
|
stat = Vector2d()
|
|
elif data.type == 'FORMULA':
|
|
stat = Formula()
|
|
|
|
stat.__dict__['source'] = source
|
|
stat.__dict__['bins'] = None
|
|
stat.__dict__['ticks'] = None
|
|
stat.__dict__.update(data.__dict__)
|
|
|
|
return stat
|
|
|