gem5/ext/drampower/src/CommandAnalysis.cc
Andreas Hansson e0e8b08a42 ext: Add DRAMPower to enable on-line DRAM power modelling
This patch adds the open-source (BSD 3-clause) tool DRAMPower, commit
8d3cf4bbb10aa202d850ef5e5e3e4f53aa668fa6, to be built as a part of the
simulator. We have chosen this specific version of DRAMPower as it
provides the necessary functionality, and future updates will be
coordinated with the DRAMPower development team. The files added only
include the bits needed to build the library, thus excluding all
memory specifications, traces, and the stand-alone DRAMPower
command-line tool.

A future patch includes the DRAMPower functionality in the DRAM
controller, to enable on-line DRAM power modelling, and avoid using
post-processing of traces.
2014-10-09 17:52:03 -04:00

667 lines
29 KiB
C++

/*
* Copyright (c) 2012-2014, TU Delft
* Copyright (c) 2012-2014, TU Eindhoven
* Copyright (c) 2012-2014, TU Kaiserslautern
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Karthik Chandrasekar, Matthias Jung, Omar Naji, Sven Goossens
*
*/
#include <fstream>
#include <algorithm>
#include <sstream>
#include "CommandAnalysis.h"
#include "CmdScheduler.h"
using namespace Data;
using namespace std;
CommandAnalysis::CommandAnalysis()
{
}
CommandAnalysis::CommandAnalysis(const int nbrofBanks)
{
// Initializing all counters and variables
numberofacts = 0;
numberofpres = 0;
numberofreads = 0;
numberofwrites = 0;
numberofrefs = 0;
f_act_pdns = 0;
s_act_pdns = 0;
f_pre_pdns = 0;
s_pre_pdns = 0;
numberofsrefs = 0;
pop = 0;
init = 0;
zero = 0;
actcycles = 0;
precycles = 0;
f_act_pdcycles = 0;
s_act_pdcycles = 0;
f_pre_pdcycles = 0;
s_pre_pdcycles = 0;
pup_act_cycles = 0;
pup_pre_cycles = 0;
sref_cycles = 0;
spup_cycles = 0;
sref_ref_act_cycles = 0;
sref_ref_pre_cycles = 0;
spup_ref_act_cycles = 0;
spup_ref_pre_cycles = 0;
idlecycles_act = 0;
idlecycles_pre = 0;
latest_act_cycle = -1;
latest_pre_cycle = -1;
latest_read_cycle = -1;
latest_write_cycle = -1;
end_read_op = 0;
end_write_op = 0;
end_act_op = 0;
first_act_cycle = 0;
last_pre_cycle = 0;
bankstate.resize(nbrofBanks, 0);
last_states.resize(nbrofBanks);
mem_state = 0;
sref_cycle = 0;
pdn_cycle = 0;
cmd_list.clear();
full_cmd_list.resize(1, MemCommand::PRE);
cached_cmd.clear();
activation_cycle.resize(nbrofBanks, 0);
}
// function to clear all arrays
void CommandAnalysis::clear()
{
cached_cmd.clear();
cmd_list.clear();
full_cmd_list.clear();
last_states.clear();
bankstate.clear();
}
// Reads through the trace file, identifies the timestamp, command and bank
// If the issued command includes an auto-precharge, adds an explicit
// precharge to a cached command list and computes the precharge offset from the
// issued command timestamp, when the auto-precharge would kick in
void CommandAnalysis::getCommands(const Data::MemorySpecification& memSpec,
const int nbrofBanks, std::vector<MemCommand>& list, bool lastupdate)
{
for (vector<MemCommand>::const_iterator i = list.begin(); i != list.end(); ++i) {
const MemCommand& cmd = *i;
cmd_list.push_back(cmd);
MemCommand::cmds cmdType = cmd.getType();
if (cmdType == MemCommand::ACT) {
activation_cycle[cmd.getBank()] = cmd.getTimeInt64();
} else if (cmdType == MemCommand::RDA || cmdType == MemCommand::WRA) {
// Remove auto-precharge flag from command
cmd_list.back().setType(cmd.typeWithoutAutoPrechargeFlag());
// Add the auto precharge to the list of cached_cmds
int64_t preTime = max(cmd.getTimeInt64() + cmd.getPrechargeOffset(memSpec, cmdType),
activation_cycle[cmd.getBank()] + memSpec.memTimingSpec.RAS);
cached_cmd.push_back(MemCommand(MemCommand::PRE, cmd.getBank(), static_cast<double>(preTime)));
}
}
pop = 0;
// Note: the extra pre-cmds at the end of the lists, and the cast to double
// of the size vector is probably not desirable.
cmd_list.push_back(MemCommand::PRE);
cached_cmd.push_back(MemCommand::PRE);
analyse_commands(nbrofBanks, memSpec, cmd_list.size()-1,
cached_cmd.size()-1, lastupdate);
cmd_list.clear();
cached_cmd.clear();
} // CommandAnalysis::getCommands
// Checks the auto-precharge cached command list and inserts the explicit
// precharges with the appropriate timestamp in the original command list
// (by merging) based on their offset from the issuing command. Calls the
// evaluate function to analyse this expanded list of commands.
void CommandAnalysis::analyse_commands(const int nbrofBanks,
Data::MemorySpecification memSpec, int64_t nCommands, int64_t nCached, bool lastupdate)
{
full_cmd_list.resize(1, MemCommand::PRE);
unsigned mCommands = 0;
unsigned mCached = 0;
for (unsigned i = 0; i < nCommands + nCached + 1; i++) {
if (cached_cmd.size() > 1) {
if ((cmd_list[mCommands].getTime() > 1) && (init == 0)) {
full_cmd_list[i].setType(MemCommand::PREA);
init = 1;
pop = 1;
} else {
init = 1;
if ((cached_cmd[mCached].getTime() > 0) && (cmd_list.
at(mCommands).getTime() < cached_cmd[mCached].
getTime()) && ((cmd_list[mCommands].getTime() > 0) ||
((cmd_list[mCommands].getTime() == 0) && (cmd_list[mCommands].
getType() != MemCommand::PRE)))) {
full_cmd_list[i] = cmd_list[mCommands];
mCommands++;
} else if ((cached_cmd[mCached].getTime() > 0) && (cmd_list[mCommands].
getTime() >= cached_cmd[mCached].getTime())) {
full_cmd_list[i] = cached_cmd[mCached];
mCached++;
} else if (cached_cmd[mCached].getTime() == 0) {
if ((cmd_list[mCommands].getTime() > 0) || ((cmd_list[mCommands].
getTime() == 0) && (cmd_list[mCommands].
getType() != MemCommand::PRE))) {
full_cmd_list[i] = cmd_list[mCommands];
mCommands++;
}
} else if (cmd_list[mCommands].getTime() == 0) {
full_cmd_list[i] = cached_cmd[mCached];
mCached++;
}
}
} else {
if ((cmd_list[mCommands].getTime() > 1) && (init == 0)) {
full_cmd_list[i].setType(MemCommand::PREA);
init = 1;
pop = 1;
} else {
init = 1;
if ((cmd_list[mCommands].getTime() > 0) || ((cmd_list.
at(mCommands).getTime() == 0) && (cmd_list[mCommands].
getType() != MemCommand::PRE))) {
full_cmd_list[i] = cmd_list[mCommands];
mCommands++;
}
}
}
full_cmd_list.resize(full_cmd_list.size() + 1, MemCommand::PRE);
}
full_cmd_list.pop_back();
if (pop == 0) {
full_cmd_list.pop_back();
}
if (lastupdate) {
full_cmd_list.resize(full_cmd_list.size() + 1, MemCommand::NOP);
full_cmd_list[full_cmd_list.size() - 1].setTime(full_cmd_list
[full_cmd_list.size() - 2].getTime() + timeToCompletion(memSpec,
full_cmd_list[full_cmd_list.size() - 2].getType()) - 1);
}
evaluate(memSpec, full_cmd_list, nbrofBanks);
} // CommandAnalysis::analyse_commands
// To get the time of completion of the issued command
// Derived based on JEDEC specifications
int CommandAnalysis::timeToCompletion(const MemorySpecification&
memSpec, MemCommand::cmds type)
{
int offset = 0;
const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec;
const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
if (type == MemCommand::RD) {
offset = static_cast<int>(memTimingSpec.RL +
memTimingSpec.DQSCK + 1 + (memArchSpec.burstLength /
memArchSpec.dataRate));
} else if (type == MemCommand::WR) {
offset = static_cast<int>(memTimingSpec.WL +
(memArchSpec.burstLength / memArchSpec.dataRate) +
memTimingSpec.WR);
} else if (type == MemCommand::ACT) {
offset = static_cast<int>(memTimingSpec.RCD);
} else if ((type == MemCommand::PRE) || (type == MemCommand::PREA)) {
offset = static_cast<int>(memTimingSpec.RP);
}
return offset;
} // CommandAnalysis::timeToCompletion
// Used to analyse a given list of commands and identify command timings
// and memory state transitions
void CommandAnalysis::evaluate(const MemorySpecification& memSpec,
vector<MemCommand>& cmd_list, int nbrofBanks)
{
// for each command identify timestamp, type and bank
for (unsigned cmd_list_counter = 0; cmd_list_counter < cmd_list.size();
cmd_list_counter++) {
// For command type
int type = cmd_list[cmd_list_counter].getType();
// For command bank
int bank = cmd_list[cmd_list_counter].getBank();
// Command Issue timestamp in clock cycles (cc)
int64_t timestamp = cmd_list[cmd_list_counter].getTimeInt64();
if (type == MemCommand::ACT) {
// If command is ACT - update number of acts, bank state of the
// target bank, first and latest activation cycle and the memory
// state. Update the number of precharged/idle-precharged cycles.
numberofacts++;
if (bankstate[bank] == 1) {
printWarning("Bank is already active!", type, timestamp, bank);
}
bankstate[bank] = 1;
if (mem_state == 0) {
first_act_cycle = timestamp;
precycles += max(zero, timestamp - last_pre_cycle);
idle_pre_update(memSpec, timestamp, latest_pre_cycle);
}
latest_act_cycle = timestamp;
mem_state++;
} else if (type == MemCommand::RD) {
// If command is RD - update number of reads and read cycle. Check
// for active idle cycles (if any).
if (bankstate[bank] == 0) {
printWarning("Bank is not active!", type, timestamp, bank);
}
numberofreads++;
idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
latest_act_cycle, timestamp);
latest_read_cycle = timestamp;
} else if (type == MemCommand::WR) {
// If command is WR - update number of writes and write cycle. Check
// for active idle cycles (if any).
if (bankstate[bank] == 0) {
printWarning("Bank is not active!", type, timestamp, bank);
}
numberofwrites++;
idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
latest_act_cycle, timestamp);
latest_write_cycle = timestamp;
} else if (type == MemCommand::REF) {
// If command is REF - update number of refreshes, set bank state of
// all banks to ACT, set the last PRE cycles at RFC-RP cycles from
// timestamp, set the number of active cycles to RFC-RP and check
// for active and precharged cycles and idle active and idle
// precharged cycles before refresh. Change memory state to 0.
printWarningIfActive("One or more banks are active! REF requires all banks to be precharged.", type, timestamp, bank);
numberofrefs++;
idle_pre_update(memSpec, timestamp, latest_pre_cycle);
first_act_cycle = timestamp;
precycles += max(zero, timestamp - last_pre_cycle);
last_pre_cycle = timestamp + memSpec.memTimingSpec.RFC -
memSpec.memTimingSpec.RP;
latest_pre_cycle = last_pre_cycle;
actcycles += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP;
mem_state = 0;
for (int j = 0; j < nbrofBanks; j++) {
bankstate[j] = 0;
}
} else if (type == MemCommand::PRE) {
// If command is explicit PRE - update number of precharges, bank
// state of the target bank and last and latest precharge cycle.
// Calculate the number of active cycles if the memory was in the
// active state before, but there is a state transition to PRE now.
// If not, update the number of precharged cycles and idle cycles.
// Update memory state if needed.
if (bankstate[bank] == 1) {
numberofpres++;
}
bankstate[bank] = 0;
if (mem_state == 1) {
actcycles += max(zero, timestamp - first_act_cycle);
last_pre_cycle = timestamp;
idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
latest_act_cycle, timestamp);
} else if (mem_state == 0) {
precycles += max(zero, timestamp - last_pre_cycle);
idle_pre_update(memSpec, timestamp, latest_pre_cycle);
last_pre_cycle = timestamp;
}
latest_pre_cycle = timestamp;
if (mem_state > 0) {
mem_state--;
} else {
mem_state = 0;
}
} else if (type == MemCommand::PREA) {
// If command is explicit PREA (precharge all banks) - update
// number of precharges by the number of banks, update the bank
// state of all banks to PRE and set the precharge cycle.
// Calculate the number of active cycles if the memory was in the
// active state before, but there is a state transition to PRE now.
// If not, update the number of precharged cycles and idle cycles.
if (timestamp == 0) {
numberofpres += 0;
} else {
numberofpres += mem_state;
}
if (mem_state > 0) {
actcycles += max(zero, timestamp - first_act_cycle);
idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
latest_act_cycle, timestamp);
} else if (mem_state == 0) {
precycles += max(zero, timestamp - last_pre_cycle);
idle_pre_update(memSpec, timestamp, latest_pre_cycle);
}
latest_pre_cycle = timestamp;
last_pre_cycle = timestamp;
mem_state = 0;
for (int j = 0; j < nbrofBanks; j++) {
bankstate[j] = 0;
}
} else if (type == MemCommand::PDN_F_ACT) {
// If command is fast-exit active power-down - update number of
// power-downs, set the power-down cycle and the memory mode to
// fast-exit active power-down. Save states of all the banks from
// the cycle before entering active power-down, to be returned to
// after powering-up. Update active and active idle cycles.
printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", type, timestamp, bank);
f_act_pdns++;
for (int j = 0; j < nbrofBanks; j++) {
last_states[j] = bankstate[j];
}
pdn_cycle = timestamp;
actcycles += max(zero, timestamp - first_act_cycle);
idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
latest_act_cycle, timestamp);
mem_state = CommandAnalysis::MS_PDN_F_ACT;
} else if (type == MemCommand::PDN_S_ACT) {
// If command is slow-exit active power-down - update number of
// power-downs, set the power-down cycle and the memory mode to
// slow-exit active power-down. Save states of all the banks from
// the cycle before entering active power-down, to be returned to
// after powering-up. Update active and active idle cycles.
printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", type, timestamp, bank);
s_act_pdns++;
for (int j = 0; j < nbrofBanks; j++) {
last_states[j] = bankstate[j];
}
pdn_cycle = timestamp;
actcycles += max(zero, timestamp - first_act_cycle);
idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
latest_act_cycle, timestamp);
mem_state = CommandAnalysis::MS_PDN_S_ACT;
} else if (type == MemCommand::PDN_F_PRE) {
// If command is fast-exit precharged power-down - update number of
// power-downs, set the power-down cycle and the memory mode to
// fast-exit precahrged power-down. Update precharged and precharged
// idle cycles.
printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", type, timestamp, bank);
f_pre_pdns++;
pdn_cycle = timestamp;
precycles += max(zero, timestamp - last_pre_cycle);
idle_pre_update(memSpec, timestamp, latest_pre_cycle);
mem_state = CommandAnalysis::MS_PDN_F_PRE;
} else if (type == MemCommand::PDN_S_PRE) {
// If command is slow-exit precharged power-down - update number of
// power-downs, set the power-down cycle and the memory mode to
// slow-exit precahrged power-down. Update precharged and precharged
// idle cycles.
printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", type, timestamp, bank);
s_pre_pdns++;
pdn_cycle = timestamp;
precycles += max(zero, timestamp - last_pre_cycle);
idle_pre_update(memSpec, timestamp, latest_pre_cycle);
mem_state = CommandAnalysis::MS_PDN_S_PRE;
} else if (type == MemCommand::PUP_ACT) {
// If command is power-up in the active mode - check the power-down
// exit-mode employed (fast or slow), update the number of power-down
// and power-up cycles and the latest and first act cycle. Also, reset
// all the individual bank states to the respective saved states
// before entering power-down.
if (mem_state == CommandAnalysis::MS_PDN_F_ACT) {
f_act_pdcycles += max(zero, timestamp - pdn_cycle);
pup_act_cycles += memSpec.memTimingSpec.XP;
latest_act_cycle = max(timestamp, timestamp +
memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RCD);
} else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) {
s_act_pdcycles += max(zero, timestamp - pdn_cycle);
if (memSpec.memArchSpec.dll == false) {
pup_act_cycles += memSpec.memTimingSpec.XP;
latest_act_cycle = max(timestamp, timestamp +
memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RCD);
} else {
pup_act_cycles += memSpec.memTimingSpec.XPDLL -
memSpec.memTimingSpec.RCD;
latest_act_cycle = max(timestamp, timestamp +
memSpec.memTimingSpec.XPDLL -
(2 * memSpec.memTimingSpec.RCD));
}
} else if ((mem_state != CommandAnalysis::MS_PDN_S_ACT) || (mem_state !=
CommandAnalysis::MS_PDN_F_ACT)) {
cerr << "Incorrect use of Active Power-Up!" << endl;
}
mem_state = 0;
for (int j = 0; j < nbrofBanks; j++) {
bankstate[j] = last_states[j];
mem_state += last_states[j];
}
first_act_cycle = timestamp;
} else if (type == MemCommand::PUP_PRE) {
// If command is power-up in the precharged mode - check the power-down
// exit-mode employed (fast or slow), update the number of power-down
// and power-up cycles and the latest and last pre cycle.
if (mem_state == CommandAnalysis::MS_PDN_F_PRE) {
f_pre_pdcycles += max(zero, timestamp - pdn_cycle);
pup_pre_cycles += memSpec.memTimingSpec.XP;
latest_pre_cycle = max(timestamp, timestamp +
memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RP);
} else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) {
s_pre_pdcycles += max(zero, timestamp - pdn_cycle);
if (memSpec.memArchSpec.dll == false) {
pup_pre_cycles += memSpec.memTimingSpec.XP;
latest_pre_cycle = max(timestamp, timestamp +
memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RP);
} else {
pup_pre_cycles += memSpec.memTimingSpec.XPDLL -
memSpec.memTimingSpec.RCD;
latest_pre_cycle = max(timestamp, timestamp +
memSpec.memTimingSpec.XPDLL - memSpec.memTimingSpec.RCD -
memSpec.memTimingSpec.RP);
}
} else if ((mem_state != CommandAnalysis::MS_PDN_S_PRE) || (mem_state !=
CommandAnalysis::MS_PDN_F_PRE)) {
cerr << "Incorrect use of Precharged Power-Up!" << endl;
}
mem_state = 0;
last_pre_cycle = timestamp;
} else if (type == MemCommand::SREN) {
// If command is self-refresh - update number of self-refreshes,
// set memory state to SREF, update precharge and idle precharge
// cycles and set the self-refresh cycle.
printWarningIfActive("One or more banks are active! SREF requires all banks to be precharged.", type, timestamp, bank);
numberofsrefs++;
sref_cycle = timestamp;
precycles += max(zero, timestamp - last_pre_cycle);
idle_pre_update(memSpec, timestamp, latest_pre_cycle);
mem_state = CommandAnalysis::MS_SREF;
} else if (type == MemCommand::SREX) {
// If command is self-refresh exit - update the number of self-refresh
// clock cycles, number of active and precharged auto-refresh clock
// cycles during self-refresh and self-refresh exit based on the number
// of cycles in the self-refresh mode and auto-refresh duration (RFC).
// Set the last and latest precharge cycle accordingly and set the
// memory state to 0.
if (mem_state != CommandAnalysis::MS_SREF) {
cerr << "Incorrect use of Self-Refresh Power-Up!" << endl;
}
if (max(zero, timestamp - sref_cycle) >= memSpec.memTimingSpec.RFC) {
sref_cycles += max(zero, timestamp - sref_cycle
- memSpec.memTimingSpec.RFC);
sref_ref_act_cycles += memSpec.memTimingSpec.RFC -
memSpec.memTimingSpec.RP;
sref_ref_pre_cycles += memSpec.memTimingSpec.RP;
last_pre_cycle = timestamp;
if (memSpec.memArchSpec.dll == false) {
spup_cycles += memSpec.memTimingSpec.XS;
latest_pre_cycle = max(timestamp, timestamp +
memSpec.memTimingSpec.XS - memSpec.memTimingSpec.RP);
} else {
spup_cycles += memSpec.memTimingSpec.XSDLL -
memSpec.memTimingSpec.RCD;
latest_pre_cycle = max(timestamp, timestamp +
memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD
- memSpec.memTimingSpec.RP);
}
} else {
int64_t sref_diff = memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP;
int64_t sref_pre = max(zero, timestamp - sref_cycle - sref_diff);
int64_t spup_pre = memSpec.memTimingSpec.RP - sref_pre;
int64_t sref_act = max(zero, timestamp - sref_cycle);
int64_t spup_act = memSpec.memTimingSpec.RFC - sref_act;
if (max(zero, timestamp - sref_cycle) >= sref_diff) {
sref_ref_act_cycles += sref_diff;
sref_ref_pre_cycles += sref_pre;
spup_ref_pre_cycles += spup_pre;
last_pre_cycle = timestamp + spup_pre;
if (memSpec.memArchSpec.dll == false) {
spup_cycles += memSpec.memTimingSpec.XS - spup_pre;
latest_pre_cycle = max(timestamp, timestamp +
memSpec.memTimingSpec.XS - spup_pre -
memSpec.memTimingSpec.RP);
} else {
spup_cycles += memSpec.memTimingSpec.XSDLL -
memSpec.memTimingSpec.RCD - spup_pre;
latest_pre_cycle = max(timestamp, timestamp +
memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD -
spup_pre - memSpec.memTimingSpec.RP);
}
} else {
sref_ref_act_cycles += sref_act;
spup_ref_act_cycles += spup_act;
spup_ref_pre_cycles += memSpec.memTimingSpec.RP;
last_pre_cycle = timestamp + spup_act + memSpec.memTimingSpec.RP;
if (memSpec.memArchSpec.dll == false) {
spup_cycles += memSpec.memTimingSpec.XS - spup_act -
memSpec.memTimingSpec.RP;
latest_pre_cycle = max(timestamp, timestamp +
memSpec.memTimingSpec.XS - spup_act -
(2 * memSpec.memTimingSpec.RP));
} else {
spup_cycles += memSpec.memTimingSpec.XSDLL -
memSpec.memTimingSpec.RCD - spup_act -
memSpec.memTimingSpec.RP;
latest_pre_cycle = max(timestamp, timestamp +
memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD -
spup_act - (2 * memSpec.memTimingSpec.RP));
}
}
}
mem_state = 0;
} else if ((type == MemCommand::END) || (type == MemCommand::NOP)) {
// May be optionally used at the end of memory trace for better accuracy
// Update all counters based on completion of operations.
if ((mem_state > 0) && (mem_state < 9)) {
actcycles += max(zero, timestamp - first_act_cycle);
idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
latest_act_cycle, timestamp);
} else if (mem_state == 0) {
precycles += max(zero, timestamp - last_pre_cycle);
idle_pre_update(memSpec, timestamp, latest_pre_cycle);
} else if (mem_state == CommandAnalysis::MS_PDN_F_ACT) {
f_act_pdcycles += max(zero, timestamp - pdn_cycle);
} else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) {
s_act_pdcycles += max(zero, timestamp - pdn_cycle);
} else if (mem_state == CommandAnalysis::MS_PDN_F_PRE) {
f_pre_pdcycles += max(zero, timestamp - pdn_cycle);
} else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) {
s_pre_pdcycles += max(zero, timestamp - pdn_cycle);
} else if (mem_state == CommandAnalysis::MS_SREF) {
sref_cycles += max(zero, timestamp - sref_cycle);
}
}
}
} // CommandAnalysis::evaluate
// To update idle period information whenever active cycles may be idle
void CommandAnalysis::idle_act_update(const MemorySpecification& memSpec,
int64_t latest_read_cycle, int64_t latest_write_cycle,
int64_t latest_act_cycle, int64_t timestamp)
{
if (latest_read_cycle >= 0) {
end_read_op = latest_read_cycle + timeToCompletion(memSpec,
MemCommand::RD) - 1;
}
if (latest_write_cycle >= 0) {
end_write_op = latest_write_cycle + timeToCompletion(memSpec,
MemCommand::WR) - 1;
}
if (latest_act_cycle >= 0) {
end_act_op = latest_act_cycle + timeToCompletion(memSpec,
MemCommand::ACT) - 1;
}
idlecycles_act += max(zero, timestamp - max(max(end_read_op, end_write_op),
end_act_op));
} // CommandAnalysis::idle_act_update
// To update idle period information whenever precharged cycles may be idle
void CommandAnalysis::idle_pre_update(const MemorySpecification& memSpec,
int64_t timestamp, int64_t latest_pre_cycle)
{
if (latest_pre_cycle > 0) {
idlecycles_pre += max(zero, timestamp - latest_pre_cycle -
memSpec.memTimingSpec.RP);
} else if (latest_pre_cycle == 0) {
idlecycles_pre += max(zero, timestamp - latest_pre_cycle);
}
}
void CommandAnalysis::printWarningIfActive(const string& warning, int type, int64_t timestamp, int bank)
{
if (mem_state != 0) {
printWarning(warning, type, timestamp, bank);
}
}
void CommandAnalysis::printWarningIfNotActive(const string& warning, int type, int64_t timestamp, int bank)
{
if (mem_state == 0) {
printWarning(warning, type, timestamp, bank);
}
}
void CommandAnalysis::printWarning(const string& warning, int type, int64_t timestamp, int bank)
{
cerr << "WARNING: " << warning << endl;
cerr << "Command: " << type << ", Timestamp: " << timestamp <<
", Bank: " << bank << endl;
}