gem5/sim/process.cc
Kevin Lim dc75cf121c Don't access init_regs directly. This does not affect newmem; Steve already changed this in newmem.
--HG--
extra : convert_revision : 19b1ed0bb2c8bcde72843e62f73635e84adf95b5
2006-03-15 15:38:14 -05:00

446 lines
12 KiB
C++

/*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <unistd.h>
#include <fcntl.h>
#include <cstdio>
#include <string>
#include "base/intmath.hh"
#include "base/loader/object_file.hh"
#include "base/loader/symtab.hh"
#include "base/statistics.hh"
#include "config/full_system.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/exec_context.hh"
#include "cpu/smt.hh"
#include "encumbered/cpu/full/thread.hh"
#include "encumbered/eio/eio.hh"
#include "encumbered/mem/functional/main.hh"
#include "sim/builder.hh"
#include "sim/process.hh"
#include "sim/stats.hh"
#include "sim/syscall_emul.hh"
#include "arch/process.hh"
using namespace std;
using namespace TheISA;
//
// The purpose of this code is to fake the loader & syscall mechanism
// when there's no OS: thus there's no resone to use it in FULL_SYSTEM
// mode when we do have an OS
//
#if FULL_SYSTEM
#error "process.cc not compatible with FULL_SYSTEM"
#endif
// current number of allocated processes
int num_processes = 0;
Process::Process(const string &nm,
int stdin_fd, // initial I/O descriptors
int stdout_fd,
int stderr_fd)
: SimObject(nm)
{
// allocate memory space
memory = new MainMemory(nm + ".MainMem");
// allocate initial register file
init_regs = new RegFile;
memset(init_regs, 0, sizeof(RegFile));
cpuXC = new CPUExecContext(init_regs);
// initialize first 3 fds (stdin, stdout, stderr)
fd_map[STDIN_FILENO] = stdin_fd;
fd_map[STDOUT_FILENO] = stdout_fd;
fd_map[STDERR_FILENO] = stderr_fd;
// mark remaining fds as free
for (int i = 3; i <= MAX_FD; ++i) {
fd_map[i] = -1;
}
mmap_start = mmap_end = 0;
nxm_start = nxm_end = 0;
// other parameters will be initialized when the program is loaded
}
void
Process::regStats()
{
using namespace Stats;
num_syscalls
.name(name() + ".PROG:num_syscalls")
.desc("Number of system calls")
;
}
//
// static helper functions
//
int
Process::openInputFile(const string &filename)
{
int fd = open(filename.c_str(), O_RDONLY);
if (fd == -1) {
perror(NULL);
cerr << "unable to open \"" << filename << "\" for reading\n";
fatal("can't open input file");
}
return fd;
}
int
Process::openOutputFile(const string &filename)
{
int fd = open(filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0774);
if (fd == -1) {
perror(NULL);
cerr << "unable to open \"" << filename << "\" for writing\n";
fatal("can't open output file");
}
return fd;
}
int
Process::registerExecContext(ExecContext *xc)
{
// add to list
int myIndex = execContexts.size();
execContexts.push_back(xc);
if (myIndex == 0) {
// copy process's initial regs struct
// Hack for now to copy init regs
xc->copyArchRegs(cpuXC->getProxy());
}
// return CPU number to caller and increment available CPU count
return myIndex;
}
void
Process::startup()
{
if (execContexts.empty())
return;
// first exec context for this process... initialize & enable
ExecContext *xc = execContexts[0];
// mark this context as active so it will start ticking.
xc->activate(0);
}
void
Process::replaceExecContext(ExecContext *xc, int xcIndex)
{
if (xcIndex >= execContexts.size()) {
panic("replaceExecContext: bad xcIndex, %d >= %d\n",
xcIndex, execContexts.size());
}
execContexts[xcIndex] = xc;
}
// map simulator fd sim_fd to target fd tgt_fd
void
Process::dup_fd(int sim_fd, int tgt_fd)
{
if (tgt_fd < 0 || tgt_fd > MAX_FD)
panic("Process::dup_fd tried to dup past MAX_FD (%d)", tgt_fd);
fd_map[tgt_fd] = sim_fd;
}
// generate new target fd for sim_fd
int
Process::alloc_fd(int sim_fd)
{
// in case open() returns an error, don't allocate a new fd
if (sim_fd == -1)
return -1;
// find first free target fd
for (int free_fd = 0; free_fd < MAX_FD; ++free_fd) {
if (fd_map[free_fd] == -1) {
fd_map[free_fd] = sim_fd;
return free_fd;
}
}
panic("Process::alloc_fd: out of file descriptors!");
}
// free target fd (e.g., after close)
void
Process::free_fd(int tgt_fd)
{
if (fd_map[tgt_fd] == -1)
warn("Process::free_fd: request to free unused fd %d", tgt_fd);
fd_map[tgt_fd] = -1;
}
// look up simulator fd for given target fd
int
Process::sim_fd(int tgt_fd)
{
if (tgt_fd > MAX_FD)
return -1;
return fd_map[tgt_fd];
}
//
// need to declare these here since there is no concrete Process type
// that can be constructed (i.e., no REGISTER_SIM_OBJECT() macro call,
// which is where these get declared for concrete types).
//
DEFINE_SIM_OBJECT_CLASS_NAME("Process", Process)
////////////////////////////////////////////////////////////////////////
//
// LiveProcess member definitions
//
////////////////////////////////////////////////////////////////////////
static void
copyStringArray(vector<string> &strings, Addr array_ptr, Addr data_ptr,
FunctionalMemory *memory)
{
Addr data_ptr_swap;
for (int i = 0; i < strings.size(); ++i) {
data_ptr_swap = htog(data_ptr);
memory->access(Write, array_ptr, &data_ptr_swap, sizeof(Addr));
memory->writeString(data_ptr, strings[i].c_str());
array_ptr += sizeof(Addr);
data_ptr += strings[i].size() + 1;
}
// add NULL terminator
data_ptr = 0;
memory->access(Write, array_ptr, &data_ptr, sizeof(Addr));
}
LiveProcess::LiveProcess(const string &nm, ObjectFile *objFile,
int stdin_fd, int stdout_fd, int stderr_fd,
vector<string> &argv, vector<string> &envp)
: Process(nm, stdin_fd, stdout_fd, stderr_fd)
{
prog_fname = argv[0];
prog_entry = objFile->entryPoint();
text_base = objFile->textBase();
text_size = objFile->textSize();
data_base = objFile->dataBase();
data_size = objFile->dataSize() + objFile->bssSize();
brk_point = roundUp(data_base + data_size, VMPageSize);
// load object file into target memory
objFile->loadSections(memory);
// load up symbols, if any... these may be used for debugging or
// profiling.
if (!debugSymbolTable) {
debugSymbolTable = new SymbolTable();
if (!objFile->loadGlobalSymbols(debugSymbolTable) ||
!objFile->loadLocalSymbols(debugSymbolTable)) {
// didn't load any symbols
delete debugSymbolTable;
debugSymbolTable = NULL;
}
}
// Set up stack. On Alpha, stack goes below text section. This
// code should get moved to some architecture-specific spot.
stack_base = text_base - (409600+4096);
// Set up region for mmaps. Tru64 seems to start just above 0 and
// grow up from there.
mmap_start = mmap_end = 0x10000;
// Set pointer for next thread stack. Reserve 8M for main stack.
next_thread_stack_base = stack_base - (8 * 1024 * 1024);
// Calculate how much space we need for arg & env arrays.
int argv_array_size = sizeof(Addr) * (argv.size() + 1);
int envp_array_size = sizeof(Addr) * (envp.size() + 1);
int arg_data_size = 0;
for (int i = 0; i < argv.size(); ++i) {
arg_data_size += argv[i].size() + 1;
}
int env_data_size = 0;
for (int i = 0; i < envp.size(); ++i) {
env_data_size += envp[i].size() + 1;
}
int space_needed =
argv_array_size + envp_array_size + arg_data_size + env_data_size;
// for SimpleScalar compatibility
if (space_needed < 16384)
space_needed = 16384;
// set bottom of stack
stack_min = stack_base - space_needed;
// align it
stack_min &= ~7;
stack_size = stack_base - stack_min;
// map out initial stack contents
Addr argv_array_base = stack_min + sizeof(uint64_t); // room for argc
Addr envp_array_base = argv_array_base + argv_array_size;
Addr arg_data_base = envp_array_base + envp_array_size;
Addr env_data_base = arg_data_base + arg_data_size;
// write contents to stack
uint64_t argc = argv.size();
argc = htog(argc);
memory->access(Write, stack_min, &argc, sizeof(uint64_t));
copyStringArray(argv, argv_array_base, arg_data_base, memory);
copyStringArray(envp, envp_array_base, env_data_base, memory);
cpuXC->setIntReg(ArgumentReg0, argc);
cpuXC->setIntReg(ArgumentReg1, argv_array_base);
cpuXC->setIntReg(StackPointerReg, stack_min);
cpuXC->setIntReg(GlobalPointerReg, objFile->globalPointer());
cpuXC->setPC(prog_entry);
cpuXC->setNextPC(prog_entry + sizeof(MachInst));
}
void
LiveProcess::syscall(ExecContext *xc)
{
num_syscalls++;
int64_t callnum = xc->readIntReg(SyscallNumReg);
SyscallDesc *desc = getDesc(callnum);
if (desc == NULL)
fatal("Syscall %d out of range", callnum);
desc->doSyscall(callnum, this, xc);
}
LiveProcess *
LiveProcess::create(const string &nm,
int stdin_fd, int stdout_fd, int stderr_fd,
string executable,
vector<string> &argv, vector<string> &envp)
{
LiveProcess *process = NULL;
ObjectFile *objFile = createObjectFile(executable);
if (objFile == NULL) {
fatal("Can't load object file %s", executable);
}
// set up syscall emulation pointer for the current ISA
process = createProcess(nm, objFile,
stdin_fd, stdout_fd, stderr_fd,
argv, envp);
delete objFile;
if (process == NULL)
fatal("Unknown error creating process object.");
return process;
}
BEGIN_DECLARE_SIM_OBJECT_PARAMS(LiveProcess)
VectorParam<string> cmd;
Param<string> executable;
Param<string> input;
Param<string> output;
VectorParam<string> env;
END_DECLARE_SIM_OBJECT_PARAMS(LiveProcess)
BEGIN_INIT_SIM_OBJECT_PARAMS(LiveProcess)
INIT_PARAM(cmd, "command line (executable plus arguments)"),
INIT_PARAM(executable, "executable (overrides cmd[0] if set)"),
INIT_PARAM(input, "filename for stdin (dflt: use sim stdin)"),
INIT_PARAM(output, "filename for stdout/stderr (dflt: use sim stdout)"),
INIT_PARAM(env, "environment settings")
END_INIT_SIM_OBJECT_PARAMS(LiveProcess)
CREATE_SIM_OBJECT(LiveProcess)
{
string in = input;
string out = output;
// initialize file descriptors to default: same as simulator
int stdin_fd, stdout_fd, stderr_fd;
if (in == "stdin" || in == "cin")
stdin_fd = STDIN_FILENO;
else
stdin_fd = Process::openInputFile(input);
if (out == "stdout" || out == "cout")
stdout_fd = STDOUT_FILENO;
else if (out == "stderr" || out == "cerr")
stdout_fd = STDERR_FILENO;
else
stdout_fd = Process::openOutputFile(out);
stderr_fd = (stdout_fd != STDOUT_FILENO) ? stdout_fd : STDERR_FILENO;
return LiveProcess::create(getInstanceName(),
stdin_fd, stdout_fd, stderr_fd,
(string)executable == "" ? cmd[0] : executable,
cmd, env);
}
REGISTER_SIM_OBJECT("LiveProcess", LiveProcess)