gem5/sim/pyconfig/m5config.py
Nathan Binkert 7d91bda6bf Add support for using the variables that m5 was compiled with for
determining which parameters belong to a class.  This allows us to
remove the disable flag since it is not the correct model
for variable checking anyway.

objects/BaseCPU.mpy:
    Use the FULL_SYSTEM environment variable to enable or disable
    parameters.
sim/pyconfig/m5config.py:
    remove the disable flag since it is not the correct model
    for variable checking.

--HG--
extra : convert_revision : a8ccb78ba16d23006225df282a09187d32557608
2005-03-09 14:42:30 -05:00

1303 lines
44 KiB
Python

# Copyright (c) 2004 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import generators
import os, re, sys, types, inspect
from importer import AddToPath, LoadMpyFile
noDot = False
try:
import pydot
except:
noDot = True
env = {}
env.update(os.environ)
def panic(string):
print >>sys.stderr, 'panic:', string
sys.exit(1)
def issequence(value):
return isinstance(value, tuple) or isinstance(value, list)
class Singleton(type):
def __call__(cls, *args, **kwargs):
if hasattr(cls, '_instance'):
return cls._instance
cls._instance = super(Singleton, cls).__call__(*args, **kwargs)
return cls._instance
#####################################################################
#
# M5 Python Configuration Utility
#
# The basic idea is to write simple Python programs that build Python
# objects corresponding to M5 SimObjects for the deisred simulation
# configuration. For now, the Python emits a .ini file that can be
# parsed by M5. In the future, some tighter integration between M5
# and the Python interpreter may allow bypassing the .ini file.
#
# Each SimObject class in M5 is represented by a Python class with the
# same name. The Python inheritance tree mirrors the M5 C++ tree
# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
# SimObjects inherit from a single SimObject base class). To specify
# an instance of an M5 SimObject in a configuration, the user simply
# instantiates the corresponding Python object. The parameters for
# that SimObject are given by assigning to attributes of the Python
# object, either using keyword assignment in the constructor or in
# separate assignment statements. For example:
#
# cache = BaseCache('my_cache', root, size=64*K)
# cache.hit_latency = 3
# cache.assoc = 8
#
# (The first two constructor arguments specify the name of the created
# cache and its parent node in the hierarchy.)
#
# The magic lies in the mapping of the Python attributes for SimObject
# classes to the actual SimObject parameter specifications. This
# allows parameter validity checking in the Python code. Continuing
# the example above, the statements "cache.blurfl=3" or
# "cache.assoc='hello'" would both result in runtime errors in Python,
# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
# parameter requires an integer, respectively. This magic is done
# primarily by overriding the special __setattr__ method that controls
# assignment to object attributes.
#
# The Python module provides another class, ConfigNode, which is a
# superclass of SimObject. ConfigNode implements the parent/child
# relationship for building the configuration hierarchy tree.
# Concrete instances of ConfigNode can be used to group objects in the
# hierarchy, but do not correspond to SimObjects themselves (like a
# .ini section with "children=" but no "type=".
#
# Once a set of Python objects have been instantiated in a hierarchy,
# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
# will generate a .ini file. See simple-4cpu.py for an example
# (corresponding to m5-test/simple-4cpu.ini).
#
#####################################################################
#####################################################################
#
# ConfigNode/SimObject classes
#
# The Python class hierarchy rooted by ConfigNode (which is the base
# class of SimObject, which in turn is the base class of all other M5
# SimObject classes) has special attribute behavior. In general, an
# object in this hierarchy has three categories of attribute-like
# things:
#
# 1. Regular Python methods and variables. These must start with an
# underscore to be treated normally.
#
# 2. SimObject parameters. These values are stored as normal Python
# attributes, but all assignments to these attributes are checked
# against the pre-defined set of parameters stored in the class's
# _params dictionary. Assignments to attributes that do not
# correspond to predefined parameters, or that are not of the correct
# type, incur runtime errors.
#
# 3. Hierarchy children. The child nodes of a ConfigNode are stored
# in the node's _children dictionary, but can be accessed using the
# Python attribute dot-notation (just as they are printed out by the
# simulator). Children cannot be created using attribute assigment;
# they must be added by specifying the parent node in the child's
# constructor or using the '+=' operator.
# The SimObject parameters are the most complex, for a few reasons.
# First, both parameter descriptions and parameter values are
# inherited. Thus parameter description lookup must go up the
# inheritance chain like normal attribute lookup, but this behavior
# must be explicitly coded since the lookup occurs in each class's
# _params attribute. Second, because parameter values can be set
# on SimObject classes (to implement default values), the parameter
# checking behavior must be enforced on class attribute assignments as
# well as instance attribute assignments. Finally, because we allow
# class specialization via inheritance (e.g., see the L1Cache class in
# the simple-4cpu.py example), we must do parameter checking even on
# class instantiation. To provide all these features, we use a
# metaclass to define most of the SimObject parameter behavior for
# this class hierarchy.
#
#####################################################################
class Proxy(object):
def __init__(self, path = ()):
self._object = None
self._path = path
def __getattr__(self, attr):
return Proxy(self._path + (attr, ))
def __setattr__(self, attr, value):
if not attr.startswith('_'):
raise AttributeError, 'cannot set attribute %s' % attr
super(Proxy, self).__setattr__(attr, value)
def _convert(self):
obj = self._object
for attr in self._path:
obj = obj.__getattribute__(attr)
return obj
Super = Proxy()
def isSubClass(value, cls):
try:
return issubclass(value, cls)
except:
return False
def isConfigNode(value):
try:
return issubclass(value, ConfigNode)
except:
return False
def isSimObject(value):
try:
return issubclass(value, SimObject)
except:
return False
def isSimObjSequence(value):
if not issequence(value):
return False
for val in value:
if not isNullPointer(val) and not isConfigNode(val):
return False
return True
def isParamContext(value):
try:
return issubclass(value, ParamContext)
except:
return False
class_decorator = 'M5M5_SIMOBJECT_'
expr_decorator = 'M5M5_EXPRESSION_'
dot_decorator = '_M5M5_DOT_'
# The metaclass for ConfigNode (and thus for everything that derives
# from ConfigNode, including SimObject). This class controls how new
# classes that derive from ConfigNode are instantiated, and provides
# inherited class behavior (just like a class controls how instances
# of that class are instantiated, and provides inherited instance
# behavior).
class MetaConfigNode(type):
# Attributes that can be set only at initialization time
init_keywords = {}
# Attributes that can be set any time
keywords = { 'check' : types.FunctionType,
'children' : types.ListType }
# __new__ is called before __init__, and is where the statements
# in the body of the class definition get loaded into the class's
# __dict__. We intercept this to filter out parameter assignments
# and only allow "private" attributes to be passed to the base
# __new__ (starting with underscore).
def __new__(mcls, name, bases, dict):
# Copy "private" attributes (including special methods such as __new__)
# to the official dict. Everything else goes in _init_dict to be
# filtered in __init__.
cls_dict = {}
for key,val in dict.items():
if key.startswith('_'):
cls_dict[key] = val
del dict[key]
cls_dict['_init_dict'] = dict
return super(MetaConfigNode, mcls).__new__(mcls, name, bases, cls_dict)
# initialization
def __init__(cls, name, bases, dict):
super(MetaConfigNode, cls).__init__(name, bases, dict)
# initialize required attributes
cls._params = {}
cls._values = {}
cls._enums = {}
cls._bases = [c for c in cls.__mro__ if isConfigNode(c)]
cls._anon_subclass_counter = 0
# If your parent has a value in it that's a config node, clone
# it. Do this now so if we update any of the values'
# attributes we are updating the clone and not the original.
for base in cls._bases:
for key,val in base._values.iteritems():
# don't clone if (1) we're about to overwrite it with
# a local setting or (2) we've already cloned a copy
# from an earlier (more derived) base
if cls._init_dict.has_key(key) or cls._values.has_key(key):
continue
if isConfigNode(val):
cls._values[key] = val()
elif isSimObjSequence(val):
cls._values[key] = [ v() for v in val ]
elif isNullPointer(val):
cls._values[key] = val
# now process _init_dict items
for key,val in cls._init_dict.items():
if isinstance(val, _Param):
cls._params[key] = val
# init-time-only keywords
elif cls.init_keywords.has_key(key):
cls._set_keyword(key, val, cls.init_keywords[key])
# enums
elif isinstance(val, type) and issubclass(val, Enum):
cls._enums[key] = val
# See description of decorators in the importer.py file.
# We just strip off the expr_decorator now since we don't
# need from this point on.
elif key.startswith(expr_decorator):
key = key[len(expr_decorator):]
# because it had dots into a list so that we can find the
# proper variable to modify.
key = key.split(dot_decorator)
c = cls
for item in key[:-1]:
c = getattr(c, item)
setattr(c, key[-1], val)
# default: use normal path (ends up in __setattr__)
else:
setattr(cls, key, val)
def _isvalue(cls, name):
for c in cls._bases:
if c._params.has_key(name):
return True
for c in cls._bases:
if c._values.has_key(name):
return True
return False
# generator that iterates across all parameters for this class and
# all classes it inherits from
def _getparams(cls):
params = {}
for c in cls._bases:
for p,v in c._params.iteritems():
if not params.has_key(p):
params[p] = v
return params
# Lookup a parameter description by name in the given class.
def _getparam(cls, name, default = AttributeError):
for c in cls._bases:
if c._params.has_key(name):
return c._params[name]
if isSubClass(default, Exception):
raise default, \
"object '%s' has no attribute '%s'" % (cls.__name__, name)
else:
return default
def _hasvalue(cls, name):
for c in cls._bases:
if c._values.has_key(name):
return True
return False
def _getvalues(cls):
values = {}
for i,c in enumerate(cls._bases):
for p,v in c._values.iteritems():
if not values.has_key(p):
values[p] = v
for p,v in c._params.iteritems():
if not values.has_key(p) and hasattr(v, 'default'):
try:
v.valid(v.default)
except TypeError:
panic("Invalid default %s for param %s in node %s"
% (v.default,p,cls.__name__))
v = v.default
cls._setvalue(p, v)
values[p] = v
return values
def _getvalue(cls, name, default = AttributeError):
value = None
for c in cls._bases:
if c._values.has_key(name):
value = c._values[name]
break
if value is not None:
return value
param = cls._getparam(name, None)
if param is not None and hasattr(param, 'default'):
param.valid(param.default)
value = param.default
cls._setvalue(name, value)
return value
if isSubClass(default, Exception):
raise default, 'value for %s not found' % name
else:
return default
def _setvalue(cls, name, value):
cls._values[name] = value
def __getattr__(cls, attr):
if cls._isvalue(attr):
return Value(cls, attr)
if attr == '_cpp_param_decl' and hasattr(cls, 'type'):
return cls.type + '*'
raise AttributeError, \
"object '%s' has no attribute '%s'" % (cls.__name__, attr)
def _set_keyword(cls, keyword, val, kwtype):
if not isinstance(val, kwtype):
raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
(keyword, type(val), kwtype)
if isinstance(val, types.FunctionType):
val = classmethod(val)
type.__setattr__(cls, keyword, val)
# Set attribute (called on foo.attr = value when foo is an
# instance of class cls).
def __setattr__(cls, attr, value):
# normal processing for private attributes
if attr.startswith('_'):
type.__setattr__(cls, attr, value)
return
if cls.keywords.has_key(attr):
cls._set_keyword(attr, value, cls.keywords[attr])
return
# must be SimObject param
param = cls._getparam(attr, None)
if param:
# It's ok: set attribute by delegating to 'object' class.
# Note the use of param.make_value() to verify/canonicalize
# the assigned value
param.valid(value)
cls._setvalue(attr, value)
elif isConfigNode(value) or isSimObjSequence(value):
cls._setvalue(attr, value)
else:
raise AttributeError, \
"Class %s has no parameter %s" % (cls.__name__, attr)
def add_child(cls, instance, name, child):
if isNullPointer(child) or instance.top_child_names.has_key(name):
return
if issequence(child):
kid = []
for i,c in enumerate(child):
n = '%s%d' % (name, i)
k = c.instantiate(n, instance)
instance.children.append(k)
instance.child_names[n] = k
instance.child_objects[c] = k
kid.append(k)
else:
kid = child.instantiate(name, instance)
instance.children.append(kid)
instance.child_names[name] = kid
instance.child_objects[child] = kid
instance.top_child_names[name] = kid
# Print instance info to .ini file.
def instantiate(cls, name, parent = None):
instance = Node(name, cls, cls.type, parent, isParamContext(cls))
if hasattr(cls, 'check'):
cls.check()
for key,value in cls._getvalues().iteritems():
if isConfigNode(value):
cls.add_child(instance, key, value)
if issequence(value):
list = [ v for v in value if isConfigNode(v) ]
if len(list):
cls.add_child(instance, key, list)
for pname,param in cls._getparams().iteritems():
try:
value = cls._getvalue(pname)
except:
panic('Error getting %s' % pname)
try:
if isConfigNode(value):
value = instance.child_objects[value]
elif issequence(value):
v = []
for val in value:
if isConfigNode(val):
v.append(instance.child_objects[val])
else:
v.append(val)
value = v
p = NodeParam(pname, param, value)
instance.params.append(p)
instance.param_names[pname] = p
except:
print 'Exception while evaluating %s.%s' % \
(instance.path, pname)
raise
return instance
def _convert(cls, value):
realvalue = value
if isinstance(value, Node):
realvalue = value.realtype
if isinstance(realvalue, Proxy):
return value
if realvalue == None or isNullPointer(realvalue):
return value
if isSubClass(realvalue, cls):
return value
raise TypeError, 'object %s type %s wrong type, should be %s' % \
(repr(realvalue), realvalue, cls)
def _string(cls, value):
if isNullPointer(value):
return 'Null'
return Node._string(value)
# The ConfigNode class is the root of the special hierarchy. Most of
# the code in this class deals with the configuration hierarchy itself
# (parent/child node relationships).
class ConfigNode(object):
# Specify metaclass. Any class inheriting from ConfigNode will
# get this metaclass.
__metaclass__ = MetaConfigNode
def __new__(cls, **kwargs):
name = cls.__name__ + ("_%d" % cls._anon_subclass_counter)
cls._anon_subclass_counter += 1
return cls.__metaclass__(name, (cls, ), kwargs)
class ParamContext(ConfigNode):
pass
class MetaSimObject(MetaConfigNode):
# init_keywords and keywords are inherited from MetaConfigNode,
# with overrides/additions
init_keywords = MetaConfigNode.init_keywords
init_keywords.update({ 'abstract' : types.BooleanType,
'type' : types.StringType })
keywords = MetaConfigNode.keywords
# no additional keywords
cpp_classes = []
# initialization
def __init__(cls, name, bases, dict):
super(MetaSimObject, cls).__init__(name, bases, dict)
if hasattr(cls, 'type'):
if name == 'SimObject':
cls._cpp_base = None
elif hasattr(cls._bases[1], 'type'):
cls._cpp_base = cls._bases[1].type
else:
panic("SimObject %s derives from a non-C++ SimObject %s "\
"(no 'type')" % (cls, cls_bases[1].__name__))
# This class corresponds to a C++ class: put it on the global
# list of C++ objects to generate param structs, etc.
MetaSimObject.cpp_classes.append(cls)
def _cpp_decl(cls):
name = cls.__name__
code = ""
code += "\n".join([e.cpp_declare() for e in cls._enums.values()])
code += "\n"
param_names = cls._params.keys()
param_names.sort()
code += "struct Params"
if cls._cpp_base:
code += " : public %s::Params" % cls._cpp_base
code += " {\n "
code += "\n ".join([cls._params[pname].cpp_decl(pname) \
for pname in param_names])
code += "\n};\n"
return code
class NodeParam(object):
def __init__(self, name, param, value):
self.name = name
self.param = param
self.ptype = param.ptype
self.convert = param.convert
self.string = param.string
self.value = value
class Node(object):
all = {}
def __init__(self, name, realtype, type, parent, paramcontext):
self.name = name
self.realtype = realtype
self.type = type
self.parent = parent
self.children = []
self.child_names = {}
self.child_objects = {}
self.top_child_names = {}
self.params = []
self.param_names = {}
self.paramcontext = paramcontext
path = [ self.name ]
node = self.parent
while node is not None:
if node.name != 'root':
path.insert(0, node.name)
else:
assert(node.parent is None)
node = node.parent
self.path = '.'.join(path)
def find(self, realtype, path):
if not path:
if issubclass(self.realtype, realtype):
return self, True
obj = None
for child in self.children:
if issubclass(child.realtype, realtype):
if obj is not None:
raise AttributeError, \
'Super matched more than one: %s %s' % \
(obj.path, child.path)
obj = child
return obj, obj is not None
try:
obj = self
for node in path[:-1]:
obj = obj.child_names[node]
last = path[-1]
if obj.child_names.has_key(last):
value = obj.child_names[last]
if issubclass(value.realtype, realtype):
return value, True
elif obj.param_names.has_key(last):
value = obj.param_names[last]
realtype._convert(value.value)
return value.value, True
except KeyError:
pass
return None, False
def unproxy(self, ptype, value):
if not isinstance(value, Proxy):
return value
if value is None:
raise AttributeError, 'Error while fixing up %s' % self.path
obj = self
done = False
while not done:
if obj is None:
raise AttributeError, \
'Parent of %s type %s not found at path %s' \
% (self.name, ptype, value._path)
found, done = obj.find(ptype, value._path)
if isinstance(found, Proxy):
done = False
obj = obj.parent
return found
def fixup(self):
self.all[self.path] = self
for param in self.params:
ptype = param.ptype
pval = param.value
try:
if issequence(pval):
param.value = [ self.unproxy(ptype, pv) for pv in pval ]
else:
param.value = self.unproxy(ptype, pval)
except:
print 'Error while fixing up %s:%s' % (self.path, param.name)
raise
for child in self.children:
assert(child != self)
child.fixup()
# print type and parameter values to .ini file
def display(self):
print '[' + self.path + ']' # .ini section header
if isSimObject(self.realtype):
print 'type = %s' % self.type
if self.children:
# instantiate children in same order they were added for
# backward compatibility (else we can end up with cpu1
# before cpu0). Changing ordering can also influence timing
# in the current memory system, as caches get added to a bus
# in different orders which affects their priority in the
# case of simulataneous requests. We should uncomment the
# following line once we take care of that issue.
# self.children.sort(lambda x,y: cmp(x.name, y.name))
children = [ c.name for c in self.children if not c.paramcontext]
print 'children =', ' '.join(children)
self.params.sort(lambda x,y: cmp(x.name, y.name))
for param in self.params:
try:
if param.value is None:
raise AttributeError, 'Parameter with no value'
value = param.convert(param.value)
string = param.string(value)
except:
print 'exception in %s:%s' % (self.path, param.name)
raise
print '%s = %s' % (param.name, string)
print
# recursively dump out children
for c in self.children:
c.display()
# print type and parameter values to .ini file
def outputDot(self, dot):
label = "{%s|" % self.path
if isSimObject(self.realtype):
label += '%s|' % self.type
if self.children:
# instantiate children in same order they were added for
# backward compatibility (else we can end up with cpu1
# before cpu0).
for c in self.children:
dot.add_edge(pydot.Edge(self.path,c.path, style="bold"))
simobjs = []
for param in self.params:
try:
if param.value is None:
raise AttributeError, 'Parameter with no value'
value = param.convert(param.value)
string = param.string(value)
except:
print 'exception in %s:%s' % (self.name, param.name)
raise
if isConfigNode(param.ptype) and string != "Null":
simobjs.append(string)
else:
label += '%s = %s\\n' % (param.name, string)
for so in simobjs:
label += "|<%s> %s" % (so, so)
dot.add_edge(pydot.Edge("%s:%s" % (self.path, so), so, tailport="w"))
label += '}'
dot.add_node(pydot.Node(self.path,shape="Mrecord",label=label))
# recursively dump out children
for c in self.children:
c.outputDot(dot)
def _string(cls, value):
if not isinstance(value, Node):
raise AttributeError, 'expecting %s got %s' % (Node, value)
return value.path
_string = classmethod(_string)
#####################################################################
#
# Parameter description classes
#
# The _params dictionary in each class maps parameter names to
# either a Param or a VectorParam object. These objects contain the
# parameter description string, the parameter type, and the default
# value (loaded from the PARAM section of the .odesc files). The
# _convert() method on these objects is used to force whatever value
# is assigned to the parameter to the appropriate type.
#
# Note that the default values are loaded into the class's attribute
# space when the parameter dictionary is initialized (in
# MetaConfigNode._setparams()); after that point they aren't used.
#
#####################################################################
def isNullPointer(value):
return isinstance(value, NullSimObject)
class Value(object):
def __init__(self, obj, attr):
super(Value, self).__setattr__('attr', attr)
super(Value, self).__setattr__('obj', obj)
def _getattr(self):
return self.obj._getvalue(self.attr)
def __setattr__(self, attr, value):
setattr(self._getattr(), attr, value)
def __getattr__(self, attr):
return getattr(self._getattr(), attr)
def __getitem__(self, index):
return self._getattr().__getitem__(index)
def __call__(self, *args, **kwargs):
return self._getattr().__call__(*args, **kwargs)
def __nonzero__(self):
return bool(self._getattr())
def __str__(self):
return str(self._getattr())
# Regular parameter.
class _Param(object):
def __init__(self, ptype, *args, **kwargs):
if isinstance(ptype, types.StringType):
self.ptype_string = ptype
elif isinstance(ptype, type):
self.ptype = ptype
else:
raise TypeError, "Param type is not a type (%s)" % ptype
if args:
if len(args) == 1:
self.desc = args[0]
elif len(args) == 2:
self.default = args[0]
self.desc = args[1]
else:
raise TypeError, 'too many arguments'
if kwargs.has_key('desc'):
assert(not hasattr(self, 'desc'))
self.desc = kwargs['desc']
del kwargs['desc']
if kwargs.has_key('default'):
assert(not hasattr(self, 'default'))
self.default = kwargs['default']
del kwargs['default']
if kwargs:
raise TypeError, 'extra unknown kwargs %s' % kwargs
if not hasattr(self, 'desc'):
raise TypeError, 'desc attribute missing'
def __getattr__(self, attr):
if attr == 'ptype':
try:
self.ptype = eval(self.ptype_string)
return self.ptype
except:
raise TypeError, 'Param.%s: undefined type' % self.ptype_string
else:
raise AttributeError, "'%s' object has no attribute '%s'" % \
(type(self).__name__, attr)
def valid(self, value):
if not isinstance(value, Proxy):
self.ptype._convert(value)
def convert(self, value):
return self.ptype._convert(value)
def string(self, value):
return self.ptype._string(value)
def set(self, name, instance, value):
instance.__dict__[name] = value
def cpp_decl(self, name):
return '%s %s;' % (self.ptype._cpp_param_decl, name)
class _ParamProxy(object):
def __init__(self, type):
self.ptype = type
# E.g., Param.Int(5, "number of widgets")
def __call__(self, *args, **kwargs):
# Param type could be defined only in context of caller (e.g.,
# for locally defined Enum subclass). Need to go look up the
# type in that enclosing scope.
caller_frame = inspect.stack()[1][0]
ptype = caller_frame.f_locals.get(self.ptype, None)
if not ptype: ptype = caller_frame.f_globals.get(self.ptype, None)
if not ptype: ptype = globals().get(self.ptype, None)
# ptype could still be None due to circular references... we'll
# try one more time to evaluate lazily when ptype is first needed.
# In the meantime we'll save the type name as a string.
if not ptype: ptype = self.ptype
return _Param(ptype, *args, **kwargs)
def __getattr__(self, attr):
if attr == '__bases__':
raise AttributeError, ''
cls = type(self)
return cls(attr)
def __setattr__(self, attr, value):
if attr != 'ptype':
raise AttributeError, \
'Attribute %s not available in %s' % (attr, self.__class__)
super(_ParamProxy, self).__setattr__(attr, value)
Param = _ParamProxy(None)
# Vector-valued parameter description. Just like Param, except that
# the value is a vector (list) of the specified type instead of a
# single value.
class _VectorParam(_Param):
def __init__(self, type, *args, **kwargs):
_Param.__init__(self, type, *args, **kwargs)
def valid(self, value):
if value == None:
return True
if issequence(value):
for val in value:
if not isinstance(val, Proxy):
self.ptype._convert(val)
elif not isinstance(value, Proxy):
self.ptype._convert(value)
# Convert assigned value to appropriate type. If the RHS is not a
# list or tuple, it generates a single-element list.
def convert(self, value):
if value == None:
return []
if issequence(value):
# list: coerce each element into new list
return [ self.ptype._convert(v) for v in value ]
else:
# singleton: coerce & wrap in a list
return self.ptype._convert(value)
def string(self, value):
if issequence(value):
return ' '.join([ self.ptype._string(v) for v in value])
else:
return self.ptype._string(value)
def cpp_decl(self, name):
return 'std::vector<%s> %s;' % (self.ptype._cpp_param_decl, name)
class _VectorParamProxy(_ParamProxy):
# E.g., VectorParam.Int(5, "number of widgets")
def __call__(self, *args, **kwargs):
return _VectorParam(self.ptype, *args, **kwargs)
VectorParam = _VectorParamProxy(None)
#####################################################################
#
# Parameter Types
#
# Though native Python types could be used to specify parameter types
# (the 'ptype' field of the Param and VectorParam classes), it's more
# flexible to define our own set of types. This gives us more control
# over how Python expressions are converted to values (via the
# __init__() constructor) and how these values are printed out (via
# the __str__() conversion method). Eventually we'll need these types
# to correspond to distinct C++ types as well.
#
#####################################################################
# Integer parameter type.
class _CheckedInt(object):
def _convert(cls, value):
t = type(value)
if t == bool:
return int(value)
if t != int and t != long and t != float and t != str:
raise TypeError, 'Integer parameter of invalid type %s' % t
if t == str or t == float:
value = long(value)
if not cls._min <= value <= cls._max:
raise TypeError, 'Integer parameter out of bounds %d < %d < %d' % \
(cls._min, value, cls._max)
return value
_convert = classmethod(_convert)
def _string(cls, value):
return str(value)
_string = classmethod(_string)
class CheckedInt(type):
def __new__(cls, cppname, min, max):
# New class derives from _CheckedInt base with proper bounding
# parameters
dict = { '_cpp_param_decl' : cppname, '_min' : min, '_max' : max }
return type.__new__(cls, cppname, (_CheckedInt, ), dict)
class CheckedIntType(CheckedInt):
def __new__(cls, cppname, size, unsigned):
dict = {}
if unsigned:
min = 0
max = 2 ** size - 1
else:
min = -(2 ** (size - 1))
max = (2 ** (size - 1)) - 1
return super(cls, CheckedIntType).__new__(cls, cppname, min, max)
Int = CheckedIntType('int', 32, False)
Unsigned = CheckedIntType('unsigned', 32, True)
Int8 = CheckedIntType('int8_t', 8, False)
UInt8 = CheckedIntType('uint8_t', 8, True)
Int16 = CheckedIntType('int16_t', 16, False)
UInt16 = CheckedIntType('uint16_t', 16, True)
Int32 = CheckedIntType('int32_t', 32, False)
UInt32 = CheckedIntType('uint32_t', 32, True)
Int64 = CheckedIntType('int64_t', 64, False)
UInt64 = CheckedIntType('uint64_t', 64, True)
Counter = CheckedIntType('Counter', 64, True)
Addr = CheckedIntType('Addr', 64, True)
Tick = CheckedIntType('Tick', 64, True)
Percent = CheckedInt('int', 0, 100)
class Pair(object):
def __init__(self, first, second):
self.first = first
self.second = second
class _Range(object):
def _convert(cls, value):
if not isinstance(value, Pair):
raise TypeError, 'value %s is not a Pair' % value
return Pair(cls._type._convert(value.first),
cls._type._convert(value.second))
_convert = classmethod(_convert)
def _string(cls, value):
return '%s:%s' % (cls._type._string(value.first),
cls._type._string(value.second))
_string = classmethod(_string)
def RangeSize(start, size):
return Pair(start, start + size - 1)
class Range(type):
def __new__(cls, type):
dict = { '_cpp_param_decl' : 'Range<%s>' % type._cpp_param_decl,
'_type' : type }
clsname = 'Range_' + type.__name__
return super(cls, Range).__new__(cls, clsname, (_Range, ), dict)
AddrRange = Range(Addr)
# Boolean parameter type.
class Bool(object):
_cpp_param_decl = 'bool'
def _convert(value):
t = type(value)
if t == bool:
return value
if t == int or t == long:
return bool(value)
if t == str:
v = value.lower()
if v == "true" or v == "t" or v == "yes" or v == "y":
return True
elif v == "false" or v == "f" or v == "no" or v == "n":
return False
raise TypeError, 'Bool parameter (%s) of invalid type %s' % (v, t)
_convert = staticmethod(_convert)
def _string(value):
if value:
return "true"
else:
return "false"
_string = staticmethod(_string)
# String-valued parameter.
class String(object):
_cpp_param_decl = 'string'
# Constructor. Value must be Python string.
def _convert(cls,value):
if value is None:
return ''
if isinstance(value, str):
return value
raise TypeError, \
"String param got value %s %s" % (repr(value), type(value))
_convert = classmethod(_convert)
# Generate printable string version. Not too tricky.
def _string(cls, value):
return value
_string = classmethod(_string)
def IncEthernetAddr(addr, val = 1):
bytes = map(lambda x: int(x, 16), addr.split(':'))
bytes[5] += val
for i in (5, 4, 3, 2, 1):
val,rem = divmod(bytes[i], 256)
bytes[i] = rem
if val == 0:
break
bytes[i - 1] += val
assert(bytes[0] <= 255)
return ':'.join(map(lambda x: '%02x' % x, bytes))
class NextEthernetAddr(object):
__metaclass__ = Singleton
addr = "00:90:00:00:00:01"
def __init__(self, inc = 1):
self.value = self.addr
self.addr = IncEthernetAddr(self.addr, inc)
class EthernetAddr(object):
_cpp_param_decl = 'EthAddr'
def _convert(cls, value):
if value == NextEthernetAddr:
return value
if not isinstance(value, str):
raise TypeError, "expected an ethernet address and didn't get one"
bytes = value.split(':')
if len(bytes) != 6:
raise TypeError, 'invalid ethernet address %s' % value
for byte in bytes:
if not 0 <= int(byte) <= 256:
raise TypeError, 'invalid ethernet address %s' % value
return value
_convert = classmethod(_convert)
def _string(cls, value):
if value == NextEthernetAddr:
value = value().value
return value
_string = classmethod(_string)
# Special class for NULL pointers. Note the special check in
# make_param_value() above that lets these be assigned where a
# SimObject is required.
# only one copy of a particular node
class NullSimObject(object):
__metaclass__ = Singleton
def __call__(cls):
return cls
def _instantiate(self, parent = None, path = ''):
pass
def _convert(cls, value):
if value == Nxone:
return
if isinstance(value, cls):
return value
raise TypeError, 'object %s %s of the wrong type, should be %s' % \
(repr(value), type(value), cls)
_convert = classmethod(_convert)
def _string():
return 'NULL'
_string = staticmethod(_string)
# The only instance you'll ever need...
Null = NULL = NullSimObject()
# Enumerated types are a little more complex. The user specifies the
# type as Enum(foo) where foo is either a list or dictionary of
# alternatives (typically strings, but not necessarily so). (In the
# long run, the integer value of the parameter will be the list index
# or the corresponding dictionary value. For now, since we only check
# that the alternative is valid and then spit it into a .ini file,
# there's not much point in using the dictionary.)
# What Enum() must do is generate a new type encapsulating the
# provided list/dictionary so that specific values of the parameter
# can be instances of that type. We define two hidden internal
# classes (_ListEnum and _DictEnum) to serve as base classes, then
# derive the new type from the appropriate base class on the fly.
# Metaclass for Enum types
class MetaEnum(type):
def __init__(cls, name, bases, init_dict):
if init_dict.has_key('map'):
if not isinstance(cls.map, dict):
raise TypeError, "Enum-derived class attribute 'map' " \
"must be of type dict"
# build list of value strings from map
cls.vals = cls.map.keys()
cls.vals.sort()
elif init_dict.has_key('vals'):
if not isinstance(cls.vals, list):
raise TypeError, "Enum-derived class attribute 'vals' " \
"must be of type list"
# build string->value map from vals sequence
cls.map = {}
for idx,val in enumerate(cls.vals):
cls.map[val] = idx
else:
raise TypeError, "Enum-derived class must define "\
"attribute 'map' or 'vals'"
cls._cpp_param_decl = name
super(MetaEnum, cls).__init__(name, bases, init_dict)
def cpp_declare(cls):
s = 'enum %s {\n ' % cls.__name__
s += ',\n '.join(['%s = %d' % (v,cls.map[v]) for v in cls.vals])
s += '\n};\n'
return s
# Base class for enum types.
class Enum(object):
__metaclass__ = MetaEnum
vals = []
def _convert(self, value):
if value not in self.map:
raise TypeError, "Enum param got bad value '%s' (not in %s)" \
% (value, self.vals)
return value
_convert = classmethod(_convert)
# Generate printable string version of value.
def _string(self, value):
return str(value)
_string = classmethod(_string)
#
# "Constants"... handy aliases for various values.
#
# Some memory range specifications use this as a default upper bound.
MAX_ADDR = Addr._max
MaxTick = Tick._max
# For power-of-two sizing, e.g. 64*K gives an integer value 65536.
K = 1024
M = K*K
G = K*M
#####################################################################
# The final hook to generate .ini files. Called from configuration
# script once config is built.
def instantiate(root):
if not issubclass(root, Root):
raise AttributeError, 'Can only instantiate the Root of the tree'
instance = root.instantiate('root')
instance.fixup()
instance.display()
if not noDot:
dot = pydot.Dot()
instance.outputDot(dot)
dot.orientation = "portrait"
dot.size = "8.5,11"
dot.ranksep="equally"
dot.rank="samerank"
dot.write("config.dot")
dot.write_ps("config.ps")
# SimObject is a minimal extension of ConfigNode, implementing a
# hierarchy node that corresponds to an M5 SimObject. It prints out a
# "type=" line to indicate its SimObject class, prints out the
# assigned parameters corresponding to its class, and allows
# parameters to be set by keyword in the constructor. Note that most
# of the heavy lifting for the SimObject param handling is done in the
# MetaConfigNode metaclass.
class SimObject(ConfigNode):
__metaclass__ = MetaSimObject
type = 'SimObject'
from objects import *
cpp_classes = MetaSimObject.cpp_classes
cpp_classes.sort()